Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = microinclusions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 17519 KB  
Article
Cl-Bearing Mineral Microinclusions in Arc Lavas: An Overview of Recent Findings with Some Metallogenic Implications
by Pavel Kepezhinskas, Nikolai Berdnikov, Irina Voinova, Nikita Kepezhinskas, Nadezhda Potapova and Valeria Krutikova
Geosciences 2026, 16(1), 40; https://doi.org/10.3390/geosciences16010040 - 12 Jan 2026
Viewed by 202
Abstract
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, [...] Read more.
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, and Zn compounds with Cl and S, Sn- and Pb-Sb oxychlorides compositionally similar to abhurite and nadorite, as well as bismoclite and Cl-F-apatite. The Cl-bearing compounds with chalcophile metals are best approximated by mixtures of chlorargyrite with Cu sulfides, malachite, or azurite. Some Cl-bearing solid microinclusions in magmatic rock-forming minerals could have formed from Cl-rich melts exsolved from arc magmas during differentiation. Alternatively, specific magmatic microinclusions may record the decomposition of primary sulfides in the presence of Cl-bearing magmatic volatiles. Post-magmatic Cl microminerals found in fractures, pores, grain contacts, and groundmass glass are most probably precipitated from hydrothermal fluids accompanying their emplacement at the surface and post-eruption transformations in active fumarole fields. Assemblages of Cl-bearing microminerals with native metal, alloy, sulfide, oxide, and sulfate microinclusions in arc lavas potentially record late-magmatic to post-magmatic stages of formation of the epithermal and possibly porphyry mineralization beneath arc volcanoes. Full article
Show Figures

Figure 1

13 pages, 3409 KB  
Article
Genetic Features of Variety III Cuboid Diamonds from Placers of the Northeastern Siberian Platform
by Anton Pavlushin, Sargylana Ugapeva, Anastasia Biller and Oleg Oleinikov
Minerals 2025, 15(12), 1321; https://doi.org/10.3390/min15121321 - 17 Dec 2025
Viewed by 308
Abstract
This paper presents the results of a comprehensive study of a cuboid diamond of variety III according to the mineralogical classification of Y.L. Orlov, which was first discovered in Carnian (Upper Triassic) deposits of the Bulkur anticline in the northeastern Siberian platform. It [...] Read more.
This paper presents the results of a comprehensive study of a cuboid diamond of variety III according to the mineralogical classification of Y.L. Orlov, which was first discovered in Carnian (Upper Triassic) deposits of the Bulkur anticline in the northeastern Siberian platform. It is established that the crystal has a cubic shape with signs of intense dissolution and is characterized by a zonal–sectorial fibrous internal structure. The central area of the diamond is saturated with microinclusions. The studied cuboid diamond belongs to the IaAB type according to IR spectroscopy data. An accumulation of minerals, which is represented by chamosite (Fe-rich chlorite), quartz, and pyrite, as well as rare native metals (Fe, Cu, and Ag) and intermetallides (chromferide), is present on the diamond surface. The chemical composition and morphology of chamosite indicate its low-temperature hydrothermal–diagenetic origin (50–150 °C, pressure < 1 kbar) in the marine or lagoon sedimentary environment of the rift basin of the Siberian platform during the Triassic. The discovery of a diamond of variety III, characteristic of large industrial kimberlite pipes (Mir, Udachnaya, and Aikhal), in placers of the Leno-Anabar diamond-bearing subprovince indicates a possible unknown primary kimberlite source. Full article
Show Figures

Figure 1

20 pages, 5354 KB  
Article
Platinum Group Minerals in Sulfide Droplets of the Zhelos Intrusion, Eastern Sayn, Russia: First Data
by Tatiana B. Kolotilina, Alexander V. Nikolaev, Alexander L. Finkelstein, Alexey S. Mekhonoshin and Olga Yu. Belozerova
Minerals 2025, 15(6), 612; https://doi.org/10.3390/min15060612 - 5 Jun 2025
Viewed by 633
Abstract
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in [...] Read more.
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in accelerating voltage, electron beam intensity and probe diameter is considered in order to estimate the X-ray generation region, when analyzing PGM microinclusions comparable in size to the radiation generation region or smaller. Estimates were made of the possibility of reducing the size of the local analysis area when the accelerating voltage was reduced. The influence of the matrix composition on the results of the local analysis of PGM microphases and accuracy of the Pd and Pt content determination was also evaluated. The findings of the experiments conducted allowed for the successful identification of elements belonging to the PGM microphases and the host matrix. This approach enabled the estimation of the precise levels of impurity elements in their composition. Using a scanning electron microscope in the automatic scanning mode for the detection of heavy elements, 10 single and composite grains of three platinum group minerals larger than 5 µm and 22 microphases ranging in size from 0.3 to 4 µm were detected in the sulfide droplets. The large phases are merenskyite, omeiite and michenerite, with merenskyite being predominant. Among the microscopic inclusions were identified Pd-Bi-Te, Os-Ru-As and Rh-As-S phases. The composition of the studied palladium bismuthotelluride samples indicates a formation temperature range of 489–700 °C. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

31 pages, 14774 KB  
Article
Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)
by Veronika I. Rozhdestvina and Galina A. Palyanova
Minerals 2025, 15(6), 571; https://doi.org/10.3390/min15060571 - 27 May 2025
Viewed by 1206
Abstract
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing [...] Read more.
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing native gold were analyzed by scanning electron microscopy in combination with X-ray microanalysis using different modes of visualization and X-ray diffraction methods. Gold particles, clearly visible after etching the surface of some polished sections with acids and partial or complete dissolution of some host minerals, were also examined. Native gold from the studied deposit is of high fineness (above 970‰) and contains (in wt.%) <1.59 Ag and less commonly <0.37 Cu and <0.15 Zn. Native gold is found intergrown with tremolite, diopside, and other magnesian silicates, as well as calcite, fluorite, magnetite, and sphalerite. Rare microinclusions of pyrrhotite, galena, and clinohumite are present in gold grains. It was found that native gold inherits the morphology of tremolite crystals and aggregates, which is determined by the size and shape of the voids bounded by its crystals. Gold localized in the intercrystalline spaces and in the zones of conjugation with remobilized calcite has irregular, lumpy shapes and partially or completely faceted grains with a dense structure. The nature of the localization and distribution of native gold in ores is due to the crystallization of the tremolite component of skarns. Apparently, the processes of gold accumulation are caused by the thermal activation of solid-phase differentiation of the substance of carbonate rocks, in which the processes of destruction of the original minerals and collective recrystallization play a significant role. It is likely that at some gold skarn deposits, carbonate rocks could be the source of gold. Data on the morphology and sizes of native gold segregations, as well as on the intergrown minerals, can be used to improve gold extraction technologies. A specific group of minerals intergrown with native gold in gold skarn deposits can be used as a diagnostic feature in the primary search for placer gold. The obtained results will help to better understand the formation of native gold in apocarbonate tremolite–diopside skarns. Full article
Show Figures

Graphical abstract

20 pages, 10850 KB  
Article
Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East)
by Valeria Krutikova, Nikolai Berdnikov and Pavel Kepezhinskas
Minerals 2025, 15(5), 504; https://doi.org/10.3390/min15050504 - 9 May 2025
Cited by 1 | Viewed by 774
Abstract
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion [...] Read more.
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion and the multi-stage interaction of intrusive rocks with late-magmatic, post-magmatic and post-collisional fluids. A comparison of the results of our microinclusions study with ore mineralization discovered within the Ildeus intrusion suggests that microinclusion assemblages in igneous rocks are, in some cases, precursors of potentially economic mineralization. In the case of the Ildeus rocks, sulfide microinclusions correspond to potentially economic disseminated nickel–cobalt sulfide ores, while microinclusions of gold and its alloys correlate with intrusion-hosted, erratic gold mineralization. The occurrence of silver and rare earth element minerals in Ildeus plutonic rocks indicates the possible presence of silver and REE mineralization, which is supported by sub-economic whole-rock silver and REE grades in parts of the Ildeus intrusion. The results of our investigation suggest that studies of mineral microinclusions in magmatic rocks may be useful in the evaluation of their metallogenic specialization and ore-forming potential and could possibly be utilized as an additional prospecting tool in the regional exploration for precious, base, and rare metals. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Graphical abstract

21 pages, 3632 KB  
Article
Phase Characterization of (Mn, S) Inclusions and Mo Precipitates in Reactor Pressure Vessel Steel from Greifswald Nuclear Power Plant
by Ghada Yassin, Erik Pönitz, Nina Maria Huittinen, Dieter Schild, Jörg Konheiser, Katharina Müller and Astrid Barkleit
J. Nucl. Eng. 2025, 6(2), 12; https://doi.org/10.3390/jne6020012 - 2 May 2025
Cited by 1 | Viewed by 1731
Abstract
This study presents a comprehensive analysis of the microstructural characteristics and chemical composition of base and weld materials from reactor pressure vessels in the first (units 1 and 2) and second (unit 8) generations of Russian VVER 440 reactors at the Greifswald nuclear [...] Read more.
This study presents a comprehensive analysis of the microstructural characteristics and chemical composition of base and weld materials from reactor pressure vessels in the first (units 1 and 2) and second (unit 8) generations of Russian VVER 440 reactors at the Greifswald nuclear power plant. We measured the specific activities of 60Co and 14C in activated samples from units 1 and 2. 60Co, with its shorter half-life (t1/2 = 5.27 a), is a key dose-contributing radionuclide during decommissioning, while 14C (t1/2 = 5700 a) plays an important role in a geological repository for low- and intermediate-level radioactive waste. Our findings reveal differences in the proportions of trace elements between the base and weld materials as well as between the two reactor generations. Microstructural analysis identified Mo-rich precipitates and (Mn, S)-rich inclusions containing secondary micro-inclusions in the unit 1 and 2 samples. Raman spectroscopy confirmed iron oxides (γ-Fe2O3, Fe3O4), silicates (Mn-SiO3), and Cr2O3/NiCr2O4 in the base metal as well as MnFe2O3 in the weld metal. X-ray photoelectron spectroscopy identified Mn inclusions as MnS, MnS2, or mixed Mn, Fe sulfides, and the Mo precipitates as MoSi2. These findings offer valuable insights into the speciation of elements and the potential release of radionuclides through corrosion processes under repository conditions. Full article
Show Figures

Graphical abstract

20 pages, 14201 KB  
Article
The Study of Gold Mineralization at the Polymetallic Dapingzhang VMS-Type Copper–Gold Deposit, Yunnan Province, China
by Shanshan Ru, Guo Li, Chuandong Xue, Feng Li, Shunhong Zou, Wei Wang and Honglin Zhou
Minerals 2025, 15(1), 54; https://doi.org/10.3390/min15010054 - 7 Jan 2025
Viewed by 1960
Abstract
The Dapingzhang Cu-polymetallic deposit in Yunnan is a volcanic massive sulfide (VMS) deposit, located on the western edge of the Lanping–Simao block. Recently, gold-rich polymetallic orebodies with significant economic value have been discovered. However, the occurrence and enrichment mechanisms of the gold remain [...] Read more.
The Dapingzhang Cu-polymetallic deposit in Yunnan is a volcanic massive sulfide (VMS) deposit, located on the western edge of the Lanping–Simao block. Recently, gold-rich polymetallic orebodies with significant economic value have been discovered. However, the occurrence and enrichment mechanisms of the gold remain unclear. This study investigates the massive sulfide orebodies (V1) through detailed geological surveys. Techniques such as optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron probe microanalysis (EPMA) were used to clarify the occurrence of gold, and to reveal the enrichment mechanisms. The genesis of the orebodies consists of three stages: (I) pyrite–quartz, (II) pyrite–chalcopyrite–sphalerite–galena–quartz, and (III) pyrite–chalcopyrite–sphalerite–galena–quartz–calcite. Gold precipitated during each of these mineralization stages, and it may be described as multiphase mineralization. Gold predominantly exists as invisible gold (≤0.1 μm), with minor visible gold as native gold and independent minerals (küstelite, electrum, calaverite). Invisible gold mainly occurs as gold microinclusions (Au+) in pyrite, chalcopyrite, and sphalerite. Combined with the previous research, comprehensive analysis determined that deep-circulating seawater, driven by a magmatic hydrothermal system, leaches and dissolves mineralizing materials from underlying volcanic rocks. The mineralizing fluid, mixed with magmatic fluid, migrates upward through volcanic conduits or is expelled to the seafloor. Changes in physicochemical conditions lead to the co-precipitation of gold and sulfides, forming a mineralization structure with lower channel facies and upper eruptive facies. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

16 pages, 5835 KB  
Article
LA-ICP-MS Trace Element Characteristics and Geological Significance of Stibnite in the Zhaxikang Pb–Zn–Ag–Sb Deposit, Southern Tibet, SW China
by Zijun Qiu, Jinchao Wu, Panagiotis Voudouris, Stylianos Tombros, Jiajun Liu and Degao Zhai
Minerals 2024, 14(12), 1294; https://doi.org/10.3390/min14121294 - 20 Dec 2024
Cited by 1 | Viewed by 2457
Abstract
Discovered within the North Himalayan Metallogenic Belt (NHMB), the Zhaxikang Pb–Zn–Ag–Sb deposit stands as the sole super-large scale ore deposit in the region. This deposit holds significant quantities of Pb and Zn (2.066 million tons at 6.38% average grade), Ag (2661 tons at [...] Read more.
Discovered within the North Himalayan Metallogenic Belt (NHMB), the Zhaxikang Pb–Zn–Ag–Sb deposit stands as the sole super-large scale ore deposit in the region. This deposit holds significant quantities of Pb and Zn (2.066 million tons at 6.38% average grade), Ag (2661 tons at an average of 101.64 g/t), and Sb (0.235 million tons at 1.14% average grade), making it one of China’s foremost Sb–polymetallic deposits. Stibnite represents the main carrier of Sb in this deposit and has been of great attention since its initial discovery. However, the trace element composition of stibnite in the Zhaxikang deposit has not yet been determined. This study carried out an analysis of the distribution patterns and substitution processes of trace elements within stibnite gathered from the Zhaxikang deposit, aiming to provide crucial information on ore-forming processes. Utilizing high-precision laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we discovered that the studied stibnite is notably enriched in arsenic (~100 ppm) and lead (~10 ppm). Furthermore, the notably consistent time-resolved profiles suggest that elements such as Fe, Cu, As, In, Sn, Hg, and Pb predominantly exist as solid solutions within stibnite. Consequently, it is probable that the enrichment of Cu, Pb, and Sn in stibnite is due to isomorphic substitution reactions, including 3Pb2+↔2Sb3+, Cu+ + Pb2+↔Sb3+, and In3+ + Sn3+↔2Sb3+. Apart from that, Mn, Pb, and Hg with the spiky signals indicate their existence within stibnite as micro-inclusions. Overall, we found that the trace element substitutions in stibnite from the Zhaxikang Pb–Zn–Ag–Sb deposit are complicated. Incorporations of trace elements such as Pb, Cu, and In into stibnite are largely influenced by a variety of factors. The simple lattice structure and constant trace elements in studied stibnite indicate a low-temperature hydrothermal system and a relatively stable process for stibnite formation. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

19 pages, 12040 KB  
Article
Trace Element Compositions of Galena and Cerussite from the Bou Dahar MVT District, Morocco: Insights from LA-ICP-MS Analyses
by Kai Zhao, Fafu Wu, Xiang Cheng, Shunbo Cheng, Jinchao Wu, Yaoyan He, Chenggang Wang, Noura Lkebir, Sen Cui, Peng Hu, Jianxiong Wang, Peng Xiang and Jiangtao Liu
Minerals 2024, 14(8), 748; https://doi.org/10.3390/min14080748 - 25 Jul 2024
Cited by 3 | Viewed by 2750
Abstract
The Bou Dahar Pb-Zn district, located in the Moroccan High Atlas, is a typical carbonate-hosted Pb-Zn ore district (>30 Mt at 4 wt.% Pb, 4 wt.% Zn). In situ trace element analysis was performed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [...] Read more.
The Bou Dahar Pb-Zn district, located in the Moroccan High Atlas, is a typical carbonate-hosted Pb-Zn ore district (>30 Mt at 4 wt.% Pb, 4 wt.% Zn). In situ trace element analysis was performed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on galena and cerussite from different ore types. The galena is generally enriched in Ag and Sb, secondarily enriched in Cu, with a trace amount of Cd and As, but extremely depleted in Bi and Tl. The main substitution mechanism in galena is (Ag, Cu)+ + Sb3+ ↔ 2Pb2+, and at high Sb concentrations, the further substitution of 2Sb3+ + □ ↔ 3Pb2+ (where □ represents a vacancy) took place. Micro-inclusions of Cu-Sb-bearing minerals (such as tetrahedrite) and Ag-bearing minerals (such as acanthite) may exist in some situations. The features of trace elements in galena show the existence of different coupled substitutions in vein-related ore, breccia-related ore, and strata-bound ore. This suggests that the Bou Dahar district experienced multistage mineralization. The MVT model alone cannot fully explain the ore-forming process. The cerussite replacing strata-bound galena is enriched in Sr, Ba, Ag, and Cu, with minor Sb, As, and Tl. Strontium and Ba are directly substituted with Pb in the cerussite lattice. Copper and Ag are likely present in cerussite as nano-inclusions, which differs from the coupled substitution mechanism of the original galena. High concentrations of Ag may occur due to minor electrum inclusions. The enrichment of Ag, Cu, and Au in cerussite during the oxidation process may guide the optimization of ore processing, especially in extracting valuable trace/minor elements. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

20 pages, 9130 KB  
Article
Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA
by Larbi Rddad and Steven Spayd
Hydrology 2024, 11(7), 107; https://doi.org/10.3390/hydrology11070107 - 21 Jul 2024
Cited by 3 | Viewed by 3036
Abstract
The Newark Basin comprises Late Triassic and Early Jurassic fluvio-lacustrine rocks (Stockton, Lockatong, Passaic, Feltville, Towaco, and Boonton Formations) and Early Jurassic diabase intrusions and basalt lava flows. Boron concentrations in private well water samples range up to 18,000 μg/L, exceeding the U.S. [...] Read more.
The Newark Basin comprises Late Triassic and Early Jurassic fluvio-lacustrine rocks (Stockton, Lockatong, Passaic, Feltville, Towaco, and Boonton Formations) and Early Jurassic diabase intrusions and basalt lava flows. Boron concentrations in private well water samples range up to 18,000 μg/L, exceeding the U.S. Environmental Protection Agency Health Advisory of 2000 μg/L for children and 5000 μg/L for adults. Boron was analyzed in minerals, rocks, and water samples using FUS-ICPMS, LA-ICP-MS, and MC ICP-MS, respectively. Boron concentrations reach up to 121 ppm in sandstone of the Passaic Formation, 42 ppm in black shale of the Lockatong Formation, 31.2 ppm in sandstone of the Stockton Formation, and 36 ppm in diabase. The δ11B isotopic values of groundwater range from 16.7 to 32.7‰, which fall within those of the diabase intrusion (25 to 31‰). Geostatistical analysis using Principal Component Analysis (PCA) reveals that boron is associated with clay minerals in black shales and with Na-bearing minerals (possibly feldspar and evaporite minerals) in sandstones. The PCA also shows that boron is not associated with any major phases in diabase intrusion, and is likely remobilized from the surrounding rocks by the intrusion-related late hydrothermal fluids and subsequently incorporated into diabase. Calcite veins found within the Triassic rock formations exhibit relatively elevated concentrations ranging from 6.3 to 97.3 ppm and may contain micro-inclusions rich in boron. Based on the available data, it is suggested that the primary sources of boron contaminating groundwater in the area are clay minerals in black shales, Na-bearing minerals in sandstone, diabase intrusion-related hydrothermal fluids, and a contribution from calcite veins. Full article
(This article belongs to the Special Issue Isotope Hydrology in the U.S.)
Show Figures

Figure 1

21 pages, 4180 KB  
Article
Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform)
by Zinaida Nikiforova
Minerals 2024, 14(6), 631; https://doi.org/10.3390/min14060631 - 20 Jun 2024
Cited by 3 | Viewed by 2330
Abstract
The study of the mineralogical and geochemical features of placer gold and the mechanisms of its distribution in the territory east of the Siberian platform, overlain by a thick cover of Mesozoic–Cenozoic deposits, where traditional methods of searching for gold fields are not [...] Read more.
The study of the mineralogical and geochemical features of placer gold and the mechanisms of its distribution in the territory east of the Siberian platform, overlain by a thick cover of Mesozoic–Cenozoic deposits, where traditional methods of searching for gold fields are not effective, allowed researchers, for the first time, to establish the stages of ore formation and to predict the types of gold deposits and their location. The identified indicators of placer gold (morphology, granulometry, chemical composition, micro-inclusions, and internal structures) indicate that ore occurrences in both the Precambrian and Mesozoic stages of ore formation were primary sources of placer gold. The identification of characteristic indicators in placer gold for certain types of gold deposits allowed researchers to prove the formation of gold ore sources east of the Siberian platform for the first time: low-sulfide quartz gold, gold–ferruginous quartzite, gold–copper–porphyry, and gold–platinoid formations are found in the Precambrian stage of ore formation and gold–silver, gold–sulfide–quartz, and gold–rare metal formations are found in the Mesozoic stages of ore formation. Thus, for the first time, based on a huge amount of factual material, it is proved that the mineralogical and geochemical features of placer gold carry enormous information about both the endogenous origin of gold (stages of ore formation—Precambrian and Mesozoic) and the expected type of formation of the predicted deposits. It is established that the predicted type of ore sources corresponds to a certain geological and structural position; this contributes to a more correct selection of methods for searching for ore and placer gold deposits in closed territories and assessing their prospects. In general, the application of the mineralogical method for the first time makes it possible to develop criteria for predicting resources and types of gold deposits, and to assess the prospects of gold mining potential in platform areas at a new level of knowledge. Full article
Show Figures

Figure 1

26 pages, 10958 KB  
Article
Micro-Inclusion Engineering via Sc Incompatibility for Luminescence and Photoconversion Control in Ce3+-Doped Tb3Al5−xScxO12 Garnet
by Karol Bartosiewicz, Robert Tomala, Damian Szymański, Benedetta Albini, Justyna Zeler, Masao Yoshino, Takahiko Horiai, Paweł Socha, Shunsuke Kurosawa, Kei Kamada, Pietro Galinetto, Eugeniusz Zych and Akira Yoshikawa
Materials 2024, 17(11), 2762; https://doi.org/10.3390/ma17112762 - 5 Jun 2024
Cited by 4 | Viewed by 1910
Abstract
Aluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce3+-doped Tb3Al5−xScxO12 crystals (where x ranges from 0.5 to 3.0), revealing a [...] Read more.
Aluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce3+-doped Tb3Al5−xScxO12 crystals (where x ranges from 0.5 to 3.0), revealing a novel approach to control luminescence and photoconversion through atomic size mismatch engineering. Raman spectroscopy confirmed the coexistence of garnet and perovskite phases, with Sc substitution significantly influencing the garnet lattice and induced A1g mode softening up to Sc concentration x = 2.0. The Sc atoms controlled sub-eutectic inclusion formation, creating efficient light scattering centers and unveiling a compositional threshold for octahedral site saturation. This modulation enabled the control of energy transfer dynamics between Ce3+ and Tb3+ ions, enhancing luminescence and mitigating quenching. The Sc admixing process regulated luminous efficacy (LE), color rendering index (CRI), and correlated color temperature (CCT), with adjustments in CRI from 68 to 84 and CCT from 3545 K to 12,958 K. The Ce3+-doped Tb3Al5−xScxO12 crystal (where x = 2.0) achieved the highest LE of 114.6 lm/W and emitted light at a CCT of 4942 K, similar to daylight white. This approach enables the design and development of functional materials with tailored optical properties applicable to lighting technology, persistent phosphors, scintillators, and storage phosphors. Full article
Show Figures

Graphical abstract

26 pages, 7119 KB  
Article
Genesis of the Sartohay Podiform Chromitite Based on Microinclusions in Chromite
by Xingying Wen and Yongfeng Zhu
Minerals 2024, 14(6), 530; https://doi.org/10.3390/min14060530 - 21 May 2024
Cited by 3 | Viewed by 2050
Abstract
Here, we present a petrographic and microanalytical study of microinclusions in chromite from podiform chromitites hosted by the Sartohay ophiolitic mélange in west Junggar, northwestern China, to investigate the parental magma evolution and chromitite genesis. These silicate inclusions comprise olivine, enstatite, diopside, amphibole, [...] Read more.
Here, we present a petrographic and microanalytical study of microinclusions in chromite from podiform chromitites hosted by the Sartohay ophiolitic mélange in west Junggar, northwestern China, to investigate the parental magma evolution and chromitite genesis. These silicate inclusions comprise olivine, enstatite, diopside, amphibole, and Na-phlogopite. Their morphological characteristics suggest that most inclusions crystallized directly from the captured melt, with a few anhydrous inclusions (olivines and pyroxenes) as solid silicates trapped during the chromite crystallization. Equilibrium pressure–temperature conditions of coexisting enstatite–diopside inclusions are 8.0–21.6 kbar, and 874–1048 °C. The high Na2O and TiO2 contents of hydrous minerals indicate that the parental magma of chromitites was hydrous and enriched in Mg, Na, Ca, and Ti. The calculated Al2O3 content and FeO/MgO ratio of the parental melts in equilibrium with chromite showed MORB affinity. However, the TiO2 values of parental melts, TiO2 contents of chromite, and estimated fO2 values for chromitites (1.3–2.0 log units above the FMQ buffer) evoked parental MORB-like tholeiitic melts. The composition of olivine inclusion was determined, and it was revealed that the primary melts of the Sartohay podiform chromitites had MgO contents of ~22.7 wt %. This aligns with the observed high magnesian signature in mineral inclusions (Fo = 96–98 in olivine, Mg# = 0.91–0.97 in diopside, and Mg# = 0.92–0.97 in enstatite). We propose that Sartohay podiform chromitites initially formed through the mixing/mingling of primary hydrous Mg-rich melt and the evolved MORB-like melt derived from the melt–peridotite reaction in the upper mantle. In this process, the continuous crystallization of chromite captured micro-silicate mineral inclusions, finally leading to the formation of the Sartohay podiform chromitites. Full article
Show Figures

Figure 1

15 pages, 5721 KB  
Article
A Late Jurassic Epithermal Pb-Zn Deposit: Insights from Rb-Sr Dating of Quartz-Hosted Fluid Inclusions and Sphalerite Chemical Composition
by Zheng Xia, Zengxia Zhao, Xiang Zou and Lei Liu
Minerals 2024, 14(5), 485; https://doi.org/10.3390/min14050485 - 2 May 2024
Cited by 1 | Viewed by 1986
Abstract
The Kangjiawan Pb-Zn deposit, situated within the Shuikoushan polymetallic ore field in Changning, Hunan Province, China, is a large-scale Pb-Zn deposit unearthed in 1976. Based on detailed geological field investigations, this study presents the results of the Rb-Sr isotopic dating, electron probe microanalyses [...] Read more.
The Kangjiawan Pb-Zn deposit, situated within the Shuikoushan polymetallic ore field in Changning, Hunan Province, China, is a large-scale Pb-Zn deposit unearthed in 1976. Based on detailed geological field investigations, this study presents the results of the Rb-Sr isotopic dating, electron probe microanalyses (EPMAs), and LA-ICP-MS analyses of the Kangjiawan Pb-Zn deposit in order to determine the ore-forming age and the occurrence of trace elements in sphalerite and thereby constrain the genesis of the deposit. The Rb-Sr dating of quartz-hosted fluid inclusions yielded an Rb-Sr isochron age of 150 ± 4 Ma, with an initial 87Sr/86Sr ratio of 0.71101 ± 0.00008 (MSWD = 1.1), suggesting that the Pb-Zn mineralization of the Kangjiawan deposit took place during the Late Jurassic, coeval with the magmatic activities within the ore field. EPMA and LA-ICP-MS analyses showed that Fe, Mn, and Cd were primarily incorporated into the sphalerite lattice through isomorphous substitution. Specifically, Fe and Mn substituted for Zn, whereas Cd replaced both Fe and Zn. Other elements such as Cu, Sb, and Sn occurred within the sphalerite lattice through mineral micro-inclusions or isomorphic substitution. EPMAs and LA-ICP-MS results showed that the FeS contents in sphalerite were less than 14.33%, with corresponding ore-forming temperatures below 259 °C. The LA-ICP-MS results showed that sphalerites from the Kangjiawan Pb-Zn deposit had relatively high Ga/In ratios ranging from 0.01 to 144, providing further support for medium-to-low-temperature mineralization. The trace element compositions of sphalerites from the Kangjiawan Pb-Zn deposit exhibit skarn-type characteristics, suggesting a potential association with contemporary magmatic activities within the Shuikoushan ore field. During the Late Jurassic, extensive granitic magmatic activities occurred in the study area. At the late stage of magma crystallization, hydrothermal fluid containing Pb and Zn precipitated at medium-to-low temperatures and generated the Kangjiawan Pb-Zn deposit. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

19 pages, 10995 KB  
Article
Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits
by Pavel Kepezhinskas, Nikolai Berdnikov, Valeria Krutikova and Nadezhda Kozhemyako
Minerals 2024, 14(2), 188; https://doi.org/10.3390/min14020188 - 11 Feb 2024
Cited by 3 | Viewed by 2537
Abstract
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and [...] Read more.
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and rutile; sulfides include chalcopyrite, pyrite and pyrrhotite; sulfates are represented by barite; and halides are predominantly composed of copper and silver chlorides. Apatite in both gabbro and adakitic dacite frequently contains elevated chlorine concentrations (up to 1.7 wt.%). Mineral thermobarometry suggests that the ITOASS microinclusions and associated Fe-Ti minerals and sulfides crystallized from subduction-related metal-rich melts in mid-crustal magmatic conduits at depths of 10 to 20 km below the surface under almost neutral redox conditions (from the unit below to the unit above the QFM buffer). The ITOASS microinclusions in gabbro and adakite from the Russian Far East provide possible magmatic links to iron oxide–apatite (IOA) and iron oxide–copper–gold (IOCG) deposits and offer valuable insights into the early magmatic (pre-metasomatic) evolution of the IOA and ICOG mineralized systems in paleo-subduction- and collision-related geodynamic environments. Full article
Show Figures

Figure 1

Back to TopTop