Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = microclimate adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 9572 KiB  
Article
Influence and Optimization of Landscape Elements on Outdoor Thermal Comfort in University Plazas in Severely Cold Regions
by Zhiyi Tao, Guoqiang Xu, Guo Li, Xiaochen Zhao, Zhaokui Gao and Xin Shen
Plants 2025, 14(14), 2228; https://doi.org/10.3390/plants14142228 - 18 Jul 2025
Viewed by 293
Abstract
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, [...] Read more.
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, thermal benchmarks were established. Based on this, an orthogonal experimental design was developed considering greenery layout, plant types, and surface albedo. ENVI-met was used to simulate and analyze the seasonal regulatory effects of landscape elements on the microclimate. The results show that: (1) the lower limit of the neutral PET range in Hohhot in winter is −11.3 °C, and the upper limit in summer is 31.3 °C; (2) the seasonal contribution of landscape elements to PET ranks as follows: plant types > greenery layout > surface albedo; and (3) the proposed optimization plan achieved a weighted increase of 6.0% in the proportion of activity area within the neutral PET range in both summer and winter. This study is the first to construct outdoor thermal sensation categories for both summer and winter in Hohhot and to establish a thermal comfort optimization evaluation mechanism that considers both diurnal and seasonal weightings. It systematically reveals the comprehensive regulatory effects of landscape elements on the thermal environment in severely cold regions and provides a nature-based solution for the climate-responsive design of campus plazas in such areas. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Graphical abstract

19 pages, 749 KiB  
Article
Does the Slope Aspect Really Affect the Soil Chemical Properties, Growth and Arbuscular Mycorrhizal Colonization of Centipedegrass in a Hill Pasture?
by Manabu Tobisa, Yoshinori Uchida and Yoshinori Ikeda
Grasses 2025, 4(3), 30; https://doi.org/10.3390/grasses4030030 - 16 Jul 2025
Viewed by 136
Abstract
Arbuscular mycorrhizal (AM) fungi (AMF) form a symbiotic association with terrestrial plants and increase growth and productivity. The relationships between the growth of centipedegrass (CG) and AMF are not well understood. We monitored the growth and AM colonization of CG growing on the [...] Read more.
Arbuscular mycorrhizal (AM) fungi (AMF) form a symbiotic association with terrestrial plants and increase growth and productivity. The relationships between the growth of centipedegrass (CG) and AMF are not well understood. We monitored the growth and AM colonization of CG growing on the four slopes (north, east, south, and west) of a pasture, to obtain information on aspect differences in the soil chemical properties–grass–AMF association. Soil properties almost always varied between the slope aspects. The total soil N, C, EC, and moisture tended to be highest on the northern aspect, whereas the soil available P and pH tended to be highest on the western and southern aspects, respectively. Despite the aspect differences in the microclimate and soil properties, CG grew well in all aspects, showing similar dry matter weights (DMW) for the fouraspects. Furthermore, the AM colonization of CG, in any characteristic structures (internal hyphae, vesicles, and arbuscules), was not significantly different between the slope aspects on most measurement occasions, although the colonization usually varied between the seasons and years. There were no relationships between the DMW and AM characteristic structure colonization and between the DMW and soil chemical properties. However, the colonization of the arbuscules and vesicles of the CG had a correlation with some soil chemical properties. The results suggest that AM colonization on CG growing in a hill pasture did not differ between the slope aspects. This may be a factor contributing to the high adaptability of the grass to all slope aspects. Full article
Show Figures

Figure 1

26 pages, 6762 KiB  
Article
Temporal-Spatial Thermal Comfort Across Urban Blocks with Distinct Morphologies in a Hot Summer and Cold Winter Climate: On-Site Investigations in Beijing
by Tengfei Zhao and Tong Ma
Atmosphere 2025, 16(7), 855; https://doi.org/10.3390/atmos16070855 - 14 Jul 2025
Viewed by 237
Abstract
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly [...] Read more.
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly rely on microclimate numerical simulations, while comparative assessments of OTC from the human thermal perception perspective remain limited. This study employs the thermal walk method, integrating microclimatic measurements with thermal perception questionnaires, to conduct on-site OTC investigations across three urban blocks with contrasting spatial morphologies—a business district (BD), a residential area (RA), and a historical neighborhood (HN)—in Beijing, a hot summer and cold winter climate city. The results reveal substantial OTC differences among the blocks. However, these differences demonstrated great seasonal and temporal variations. In summer, BD exhibited the best OTC (mTSV = 1.21), while HN performed the worst (mTSV = 1.72). In contrast, BD showed the poorest OTC in winter (mTSV = −1.57), significantly lower than HN (−1.11) and RA (−1.05). This discrepancy was caused by the unique morphology of different blocks. The sky view factor emerged as a more influential factor affecting OTC over building coverage ratio and building height, particularly in RA (r = 0.689, p < 0.01), but its impact varied by block, season, and sunlight conditions. North–South streets generally perform better OTC than East–West streets, being 0.26 units cooler in summer and 0.20 units warmer in winter on the TSV scale. The study highlights the importance of incorporating more applicable physical parameters to optimize OTC in complex urban contexts and offering theoretical support for designing climate adaptive urban spaces. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

16 pages, 8021 KiB  
Article
From First Frost to Last Snow: Tracking the Microclimate Evolution of Greenhouses Across North China’s Winter Spectrum
by Hongrun Liu, He Zhao, Yanan Tian, Song Liu, Wei Li, Yanfang Wang, Dan Sun, Tianqun Wang, Ning Zhu, Yuan Tao and Xihong Lei
Agronomy 2025, 15(7), 1663; https://doi.org/10.3390/agronomy15071663 - 9 Jul 2025
Viewed by 393
Abstract
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally [...] Read more.
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally insulated plastic greenhouse, soft-shell solar greenhouse, and brick-walled solar greenhouse—across three overwintering periods (pre-, mid-, post-) using high-precision sensors (monitoring period is from 1 October 2024 to 31 March 2025). A Comprehensive Evaluation Index (CEI) based on the entropy method was developed, integrating seven indicators (daily average temperature, temperature range, hours below 5 °C, average humidity, hours above 80% humidity, average light intensity, and light utilization efficiency) to systematically evaluate greenhouse microclimate regulation performance. Results showed that the brick-walled solar greenhouse exhibited superior thermal insulation, with nearly zero hours below 5 °C during mid-overwintering, while the soft-shell solar greenhouse achieved the highest light utilization efficiency (75.1–79.6%). The externally insulated plastic greenhouse exhibited the highest relative humidity (>80% for 13–19 h/day) but a poor thermal insulation performance. The CEI ranked the brick-walled solar greenhouse (0.86) and the soft-shell solar greenhouse (0.84) significantly higher than the externally insulated plastic greenhouse (0.39), with the relative humidity significantly negatively correlated with light indicators (P < 0.05), and the temperature and light indicators strongly correlated with the CEI (P < 0.01). Structural design and material innovation are critical for climate adaptation. Brick-walled and soft-shell solar greenhouses balance thermal and light performance, while the externally insulated plastic greenhouse faces structural limitations. The findings provide a scientific basis for greenhouse optimization and regional layout planning. Full article
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Thermal Decoupling May Promote Cooling and Avoid Heat Stress in Alpine Plants
by Loreto V. Morales, Angela Sierra-Almeida, Catalina Sandoval-Urzúa and Mary T. K. Arroyo
Plants 2025, 14(13), 2023; https://doi.org/10.3390/plants14132023 - 2 Jul 2025
Viewed by 344
Abstract
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This [...] Read more.
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This study combined microclimatic and plant characterization, infrared thermal imaging, and leaf photoinactivation to evaluate how thermal decoupling (TD) affects heat resistance (LT50) in six alpine species from the Nevados de Chillán volcano complex in the Andes of south-central Chile. Results showed that plants’ temperatures increased with solar radiation, air, and soil temperatures, but decreased with increasing humidity. Most species exhibited negative TD, remaining 6.7 K cooler than the air temperature, with variation across species, time of day, and growth form; shorter, rounded plants showed stronger negative TD. Notably, despite negative TD, all species exhibited high heat resistance (Mean LT50 = 46 °C), with LT50 positively correlated with TD in shrubs. These findings highlight the intricate relationships between thermal decoupling, environmental factors, and plant traits in shaping heat resistance. This study provides insights into how alpine plants may respond to the increasing heat stress associated with climate change, emphasizing the adaptive significance of thermal decoupling in these environments. Full article
Show Figures

Figure 1

13 pages, 1834 KiB  
Article
Ancient Lineages of the Western and Central Palearctic: Mapping Indicates High Endemism in Mediterranean and Arid Regions
by Şerban Procheş, Syd Ramdhani and Tamilarasan Kuppusamy
Diversity 2025, 17(7), 444; https://doi.org/10.3390/d17070444 - 23 Jun 2025
Viewed by 313
Abstract
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start [...] Read more.
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start of a continuum from temperate to tropical forest groups and leading to Indo-Malay endemics. In contrast, western Palearctic endemics are typically associated with arid or seasonally dry (Mediterranean) climates and vegetation. Those lineages occurring in the central Palearctic are typically of western origin. Here, we use phylogenetic age (older than 34 million years (My)) to define a list of tetrapod and vascular plant lineages endemic to the western and central Palearctic, map their distributions at the ecoregion scale, and combine these maps to illustrate and understand lineage richness and endemism patterns. Sixty-three ancient lineages were recovered, approximately half of them reptiles, with several herbaceous and shrubby angiosperms, amphibians, and rodents, and single lineages of woody conifers, insectivores, and birds. Overall, we show high lineage richness in the western Mediterranean, eastern Mediterranean, and Iran, with the highest endemism values recorded in the western Mediterranean (southern Iberian Peninsula, southern France). This paints a picture of ancient lineage survival in areas of consistently dry climate since the Eocene, but also in association with persistent water availability (amphibians in the western Mediterranean). The almost complete absence of ancient endemic bird lineages is unusual and perhaps unique among the world’s biogeographic regions. The factors accounting for these patterns include climate since the end of the Eocene, micro-habitats and micro-climates (of mountain terrain), refugia, and patchiness and isolation (of forests). Despite their aridity adaptations, some of the lineages listed here may be tested under anthropogenic climatic change, although some may extend into the eastern Palearctic. We recommend using these lineages as flagships for conservation in the study region, where their uniqueness and antiquity deserve greater recognition. Full article
Show Figures

Figure 1

20 pages, 1774 KiB  
Article
Research on the Cattle Farm Endowments from the Climate Change Adapting Perspective
by Steliana Rodino, Rodica Chetroiu, Diana Maria Ilie, Ancuța Marin, Vili Dragomir, Alexandra Marina Manolache and Petruța Antoneta Turek-Rahoveanu
Agriculture 2025, 15(13), 1339; https://doi.org/10.3390/agriculture15131339 - 22 Jun 2025
Viewed by 274
Abstract
All agricultural sectors are under the influence of environmental factors, which act alongside the flow of activities. In the context of efforts to adapt to the effects of climate change, the purpose of this work is to evaluate the level of endowment of [...] Read more.
All agricultural sectors are under the influence of environmental factors, which act alongside the flow of activities. In the context of efforts to adapt to the effects of climate change, the purpose of this work is to evaluate the level of endowment of cattle farms with equipment and facilities involved in ensuring an adequate microclimate, in the efficient management and administration of feed and water for animals. This research is based on the processing of data from 83 cattle farms in Romania, of different sizes and located in different landforms, collected through a quantitative survey, through a questionnaire. This paper indicates that the existing level of these types of facilities is insufficient and highlights the importance of investments in equipment necessary to adapt to the effects of climate change, especially for smaller farms, but also for large farms. These types of investment refer to technologies for air cooling, microclimate control, feed management, and automation. This paper highlights the need to increase the technological level in Romanian cattle farms, to adapt to climate change challenges. The promotion of appropriate technologies must be included in an integrated strategy for the equipping and modernization of cattle farms, for an effective diminution of climate risks. This means adopting a systemic approach that includes investments in infrastructure, innovation, and support for farmers. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

27 pages, 13781 KiB  
Article
Research on the Method of Automatic Generation and Multi-Objective Optimization of Block Spatial Form Based on Thermal Comfort Demand
by Zhenhua Xu, Hao Wu, Cong Han and Jiaying Chang
Buildings 2025, 15(12), 2098; https://doi.org/10.3390/buildings15122098 - 17 Jun 2025
Cited by 1 | Viewed by 246
Abstract
Urban thermal environment challenges in China have made outdoor thermal comfort a key factor in evaluating spatial quality and livability. Building layout not only affects internal performance but also shapes the microclimate of surrounding outdoor spaces. The climatic characteristics of temperate monsoon climate [...] Read more.
Urban thermal environment challenges in China have made outdoor thermal comfort a key factor in evaluating spatial quality and livability. Building layout not only affects internal performance but also shapes the microclimate of surrounding outdoor spaces. The climatic characteristics of temperate monsoon climate regions significantly impact residents’ outdoor activities. Most existing studies focus solely on either the external thermal environment or the buildings themselves in isolation. This study focuses on Beijing, a representative city in the temperate monsoon climate zone, and explores block-scale spatial optimization using computational typology. The objective is to balance architectural performance with outdoor thermal comfort in both winter and summer. Optimization targets include the Universal Thermal Climate Index (UTCI), winter sunshine duration, and summer solar radiation. Results show winter UTCI can be optimized to −6.13 °C to −1.18 °C and summer UTCI to 28.19 °C to 29.17 °C, with greater optimization potential in winter (23.5% higher). Synergistic relationships are observed between winter comfort and sunshine duration (coefficient: 0.777) and between summer comfort and solar radiation (coefficient: 0.947). However, trade-offs exist between seasonal comfort indicators, with strong conflicts between winter and summer objectives. Two distinct form types—“low-south-high-north enclosed” for winter and “high-rise point-type low-density” for summer—are identified as effective for seasonal adaptation. The study proposes an integrated method combining data-driven generation, multi-objective optimization, and clustering-based decision-making. This approach moves beyond traditional empirical design, offering a quantitative and adaptable strategy for climate-responsive urban block planning and supporting low-carbon urban transformation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 5980 KiB  
Article
Performance Evaluation and Simulation Optimization of Outdoor Environmental Space in Communities Based on Subjective Comfort: A Case Study of Minhe Community in Qian’an City
by Yuefang Rong, Jian Song, Zhuofan Xu, Haoxi Lin, Jiakun Liu, Baiyi Yang and Shuhan Guo
Buildings 2025, 15(12), 2078; https://doi.org/10.3390/buildings15122078 - 17 Jun 2025
Viewed by 338
Abstract
With the continual expansion of global urbanization and population growth, urban energy demands have intensified, and anthropogenic activities have precipitated profound shifts in the global climate. These climatic changes directly alter urban environmental conditions, which in turn exert indirect effects on human physiological [...] Read more.
With the continual expansion of global urbanization and population growth, urban energy demands have intensified, and anthropogenic activities have precipitated profound shifts in the global climate. These climatic changes directly alter urban environmental conditions, which in turn exert indirect effects on human physiological function. Consequently, the comfort of outdoor community environments has emerged as a critical metric for assessing the quality of human habitation. Although existing studies have focused on improving singular environmental factors—such as wind or thermal comfort—they often lack an integrated, multi-factor coupling mechanism, and adaptive strategy systems tailored to hot-summer, cold-winter regions remain underdeveloped. This study examines the Minhe Community in Qian’an City to develop a performance evaluation framework for outdoor spaces grounded in subjective comfort and to close the loop from theoretical formulation to empirical validation via an interdisciplinary approach. We first synthesized 25 environmental factors across eight categories—including wind, thermal, and lighting parameters—and applied the Analytic Hierarchy Process (AHP) to establish factor weights, thereby constructing a comprehensive model that encompasses both physiological and psychological requirements. Field surveys, meteorological data collection, and ENVI-met (V5.1.1) microclimate simulations revealed pronounced issues in the community’s wind distribution, thermal comfort, and acoustic environment. In response, we proposed adaptive interventions—such as stratified vegetation design and permeable pavement installations—and validated their efficacy through further simulation. Post-optimization, the community’s overall comfort score increased from 4.64 to 5.62, corresponding to an efficiency improvement of 21.3%. The innovative contributions of this research are threefold: (1) transcending the limitations of single-factor analyses by establishing a multi-dimensional, coupled evaluation framework; (2) integrating AHP with ENVI-met simulation to realize a fully quantified “evaluation–simulation–optimization” workflow; and (3) proposing adaptive strategies with broad applicability for the retrofit of communities in hot-summer, cold-winter climates, thereby offering a practical technical pathway for urban microclimate enhancement. Full article
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Overview of Agricultural Machinery Automation Technology for Sustainable Agriculture
by Li Jiang, Boyan Xu, Naveed Husnain and Qi Wang
Agronomy 2025, 15(6), 1471; https://doi.org/10.3390/agronomy15061471 - 16 Jun 2025
Cited by 1 | Viewed by 1378
Abstract
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired [...] Read more.
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired algorithms, and AI-driven data analytics for resource optimization. These technological advancements manifest in significant applications: autonomous field machinery achieving lateral navigation errors below 6 cm, UAVs enabling targeted agrochemical application, reducing pesticide usage by 40%, and smart greenhouses regulating microclimates with ±0.1 °C precision. Collectively, these innovations enhance productivity, optimize resource utilization (water, fertilizers, energy), and mitigate critical labor shortages. However, persistent challenges include technological heterogeneity across diverse agricultural environments, high implementation costs, limitations in adaptability to dynamic field conditions, and adoption barriers, particularly in developing regions. Future progress necessitates prioritizing the development of lightweight edge computing solutions, multi-energy complementary systems (integrating solar, wind, hydropower), distributed collaborative control frameworks, and AI-optimized swarm operations. To democratize these technologies globally, this review synthesizes the evolution of technology and interdisciplinary synergies, concluding with prioritized strategies for advancing agricultural intelligence to align with the Sustainable Development Goals (SDGs) for zero hunger and responsible production. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

20 pages, 854 KiB  
Article
Everyday Climates: Household Archaeologies and the Politics of Scale
by Catherine Kearns
Heritage 2025, 8(6), 227; https://doi.org/10.3390/heritage8060227 - 14 Jun 2025
Viewed by 494
Abstract
The small scale is recognized as a necessary rebuttal to macroscalar narratives of climate–society relationships in the past, and archeologists and historians have increasingly turned to advocating smaller and shorter scales of analysis and interpretation, from “microclimates” to interannual droughts and single settlement [...] Read more.
The small scale is recognized as a necessary rebuttal to macroscalar narratives of climate–society relationships in the past, and archeologists and historians have increasingly turned to advocating smaller and shorter scales of analysis and interpretation, from “microclimates” to interannual droughts and single settlement histories. Such provocations rightly caution against the dangers of oversimplification and determinism in recent planetary or Earth-systems approaches to human history, as well as push scholars to acknowledge human-scale experiences: weather, seasonality, landscape change. When it comes to smaller-scale remains, however, like those of household practices, we often consider them data or proxies that validate larger-scale arguments about societal persistence or economic vulnerability. Yet the material and ideational ways that people in premodern worlds made sense of their surroundings, especially via gendered and class-based rhythms of production and consumption, were deeply entwined in the politics of everyday household life. What would a household archeology of climate entail? In this paper I highlight how households themselves were critical sites of environmental construction, experience and history-making through a selection of examples of archeological work from the Mediterranean. I argue that archeologists can critically rethink themes of persistence and adaptation by taking seriously the scalar constructions and varied politics of domestic life. Full article
(This article belongs to the Special Issue The Archaeology of Climate Change)
Show Figures

Figure 1

32 pages, 1082 KiB  
Review
Urban Microclimates and Their Relationship with Social Isolation: A Review
by David B. Olawade, Melissa McLaughlin, Yinka Julianah Adeniji, Gabriel Osasumwen Egbon, Arghavan Rahimi and Stergios Boussios
Int. J. Environ. Res. Public Health 2025, 22(6), 909; https://doi.org/10.3390/ijerph22060909 - 6 Jun 2025
Viewed by 628
Abstract
Urban microclimates, which include phenomena such as urban heat islands (UHIs) as well as cooler environments created by shaded areas and green spaces, significantly affect social behavior and contribute to varying levels of social isolation in cities. UHIs, driven by heat-absorbing materials like [...] Read more.
Urban microclimates, which include phenomena such as urban heat islands (UHIs) as well as cooler environments created by shaded areas and green spaces, significantly affect social behavior and contribute to varying levels of social isolation in cities. UHIs, driven by heat-absorbing materials like concrete and asphalt, can increase urban temperatures by up to 12 °C, discouraging outdoor activities, especially among vulnerable populations like the elderly and those with chronic health conditions. In contrast, shaded areas and green spaces, where temperatures can be 2–5 °C cooler, encourage outdoor engagement and foster social interaction. This narrative review aims to synthesize current literature on the relationship between urban microclimates and social isolation, focusing on how UHIs and shaded areas influence social engagement. A comprehensive literature review was conducted, selecting sources based on their relevance to the effects of localized climate variations on social behavior, access to green spaces, and the impact of urban design interventions. A total of 142 articles were initially identified, with 103 included in the final review after applying inclusion/exclusion criteria. Key studies from diverse geographical and cultural contexts were analyzed to understand the interplay between environmental conditions and social cohesion. The review found that UHIs exacerbate social isolation by reducing outdoor activities, particularly for vulnerable groups such as the elderly and individuals with chronic health issues. In contrast, shaded areas and green spaces significantly mitigate isolation, with evidence showing that in specific study locations such as urban parks in Copenhagen and Melbourne, such areas increase outdoor social interactions by up to 25%, reduce stress, and enhance community cohesion. Urban planners and policymakers should prioritize integrating shaded areas and green spaces in city designs to mitigate the negative effects of UHIs. These interventions are critical for promoting social resilience, reducing isolation, and fostering connected, climate-adaptive communities. Future research should focus on longitudinal studies and the application of smart technologies such as IoT sensors and urban monitoring systems to track the social benefits of microclimate interventions. Full article
Show Figures

Figure 1

28 pages, 6817 KiB  
Review
Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests
by Iulian Bratu, Lucian Dinca, Cristinel Constandache and Gabriel Murariu
Climate 2025, 13(6), 119; https://doi.org/10.3390/cli13060119 - 3 Jun 2025
Cited by 1 | Viewed by 927
Abstract
Oak forests are an important part of temperate European ecosystems, where they are actively improving biodiversity, carbon storage, and ecological stability. However, current concerns such as climatic changes, and especially rising temperatures and changing precipitation patterns, are impacting their resilience. In this context, [...] Read more.
Oak forests are an important part of temperate European ecosystems, where they are actively improving biodiversity, carbon storage, and ecological stability. However, current concerns such as climatic changes, and especially rising temperatures and changing precipitation patterns, are impacting their resilience. In this context, our study intends to evaluate the impact of climatic variability on temperate oak forests, focusing on the influence of temperature and precipitation. This covers different sites that have different environmental conditions. By using both a bibliometric approach and a systematic analysis of publications that have studied the influence of climate change on oak forests, our study has identified specific species and site responses to climate stressors. Furthermore, we have also evaluated trends in drought sensitivity. All these aspects have allowed us to understand and suggest improvements for the impact of climate change on the resilience and productivity of oak ecosystems. We have analyzed a total number of 346 publications that target the impact of climate change on oak forests. The articles were published between 1976 and 2024, with the majority originating from the USA, Spain, Germany, and France. These studies were published in leading journals from Forestry, Environmental Sciences, and Plant Sciences, among which the most cited journals were Forest Ecology and Management, the Journal of Biogeography, and Global Change Biology. As for the keywords, the most frequent ones were climate change, drought, growth, forest, and oak. However, we have observed a trend towards drought sensitivity, which indicates the intensification of climate changes on oak ecosystems. Moreover, this trend was more present in central and southern regions, which further highlights the impact of regional conditions. As such, certain local factors (soil properties, microclimate) were also taken into account in our study. Our literature review focused on the following aspects: Oak species affected by climate change; Impact of drought on oak forests; Influence of climate change on mixed forests containing oaks; Effects of climate change on other components of oak ecosystems; Radial growth of oaks in response to climate change; Decline of oak forests due to climate change. Our results indicate that oak forests decline in a process caused by multiple factors, with climate change being both a stressor and a catalyst. Across the globe, increasing temperatures and declining precipitation affect these ecosystems in their growth, functions, and resistance to pathogens. This can only lead to an increased forest decline. As such, our results indicate the need to implement forest management plans that take into account local conditions, species, and climate sensitivity. This approach is crucial in improving the adaptivity of oak forests and mitigating the impact of future climate extremes. Full article
(This article belongs to the Special Issue Forest Ecosystems under Climate Change)
Show Figures

Figure 1

30 pages, 2592 KiB  
Review
Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis
by Cristian Mihai Enescu, Mircea Mihalache, Leonard Ilie, Lucian Dinca, Cristinel Constandache and Gabriel Murariu
Agriculture 2025, 15(11), 1204; https://doi.org/10.3390/agriculture15111204 - 31 May 2025
Cited by 1 | Viewed by 583
Abstract
Forest shelterbelts and windbreaks play a vital role in protecting ecosystems, mitigating climate change effects, and enhancing agricultural productivity. These vegetative barriers serve as effective tools for soil conservation, reducing wind and water erosion while improving soil fertility. Additionally, they contribute to biodiversity [...] Read more.
Forest shelterbelts and windbreaks play a vital role in protecting ecosystems, mitigating climate change effects, and enhancing agricultural productivity. These vegetative barriers serve as effective tools for soil conservation, reducing wind and water erosion while improving soil fertility. Additionally, they contribute to biodiversity preservation by providing habitat corridors for various plant and animal species. Their role in microclimate regulation, such as temperature moderation and increased humidity retention, further enhances agricultural yields and ecosystem stability. This study examines the historical evolution, design principles, and contemporary applications of forest shelterbelts and windbreaks, drawing insights from scientific research and case studies worldwide. It highlights the economic and environmental benefits, including improved air quality, carbon sequestration, and water management, making them crucial components of sustainable land use strategies. However, challenges such as land use competition, maintenance costs, and policy constraints are also analyzed, underscoring the need for integrated approaches to their management. Through a comprehensive bibliometric analysis of the existing literature and field studies, this paper emphasizes the necessity of strategic planning, community involvement, and adaptive policies to ensure the long-term sustainability of forest shelterbelts and windbreaks. The findings contribute to a broader understanding of their role in combating environmental degradation and promoting ecological resilience in the face of ongoing climate challenges. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

35 pages, 14758 KiB  
Article
Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates
by Hailu Qin and Bailing Zhou
Plants 2025, 14(11), 1670; https://doi.org/10.3390/plants14111670 - 30 May 2025
Viewed by 591
Abstract
This study investigated the synergistic effects of vegetation configurations and microclimate factors on seasonal thermal comfort in a semi-enclosed university courtyard in Wuhan, located in China’s Hot Summer and Cold Winter climate zone (Köppen: Cfa, humid subtropical). By adopting a field measurement–simulation–validation framework, [...] Read more.
This study investigated the synergistic effects of vegetation configurations and microclimate factors on seasonal thermal comfort in a semi-enclosed university courtyard in Wuhan, located in China’s Hot Summer and Cold Winter climate zone (Köppen: Cfa, humid subtropical). By adopting a field measurement–simulation–validation framework, spatial parameters and annual microclimate data were collected using laser distance meters and multifunctional environmental sensors. A validated ENVI-met model (grid resolution: 2 m × 2 m × 2 m, verified by field measurements for microclimate parameters) simulated 15 vegetation scenarios with varying planting patterns, evergreen–deciduous ratios (0–100%), and ground covers. The Physiological Equivalent Temperature (PET) index quantified thermal comfort improvements relative to the baseline. The optimal grid-based mixed planting configuration (40% evergreen trees + 60% deciduous trees) significantly improved winter thermal comfort by raising the PET from 9.24 °C to 15.42 °C (66.98% increase) through windbreak effects while maintaining summer thermal stability with only a 1.94% PET increase (34.60 °C to 35.27 °C) via enhanced transpiration and airflow regulation. This study provides actionable guidelines for climate-responsive courtyard design, emphasizing adaptive vegetation ratios and spatial geometry alignment. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

Back to TopTop