Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates
Abstract
1. Introduction
1.1. Background
1.2. Literature Review and Research Gap
1.3. Purpose of This Work
2. Methodology
2.1. Site and Data
2.2. ENVI-Met Set-Up
2.3. Model Validation
2.4. Scenario Design
2.5. Thermal Comfort Evaluation Index
3. Results
3.1. Baseline Model Assessment
3.2. Redesign of Subgrade Structural Layer
3.3. Reconfiguration of Vegetation Configuration
3.3.1. Plant Configuration in Scattered Layout
3.3.2. Plant Configuration in Grid Layout
4. Discussions
5. Conclusions
- (1)
- Seasonal trade-offs in vegetation strategies: Evergreen trees enhance winter comfort by reducing convective heat loss, while deciduous trees improve summer cooling via higher transpiration and airflow permeability.
- (2)
- Spatial layout optimization: Grid planting (S14) outperforms scattered arrangements (S9) by forming continuous windbreaks in winter and structured airflow paths in summer, though its efficacy remains constrained by building geometry.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elgheznawy, D.; Eltarabily, S. The Impact of Sun Sail-Shading Strategy on the Thermal Comfort in School Courtyards. Build. Environ. 2021, 202, 108046. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, Q.; Li, Q.; Jin, Y.; Cao, Y.; Bakpa, E.P.; Zhao, H.; Song, J.; Ye, P.; Wen, Y.; et al. Contrasting Heat Tolerance of Evergreen and Deciduous Urban Woody Species during Heat Waves. Funct. Ecol. 2024, 38, 1649–1660. [Google Scholar] [CrossRef]
- Qaoud, R.; Adel, B.; Sayad, B.; Alkama, D.; Attia, S. Assessing the Influence of Neighborhood Urban Form on Outdoor Thermal Conditions in the Hot Dry City of Biskra, Algeria. Ain Shams Eng. J. 2023, 14, 102525. [Google Scholar] [CrossRef]
- Tousi, E.; Tseliou, A.; Mela, A.; Sinou, M.; Kanetaki, Z.; Jacques, S. Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios. Sustainability 2024, 16, 6240. [Google Scholar] [CrossRef]
- Halder, N.; Kumar, M.; Deepak, A.; Mandal, S.K.; Azmeer, A.; Mir, B.A.; Nurdiawati, A.; Al-Ghamdi, S.G. The Role of Urban Greenery in Enhancing Thermal Comfort: Systematic Review Insights. Sustainability 2025, 17, 2545. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, J.; Huang, T.; Wang, Y.; Yang, H.; Yu, X.; Wang, Z. Impacts of Plant Configuration on the Outdoor Wind Comfort of Subtropical Coastal Campuses: Evidence from a Study of Quanzhou. Forests 2025, 16, 461. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Guo, T.; Luo, X.; Ji, K.; Zhou, M.; Wan, F. The Impact of Tree Species and Planting Location on Outdoor Thermal Comfort of a Semi-Outdoor Space. Int. J. Biometeorol. 2023, 67, 1689–1701. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The Role of Urban Trees in Reducing Land Surface Temperatures in European Cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, S.; Shi, T. Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai. Int. J. Environ. Res. Public Health 2020, 17, 8684. [Google Scholar] [CrossRef]
- Akbari, H.; Cherati, S.M.; Monazam, N.H.; Noguchi, M. Effect of Courtyards’ Geometrical Parameters on Climate Adaptability and Shading Performance in Hot-Arid Climate of Yazd (Iran). Sustain. Energy Technol. Assess. 2021, 48, 101594. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; López-Cabeza, V.P.; Rivera-Gómez, C.; Galán-Marín, C.; Rojas-Fernández, J.; Nikolopoulou, M. Extending the Adaptive Thermal Comfort Models for Courtyards. Build. Environ. 2021, 203, 108094. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, B. The Effects of Different Landscape Strategies on Outdoor Thermal Comfort in Village Squares: A Case Study in Dayuwan Village in Wuhan City. Env. Sci. Pollut. Res. 2024, 31, 28594–28619. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yuizono, T. Climate-Adaptive Landscape Design: Microclimate and Thermal Comfort Regulation of Station Square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhang, L.; Xu, N.; Tang, F. Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review. Sustainability 2025, 17, 2330. [Google Scholar] [CrossRef]
- Cheng, H.; Han, Y.; Park, C. Quantitative Analysis of Differences in Cooling Effect and Efficiency after Changes in Green Infrastructure Types (GIT). Sustain. Cities Soc. 2025, 119, 106101. [Google Scholar] [CrossRef]
- Qiao, L. Study on the Dynamic Heat Transfer Role of Vertical Greening in Building Microclimate Based on Multi-Objective Coupling. J. Renew. Sustain. Energy 2025, 17, 025101. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating Surface–Plant–Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Unal, M.; Middel, A. Improving Thermal Comfort in Hot-Arid Phoenix, Arizona Courtyards: Exploring the Cooling Benefits of Ground Surface Cover and Shade. Build. Environ. 2025, 278, 113001. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Ruiz, G.; Bandera, C. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Song, D.; Zhang, C. Outdoor Thermal Benchmarks for the Elderly and Its Application to the Outdoor Spaces Design of Nursing Homes in Shanghai. Energy Build. 2025, 337, 115654. [Google Scholar] [CrossRef]
- Wu, Y.; Mashhoodi, B.; Patuano, A. Effective Street Tree and Grass Designs to Cool European Neighbourhoods. Urban Clim. 2025, 61, 102376. [Google Scholar] [CrossRef]
- Lipecki, T.; Szer, I.; Szer, J. Temporal and Spatial Changes in Thermal Sensations of Workers on Construction Scaffolding. Energy Build. 2025, 335, 115543. [Google Scholar] [CrossRef]
- Morel, A.; Vidal-Beaudet, L.; Brialix, L.; Lemesle, D.; Bulot, A.; Herpin, S. Evolution of Microclimate Following Small Patch De-Sealing and Revegetation in Urban Context. Urban Clim. 2025, 61, 102371. [Google Scholar] [CrossRef]
- Al-Hafith, O.; Bk, S.; De Wilde, P. Assessing Annual Thermal Comfort Extent in Central Courtyards: Baghdad as a Case Study. Smart Sustain. Built Environ. 2023, 12, 660–681. [Google Scholar] [CrossRef]
- Elraouf, R.A.; ELMokadem, A.; Megahed, N.; Eleinen, O.A.; Eltarabily, S. Evaluating Urban Outdoor Thermal Comfort: A Validation of ENVI-Met Simulation through Field Measurement. J. Build. Perform. Simul. 2022, 15, 268–286. [Google Scholar] [CrossRef]
- Schibuola, L.; Tambani, C. A Monthly Performance Comparison of Green Infrastructures Enhancing Urban Outdoor Thermal Comfort. Energy Build. 2022, 273, 112368. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, Y.; Yang, Y.; Zhou, X.; Zheng, Z. Experimental Investigation of Standard Effective Temperature (SET*) Adapted for Human Walking in an Indoor and Transitional Thermal Environment. Sci. Total Environ. 2021, 793, 148421. [Google Scholar] [CrossRef]
- Khalili, S.; Fayaz, R.; Zolfaghari, S.A. Analyzing Outdoor Thermal Comfort Conditions in a University Campus in Hot-Arid Climate: A Case Study in Birjand, Iran. Urban Clim. 2022, 43, 101128. [Google Scholar] [CrossRef]
- Han, Y.; Jo, Y.; Kim, E.J. Influence of Landscape Interventions on Thermal Comfort under Time-Varying Building Shadow; New Gwanghwamun Square Case, Seoul, South Korea. Heliyon 2023, 9, e19436. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, K.Y.; Sinsel, T.; Simon, H.; Jim, C.Y.; Morakinyo, T.E.; He, Y.; Yin, S.; Ouyang, W.; Shi, Y.; et al. Modeling Microclimatic Effects of Trees and Green Roofs/Façades in ENVI-Met: Sensitivity Tests and Proposed Model Library. Build. Environ. 2023, 244, 110759. [Google Scholar] [CrossRef]
- Liu, S.; Middel, A.; Fang, X.; Wu, R. ENVI-Met Model Performance Evaluation for Courtyard Simulations in Hot-Humid Climates. Urban Clim. 2024, 55, 101909. [Google Scholar] [CrossRef]
- Haeri, T.; Hassan, N.; Ghaffarianhoseini, A. Evaluation of Microclimate Mitigation Strategies in a Heterogenous Street Canyon in Kuala Lumpur from Outdoor Thermal Comfort Perspective Using Envi-Met. Urban Clim. 2023, 52, 101719. [Google Scholar] [CrossRef]
- Ai, J.; Kim, M. Research on Plant Landscape Design of Urban Industrial Site Green Space Based on Green Infrastructure Concept. Plants 2025, 14, 747. [Google Scholar] [CrossRef]
- Cai, Y.; Li, C.; Pan, C.; Wang, G.; Xu, J.; Cui, W.; Zhou, Y.; Zhou, G. Quantifying the Impact of Single-Tree Morphological Characteristics on the Vertical Gradient Cooling Effect and Human Thermal Comfort during Summer. Urban For. Urban Green. 2025, 107, 128789. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Wang, Z.; Li, J.; Zhou, Y. The Impact of Different Types of Trees on Annual Thermal Comfort in Hot Summer and Cold Winter Areas. Forests 2024, 15, 1880. [Google Scholar] [CrossRef]
No. | Author | Types | City | Seasons | Research Objects | Courtyard Relevance |
---|---|---|---|---|---|---|
[1] | Elgheznawy. D., Eltarabily. S. | Public space | Port Said, Egypt | Summer | Sun sail shading | Yes |
[2] | Zhang. H., Ning. Q., Li. Q., et al. | Urban square | Wuhan & Nanjing, China | Summer | Heat tolerance of evergreen and deciduous urban woody species | Not directly |
[3] | Qaoud. R., Adel. B., Sayad. B., et al. | Public space | Biskra, Algeria | Summer | the height-to-width ratio and the sky view factor | Not directly |
[4] | Tousi. E., Tseliou. A., Mela. A., et al. | Public space | Athens, Greece | Summer | Softscape and hardscape | Yes |
[5] | Halder. N., Kumar. M., Deepak. A., et al. | Public space | Quanzhou, China | Summer and Winter | Urban greenery | Yes |
[6] | Chen. J., Zeng. J., Huang. T., et al. | Public space | Quanzhou, China | Summer and Winter | Plant configuration | Yes |
[7] | Yang, J.; Zhao, Y., et al. | Courtyards and overhead spaces | Guangdong, China | Summer | Tree arrangements | Yes |
[8] | Schwaab J, Meier R, et al. | Public space | Central Europe, Southern Europe, etc. | Summer | Tree | Not directly |
[9] | Jiang, Y.; Jiang, S.; Shi, T. | Public space | Shanghai, China | Summer | Green space pattern | Yes |
[10] | Akbari. H., Cherati. SM., Monazam. NH., Noguchi. M. | Public space | Yazd, Iran | Summer | Shading/sunlit performance and climate adaptability | Yes |
[11] | Diz-Mellado. E., López-Cabeza. VP., et al. | Urban square | Córdoba, Spain | Summer | Courtyards and thermal comfort | Yes |
[12] | Qin. Z., Zhou. B. | Village square | Wuhan, China | Spring, Summer, Autumn, and Winter | Landscape design | Yes |
[13] | Xiao. J., Yuizono. T. | Urban square | Ishikawa, Japan | Summer and Winter | Landscape design, landscape layout pattern, and vegetation configuration | Not directly |
[14] | Liu. T., Wang. Y., Zhang. L., et al. | Public space | Shanghai, China; Harbin, China; Chongqing, China; etc. | Spring, Summer, Autumn, and Winter | Outdoor thermal comfort | Not directly |
[15] | Cheng. H., Han. Y., Park. C. | Urban space | Seoul, South Korea | Summer | Green infrastructure types | Not directly |
[16] | Qiao. L. | Public space | Guangzhou, China | Autumn | Vertical greening | Yes |
Settings | R2/RMSE (AT) | R2/RMSE (RH) | R2/RMSE (WS) |
---|---|---|---|
Grid size of 2 × 2 m2 | 0.944/1.77 | 0.892/1.23 | 0.872/0.22 |
Grid size of 4 × 4 m2 | 0.938/1.88 | 0.756/1.88 | 0.641/0.40 |
Grid size of 8 × 8 m2 | 0.932/1.96 | 0.643/2.54 | 0.203/0.81 |
Parameters | Experiment Groups | ||
---|---|---|---|
Original | S1 Grassland:85% Cray brick:15% | ||
Space layout | |||
S2 | S3 | S4 | |
Water:100% | Cray brick:100% | Grassland:100% | |
Scatter layout | |||
S5 | S6 | S7 | |
DT:0% | DT:20% | DT:40% | |
GT:100% | GT:80% | GT:60% | |
S8 | S9 | S10 | |
DT:60% | DT:80% | DT:100% | |
GT:40% | GT:20% | GT:00% | |
Array layout | |||
S11 | S12 | S13 | |
DT:0% | DT:20% | DT:40% | |
GT:100% | GT:80% | GT:60% | |
S14 | S15 | S16 | |
DT:60% | DT:80% | DT:100% | |
GT:40% | GT:20% | GT:00% |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | R2 |
---|---|---|---|---|---|---|
Intercept | 27,197.386 | 1 | 27,197.386 | 2,212,895.158 | 0.000 *** | 0.982 |
Season | 5469.642 | 3 | 1823.214 | 148,344.443 | 0.000 *** | |
Planting method | 0.267 | 1 | 0.267 | 21.721 | 0.000 *** | |
Tree species ratio | 1.112 | 5 | 0.222 | 18.091 | 0.000 *** | |
Error | 0.467 | 38 | 0.012 | - | NaN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Zhou, B. Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates. Plants 2025, 14, 1670. https://doi.org/10.3390/plants14111670
Qin H, Zhou B. Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates. Plants. 2025; 14(11):1670. https://doi.org/10.3390/plants14111670
Chicago/Turabian StyleQin, Hailu, and Bailing Zhou. 2025. "Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates" Plants 14, no. 11: 1670. https://doi.org/10.3390/plants14111670
APA StyleQin, H., & Zhou, B. (2025). Optimizing Vegetation Configurations for Seasonal Thermal Comfort in Campus Courtyards: An ENVI-Met Study in Hot Summer and Cold Winter Climates. Plants, 14(11), 1670. https://doi.org/10.3390/plants14111670