Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Classical Review—Synthesis of the Literature
3.2. Oak Species’ Climate Sensitivity Across Regions
3.3. Physiological and Growth Responses of Oak Forests to Drought and Temperature
3.4. Mixed and Transitional Forest Dynamics Under Climate Stress
3.5. Ecosystem-Level Effects and Structural Shifts of Oak Forests
3.6. Drivers and Patterns of Decline in Oak Forests
4. Discussion
4.1. Classical Review—Synthesis of the Literature
4.2. Oak Species’ Climate Sensitivity Across Regions
4.3. Physiological and Growth Responses to Drought and Temperature
4.4. Mixed and Transitional Forest Dynamics Under Climate Stress
4.5. Ecosystem-Level Effects and Structural Shifts
4.6. Drivers and Patterns of Decline in Oak Forests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muhammad, N.; Castillejo, M.Á.; Rey, M.D.; Jorrín-Novo, J.V. An overview of oak species in Pakistan: Past, present, and future research perspectives. Forests 2023, 14, 777. [Google Scholar] [CrossRef]
- Mölder, A.; Meyer, P.; Nagel, R.V. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. For. Ecol. Manag. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Budeanu, M.; Popescu, F.; Şofletea, N. In situ conservation of forest genetic resources in Romania. In Forests of Southeast Europe Under a Changing Climate: Conservation of Genetic Resources; Springer: Cham, Switzerland, 2019; pp. 195–205. [Google Scholar]
- Apostol, E.N.; Stuparu, E.; Scarlatescu, V.; Budeanu, M. Testing Hungarian oak (Quercus frainetto Ten.) provenances in Romania. iForest 2020, 13, 9. [Google Scholar] [CrossRef]
- McShea, W.J.; Healy, W.M. (Eds.) Oak Forest Ecosystems: Ecology and Management for Wildlife; Johns Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Nixon, K.C. Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–13. [Google Scholar]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Tsanis, I.; Tapoglou, E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change. Theor. Appl. Climatol. 2019, 135, 323–330. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I. European drought trends. Proc. Int. Assoc. Hydrol. Sci. 2015, 369, 75–79. [Google Scholar] [CrossRef]
- Zhao, C.; Brissette, F.; Chen, J.; Martel, J.L. Frequency change of future extreme summer meteorological and hydrological droughts over North America. J. Hydrol. 2020, 584, 124316. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, L.; Liu, Y.; Hao, Z.; Zhang, J. Changes in the drought condition over northern East Asia and the connections with extreme temperature and precipitation indices. Glob. Planet. Change 2021, 207, 103645. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The role of climate change and its sensitivity on long-term standardized precipitation evapotranspiration index, vegetation and drought changing trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Singh, J.S. Structure and function of the Central Himalayan oak forests. Proc. Plant Sci. 1986, 96, 159–189. [Google Scholar] [CrossRef]
- Rodà, F.; Retana, J.; Gracia, C.A.; Bellot, J. (Eds.) Ecology of Mediterranean Evergreen Oak Forests; Springer: Dordrecht, The Netherlands, 2012; Volume 137. [Google Scholar]
- Kozharinov, A.V.; Borisov, P.V. Distribution of oak forests in Eastern Europe over the last 13,000 years. Contemp. Probl. Ecol. 2013, 6, 755–760. [Google Scholar] [CrossRef]
- Crisan, V.; Dinca, L.; Scarlatescu, V.; Braga, C.; Ienasoiu, G.; Crisan, C. Predictions about sessile oak forest ecosystems from Banat Mountains in the next 80 years. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2023, 12, 44–51. [Google Scholar]
- Tang, Y.; Du, E.; Guo, H.; Wang, Y.; Peñuelas, J.; Reich, P.B. Rapid migration of Mongolian oak into the southern Asian boreal forest. Glob. Change Biol. 2024, 30, e17002. [Google Scholar] [CrossRef]
- Ellenberg, H.H.; Strutt, G.K. Vegetation Ecology of Central Europe; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Bauhus, J.; Forrester, D.I.; Pretzsch, H. From observations to evidence about effects of mixed-species stands. In Mixed-Species Forests: Ecology and Management; Springer: Cham, Switzerland, 2017; pp. 27–71. [Google Scholar]
- Dincă, L.; Achim, F. The management of forests situated on fields susceptible to landslides and erosion from the Southern Carpathians. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 183–188. [Google Scholar]
- Kashani, M.M.; Homavandi, H.; Batooli, Z. Bibliometric studies of most-cited medical papers: A bibliometric analysis. Int. Arch. Health Sci. 2022, 9, 123–128. [Google Scholar]
- Zhang, X.; Liang, S.; Lu, J.; Cui, X. Evolution of research on global soil water content in the past 30 years based on ITGinsight bibliometric analysis. Int. J. Environ. Res. Public Health 2022, 19, 15476. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878–897. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Global Change Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Olaniyi, O.A.; Ojekunle, Z.O.; Amujo, B.T. Review of climate change and its effect on Nigeria ecosystem. Int. J. Afr. Asian Stud. 2013, 1, 57–65. [Google Scholar]
- Mawdsley, J.R.; O’Malley, R.; Ojima, D.S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 2009, 23, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Shwom, R.L.; Whitley, C.T. Climate change and society. Annu. Rev. Sociol. 2020, 46, 135–158. [Google Scholar] [CrossRef]
- Sullivan, A. Bridging the divide between rural and urban community-based forestry: A bibliometric review. For. Policy Econ. 2022, 144, 102826. [Google Scholar] [CrossRef]
- Bullock, S.H.; Mooney, H.A.; Medina, E. (Eds.) Seasonally Dry Tropical Forests; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Estiarte, M.; Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Effects on nutrient proficiency. Glob. Change Biol. 2014, 21, 1005–1017. [Google Scholar] [CrossRef]
- Dincă, L.; Crisan, V.; Ienasoiu, G.; Murariu, G.; Drasovean, R. Environmental Indicator Plants in Mountain Forests: A Review. Plants 2024, 13, 3358. [Google Scholar] [CrossRef]
- Timis-Gansac, V.; Dinca, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation biodiversity in arid areas: A review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Web of Science Core Collection. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-core-collection/ (accessed on 20 January 2025).
- Scopus. Available online: https://www.elsevier.com/products/scopus (accessed on 10 December 2024).
- Microsoft Corporation. Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel?legRedir=true&CorrelationId=3bb60ab0-fe13-41a4-812b-2627667cf346 (accessed on 1 February 2025).
- Geochart. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 13 March 2025).
- VOS Viewer. Available online: https://www.vosviewer.com/ (accessed on 7 December 2024).
- Chen, Y.; Li, Y.; Mao, L. Combining the effects of global warming, land use change and dispersal limitations to predict the future distributions of East Asian Cerris Oaks (Quercus Section Cerris, Fagaceae) in China. Forests 2022, 13, 367. [Google Scholar] [CrossRef]
- Liao, Z.; Nobis, M.P.; Xiong, Q.; Tian, X.; Wu, X.; Pan, K.; Zhang, L. Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Ann. For. Sci. 2021, 78, 5. [Google Scholar] [CrossRef]
- Marquis, R.J.; Lill, J.T.; Forkner, R.E.; Le Corff, J.; Landosky, J.M.; Whitfield, J.B. Declines and resilience of communities of leaf-chewing insects on Missouri oaks following spring frost and summer drought. Front. Ecol. Evol. 2019, 7, 396. [Google Scholar] [CrossRef]
- Brinckwirth, C.; Klimas, C.A.; Cortez, C.; Nuñez, J.; Perez-Morales, D.W.; Breceda, A.; Álvarez-Clare, S. Environmental factors can influence spatial aggregation and acorn production in the endemic and endangered oak Quercus brandegeei in Mexico. Bot. Sci. 2023, 101, 761–774. [Google Scholar] [CrossRef]
- Jafarian, N.; Mirzaei, J.; Omidipour, R.; Kooch, Y. Effects of micro-climatic conditions on soil properties along a climate gradient in oak forests, west of Iran: Emphasizing phosphatase and urease enzyme activity. Catena 2023, 224, 106960. [Google Scholar] [CrossRef]
- Mirhashemi, H.; Heydari, M.; Ahmadi, K.; Karami, O.; Kavgaci, A.; Matsui, T.; Heung, B. Species distribution models of Brant’s oak (Quercus brantii Lindl.): The impact of spatial database on predicting the impacts of climate change. Ecol. Eng. 2023, 194, 107038. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Fonti, P.; Cherubini, P.; Martín-Benito, D.; Chaar, H.; Cañellas, I. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol. 2012, 32, 401–413. [Google Scholar] [CrossRef]
- Asadi, H.; Jalilvand, H.; Tafazoli, M.; Hosseini, S.F. Modeling habitat suitability of Quercus castaneifolia in the Hyrcanian forest: A comprehensive integration of environmental factors for conservation insights. Biodivers. Conserv. 2025, 34, 315–334. [Google Scholar] [CrossRef]
- Mazza, G.; Monteverdi, M.C.; Altieri, S.; Battipaglia, G. Climate-driven growth dynamics and trend reversal of Fagus sylvatica L. and Quercus cerris L. in a low-elevation beech forest in Central Italy. Sci. Total Environ. 2024, 908, 168250. [Google Scholar] [CrossRef]
- Mészáros, I.; Adorján, B.; Nyitrai, B.; Kanalas, P.; Oláh, V.; Levanič, T. Long-term radial growth and climate-growth relationships of Quercus petraea (Matt.) Liebl. and Quercus cerris L. in a xeric low elevation site from Hungary. Dendrochronologia 2022, 76, 126014. [Google Scholar] [CrossRef]
- Kostić, S.; Levanič, T.; Orlović, S.; Matović, B.; Stojanović, D.B. Turkey oak (Quercus cerris L.) is more drought tolerant and better reflects climate variations compared to pedunculate oak (Quercus robur L.) in lowland mixed forests in northwestern Serbia: A stable carbon isotope ratio (δ13C) and radial growth approach. Ecol. Indic. 2022, 142, 109242. [Google Scholar] [CrossRef]
- Šimková, M.; Vacek, S.; Šimůnek, V.; Vacek, Z.; Cukor, J.; Hájek, V.; Lukáčik, I. Turkey oak (Quercus cerris L.) resilience to climate change: Insights from coppice forests in Southern and Central Europe. Forests 2023, 14, 2403. [Google Scholar] [CrossRef]
- Jiang, X.L.; Deng, M.; Li, Y. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: An insight from Quercus schottkyana (Fagaceae). Tree Genet. Genomes 2016, 12, 104. [Google Scholar] [CrossRef]
- Onosato, K.; Shitara, T.; Matsumoto, A.; Matsuo, A.; Suyama, Y.; Tsumura, Y. Contact zone of two different chloroplast lineages and genetic guidelines for seed transfer in Quercus serrata and Quercus crispula. Plant Species Biol. 2021, 36, 72–83. [Google Scholar] [CrossRef]
- Argüelles-Marrón, B.; Meave, J.A.; Luna-Vega, I.; Crispin-DelaCruz, D.B.; Szejner, P.; Ames-Martínez, F.N.; Rodríguez-Ramírez, E.C. Adaptation potential of Neotropical montane oaks to drought events: Wood anatomy sensitivity in Quercus delgadoana and Quercus meavei. Funct. Ecol. 2023, 37, 2040–2055. [Google Scholar] [CrossRef]
- González-Rodríguez, V.; Villar, R.; Navarro-Cerrillo, R.M. Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecol. 2011, 37, 1–9. [Google Scholar] [CrossRef]
- Thapliyal, S.; Sati, S.P.; Singh, B.; Rawat, D.; Khanduri, V.P.; Riyal, M.K.; Singh, N. Effect of altitudes and aspects on carbon sequestration potential of Quercus floribunda forests of Garhwal Himalayas. Trees For. People 2024, 18, 100690. [Google Scholar] [CrossRef]
- Pellatt, M.G.; Gedalof, Z.E. Environmental change in Garry oak (Quercus garryana) ecosystems: The evolution of an eco-cultural landscape. Biodivers. Conserv. 2014, 23, 2053–2067. [Google Scholar] [CrossRef]
- Gedalof, Z.E.; Franks, J.A. Stand structure and composition affect the drought sensitivity of Oregon white oak (Quercus garryana Douglas ex Hook.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Forests 2019, 10, 381. [Google Scholar] [CrossRef]
- Zorrilla-Azcué, S.; González-Rodríguez, A.; Oyama, K.; González, M.A.; Rodríguez-Correa, H. The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecol. Evol. 2021, 11, 6814–6828. [Google Scholar] [CrossRef]
- Brasier, C.M. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. In Annales des Sciences Forestières; EDP Sciences: Paris, France, 1996; Volume 53, pp. 347–358. [Google Scholar]
- Ruiz-Gómez, F.J.; Pérez-de-Luque, A.; Navarro-Cerrillo, R.M. The involvement of Phytophthora root rot and drought stress in holm oak decline: From ecophysiology to microbiome influence. Curr. For. Rep. 2019, 5, 251–266. [Google Scholar] [CrossRef]
- Le Roncé, I.; Gavinet, J.; Ourcival, J.M.; Mouillot, F.; Chuine, I.; Limousin, J.M. Holm oak fecundity does not acclimate to a drier world. New Phytol. 2021, 231, 631–645. [Google Scholar] [CrossRef]
- Asensio, D.; Zuccarini, P.; Sardans, J.; Marañón-Jiménez, S.; Mattana, S.; Ogaya, R.; Peñuelas, J. Soil biomass-related enzyme activity indicates minimal functional changes after 16 years of persistent drought treatment in a Mediterranean holm oak forest. Soil Biol. Biochem. 2024, 189, 109281. [Google Scholar] [CrossRef]
- Hama, A.A.; Khwarahm, N.R. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecol. Inform. 2023, 73, 101930. [Google Scholar] [CrossRef]
- Bayar, E. Influence of drought stress and N addition on the gas exchange, biochemical and growth traits in Quercus ithaburensis. Dendrobiology 2022, 88, 94–104. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Jiao, L.; Chen, W.; Wu, X.; Fan, Z.; Fu, B. Radial growth response of Quercus liaotungensis to climate change—A case study on the central Loess Plateau, China. Trees 2022, 36, 1811–1822. [Google Scholar] [CrossRef]
- Koenig, W.D.; Knops, J.M.; Carmen, W.J. Intraspecific variation in the relationship between weather and masting behavior in valley oak, Quercus lobata. Can. J. For. Res. 2020, 50, 1299–1306. [Google Scholar] [CrossRef]
- Sun, P.W.; Chang, J.T.; Luo, M.X.; Liao, P.C. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change. BMC Plant Biol. 2024, 24, 279. [Google Scholar] [CrossRef]
- Foroozan, Z.; Pourtahmasi, K.; Bräuning, A. Climatic signals in stable carbon isotope ratios of Juniper and Oak tree rings from northern Iran. Glob. Planet. Change 2018, 165, 90–99. [Google Scholar] [CrossRef]
- Rogers, T.R.; Russell, F.L. Historical patterns of oak population expansion in the Chautauqua Hills, Kansas. J. Biogeogr. 2014, 41, 2105–2114. [Google Scholar] [CrossRef]
- Altman, J.; Treydte, K.; Pejcha, V.; Cerny, T.; Petrik, P.; Srutek, M.; Dolezal, J. Tree growth response to recent warming of two endemic species in Northeast Asia. Clim. Change 2020, 162, 1345–1364. [Google Scholar] [CrossRef]
- Center, A.; Etterson, J.R.; Deacon, N.J.; Cavender-Bares, J. Seed production timing influences seedling fitness in the tropical live oak Quercus oleoides of Costa Rican dry forests. Am. J. Bot. 2016, 103, 1407–1417. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Li, Q.; Pu, F.; Xia, X.; Chang, M.; Song, K. Influence of colder temperature on the axial and radial parenchyma fraction of Quercus ciliaris CC Huang & YT Chang wood and its relationship with carbohydrate reserve (NSC). Forests 2022, 13, 169. [Google Scholar]
- Vospernik, S.; Heym, M.; Pretzsch, H.; Pach, M.; Steckel, M.; Aldea, J.; Wolff, B. Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe—A dynamic, sensitive equilibrium. For. Ecol. Manag. 2023, 530, 120753. [Google Scholar] [CrossRef]
- Nölte, A.; Yousefpour, R.; Hanewinkel, M. Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model. Ecol. Model. 2020, 438, 109285. [Google Scholar] [CrossRef]
- Friedrichs, D.A.; Trouet, V.; Büntgen, U.; Frank, D.C.; Esper, J.; Neuwirth, B.; Löffler, J. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 2009, 23, 729–739. [Google Scholar] [CrossRef]
- Moreno-Fernandez, D.; Aldea, J.; Gea-Izquierdo, G.; Canellas, I.; Martin-Benito, D. Influence of climate and thinning on Quercus pyrenaica Willd. coppices growth dynamics. Eur. J. For. Res. 2021, 140, 187–197. [Google Scholar] [CrossRef]
- Santonja, M.; Baldy, V.; Fernandez, C.; Balesdent, J.; Gauquelin, T. Potential shift in plant communities with climate change: Outcome on litter decomposition and nutrient release in a Mediterranean oak forest. Ecosystems 2015, 18, 1253–1268. [Google Scholar] [CrossRef]
- Safonova, M.; Tabunshchik, V.; Gorbunov, R.; Gorbunova, T. Heat budget of sub-Mediterranean downy oak landscapes of southeastern Crimea. Forests 2023, 14, 1927. [Google Scholar] [CrossRef]
- Šestan, L. Simulation model of the effect of air temperature on the leaves phenophases of the pubescent oak on the island of Pag. Šum. List 2012, 136, 253–260. [Google Scholar]
- Nechita, C.; Popa, I. The relationship between climate and radial growth for the oak (Quercus robur L.) in the western plain of Romania. Carpath. J. Earth Environ. Sci. 2012, 7, 137–144. [Google Scholar]
- Vranckx, G.; Jacquemyn, H.; Mergeay, J.; Cox, K.; Janssens, P.; Gielen, B.A.; Muys, B.; Honnay, O. The effect of drought stress on heterozygosity-fitness correlations in pedunculate oak (Quercus robur). Ann. Bot. 2014, 113, 1057–1069. [Google Scholar] [CrossRef]
- Shupe, H.A.; Jensen, K.; Oldeland, J.; Ludewig, K. Droughts decrease and floods increase carbon sequestration rates of Quercus robur in hardwood floodplain forests. Trees For. People 2022, 9, 100294. [Google Scholar] [CrossRef]
- Bouwman, M.; Forrester, D.I.; Den Ouden, J.; Nabuurs, G.J.; Mohren, G.M.J. Species interactions under climate change in mixed stands of Scots pine and pedunculate oak. For. Ecol. Manag. 2021, 481, 118615. [Google Scholar] [CrossRef]
- Ugarković, D.; Tikvić, I.; Mikac, S.; Stankić, I.; Balta, D. The influence of changing climate extremes on the ecological niche of pedunculate oak in Croatia. South-East Eur. For. 2016, 7, 143–148. [Google Scholar] [CrossRef]
- Askeyev, O.V.; Tischin, D.; Sparks, T.H.; Askeyev, I.V. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int. J. Biometeorol. 2005, 49, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Juice, S.M.; Templer, P.H.; Phillips, N.G.; Ellison, A.M.; Pelini, S.L. Ecosystem warming increases sap flow rates of northern red oak trees. Ecosphere 2016, 7, e01221. [Google Scholar] [CrossRef]
- Kormann, J.M.; van der Maaten-Theunissen, M.; Unterholzner, L.; Liesebach, M.; Liepe, K.J.; van der Maaten, E. Variation in vessel traits of northern red oak (Quercus rubra L.) provenances revealed high phenotypic plasticity to prevailing environmental conditions. Trees 2024, 38, 1283–1295. [Google Scholar] [CrossRef]
- Saran, S.; Joshi, R.; Sharma, S.; Padalia, H.; Dadhwal, V.K. Geospatial modeling of brown oak (Quercus semecarpifolia) habitats in the Kumaun Himalaya under climate change scenario. J. Indian Soc. Remote Sens. 2010, 38, 535–547. [Google Scholar] [CrossRef]
- Shekhar, C.; Ginwal, H.S.; Meena, R.K.; Shankhwar, R.; Martins-Ferreira, M.A.C.; Pandey, S.; Bhandari, M.S. Spatio-temporal distribution of broad-leaved Quercus semecarpifolia indicates altitudinal shift in northwestern Himalayas. Plant Ecol. 2022, 223, 671–697. [Google Scholar] [CrossRef]
- Bouzidi, M.; Nouri, M.; Nasr, Z.; Khlifi, S. Contribution to the assessment of climate change effects on water balance in forest soil: Application of the Biljou model to the cork oak forest of Ain Snoussi (north-western Tunisia). Arab. J. Geosci. 2020, 13, 1152. [Google Scholar] [CrossRef]
- Mechergui, K.; Jaouadi, W.; Altamimi, A.S.; Naghmouchi, S.; Ammari, Y. Effect of climate change on the spatial distribution and cork production of Quercus suber L., the risk of exclusion by the Aleppo pine expansion, and management practices to protect Q. suber habitat: A review. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12218. [Google Scholar] [CrossRef]
- Ribeiro, S.; Cerveira, A.; Soares, P.; Ribeiro, N.A.; Camilo-Alves, C.; Fonseca, T.F. Natural regeneration of cork oak forests under climate change: A case study in Portugal. Front. For. Glob. Change 2024, 7, 1332708. [Google Scholar] [CrossRef]
- Yu, W.; Fahey, T.J.; Kang, H.; Zhou, P. Surface soil organic carbon in temperate and subtropical oriental oak stands of East China. Can. J. For. Res. 2016, 46, 621–628. [Google Scholar] [CrossRef]
- Keyser, T.L.; Brown, P.M. Drought response of upland oak (Quercus L.) species in Appalachian hardwood forests of the southeastern USA. Ann. For. Sci. 2016, 73, 971–986. [Google Scholar] [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Rigling, A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- Kostić, S.; Kesić, L.; Matović, B.; Orlović, S.; Stojnić, S.; Stojanović, D.B. Soil properties are significant modifiers of pedunculate oak (Quercus robur L.) radial increment variations and their sensitivity to drought. Dendrochronologia 2021, 67, 125838. [Google Scholar] [CrossRef]
- Tumajer, J.; Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 2016, 379, 185–194. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Fkiri, S.; Aouinti, H.; Moutahir, H.; Bellot, J.; Nasr, Z. An analysis of tree-ring width and the standardized precipitation-evapotranspiration index within the cork oak (Quercus suber L.) forests mortality framework in the Kroumirie Mountains, northwestern Tunisia. Euro-Mediterr. J. Environ. Integr. 2021, 6, 42. [Google Scholar] [CrossRef]
- Čejková, A.; Poláková, S. Growth responses of sessile oak to climate and hydrological regime in the Zbytka Nature Reserve, Czech Republic. Geochronometria 2012, 39, 285–294. [Google Scholar] [CrossRef]
- Byun, J.G.; Lee, W.K.; Kim, M.; Kwak, D.A.; Kwak, H.; Park, T.; Jung, J.H. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 2013, 6, 380–392. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.K.; Son, Y.; Yoo, S.; Choi, G.M.; Chung, D.J. Assessing the impacts of topographic and climatic factors on radial growth of major forest forming tree species of South Korea. For. Ecol. Manag. 2017, 404, 269–279. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Mursa, A.; Ionita, M.; Sfeclă, V.; Popa, I.; Roibu, C.C. An overview of extreme years in Quercus sp. tree ring records from the Northern Moldavian Plateau. Forests 2023, 14, 894. [Google Scholar] [CrossRef]
- Sedmáková, D.; Sedmák, R.; Saniga, M.; Parobeková, Z.; Potterf, M.; Lukáčik, I. Response of oaks to extreme climate events in the transition zone of oak and beech forests. Zprávy Lesnického Výzkumu 2021, 66, 104–114. [Google Scholar]
- Rohner, B.; Bigler, C.; Wunder, J.; Brang, P.; Bugmann, H. Fifty years of natural succession in Swiss forest reserves: Changes in stand structure and mortality rates of oak and beech. J. Veg. Sci. 2012, 23, 892–905. [Google Scholar] [CrossRef]
- Stimm, K.; Heym, M.; Uhl, E.; Tretter, S.; Pretzsch, H. Height growth-related competitiveness of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) under climate change in Central Europe. Is silvicultural assistance still required in mixed-species stands? For. Ecol. Manag. 2021, 482, 118780. [Google Scholar] [CrossRef]
- Marques, M.; Bugalho, M.N.; Acácio, V.; Catry, F.X. Disentangling research on oak decline factors in Mediterranean-type climate regions: A systematic review. Trees For. People 2025, 1, 100803. [Google Scholar] [CrossRef]
- Hasnaoui, B. Régénération naturelle du chêne-liège: Difficultés et proposition de solutions. Ann. l’ENRGREF 1998, Numéro Spécial, 126–147. [Google Scholar]
- Selmi, M. Différenciation des sols et fonctionnement des écosystèmes sur grès numidiens de Kroumirie (Tunisie). Ph.D. Thesis, Écologie de la Subéraie Zénaie, Université de Nancy, Nancy, France, 1985; p. 200. [Google Scholar]
- Costa, D.; Tavares, R.M.; Baptista, P.; Lino-Neto, T. The influence of endophytes on cork oak forests under a changing climate. In Endophytes for a Growing World; Hodkinson, T., Doohan, F., Saunders, M., Murphy, B., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 250–274. [Google Scholar]
- Siwkcki, R.; Ufnalski, K. Review of oak stand decline with special reference to the role of drought in Poland. Eur. J. For. Pathol. 1998, 28, 99–112. [Google Scholar] [CrossRef]
- Popa, I.; Leca, S.; Crăciunescu, A.; Sidor, C.; Badea, O. Dendroclimatic response variability of Quercus species in the Romanian intensive forest monitoring network. Not. Bot. Horti Agrobo. Cluj-Napoca 2013, 41, 326–332. [Google Scholar] [CrossRef]
- Sohar, K.; Helama, S.; Läänelaid, A.; Raisio, J.; Tuomenvirta, H. Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria 2014, 41, 92–103. [Google Scholar] [CrossRef]
- Dinca, L.; Constandache, C.; Postolache, R.; Murariu, G.; Tupu, E. Timber Harvesting in Mountainous Regions: A Comprehensive Review. Forests 2025, 16, 495. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Glob. Change Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Chen, G.; Tian, H.; Zhang, C.; Liu, M.; Ren, W.; Zhu, W.; Lockaby, G.B. Drought in the Southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Change 2012, 114, 379–397. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Cobb, N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Kane, J.M.; Anderegg, L.D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.L.; Marçais, B.; Nageleisen, L.M.; Piou, D.; Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 2006, 63, 597–612. [Google Scholar] [CrossRef]
- Haavik, L.J.; Billings, S.A.; Guldin, J.M.; Stephen, F.M. Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe. For. Ecol. Manag. 2015, 354, 190–205. [Google Scholar] [CrossRef]
- Tessier, L.; Nola, P.; Serre-Bachet, F. Deciduous Quercus in the Mediterranean region: Tree-ring/climate relationships. New Phytol. 1994, 126, 355–367. [Google Scholar] [CrossRef]
- Cooke, J.E.; Eriksson, M.E.; Junttila, O. The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant Cell Environ. 2012, 35, 1707–1728. [Google Scholar] [CrossRef]
- Trontin, J.F.; Raschke, J.; Rupps, A. Tree ‘memory’: New insights on temperature-induced priming effects during early embryogenesis. Tree Physiol. 2021, 41, 906–911. [Google Scholar] [CrossRef]
- Becker, M.; Nieminen, T.M.; Gérémia, F. Short-term variations and long-term changes in oak productivity in north-eastern France: The role of climate and atmospheric CO2. Ann. For. Sci. 1994, 51, 477–492. [Google Scholar] [CrossRef]
- Bergès, L.; Dupouey, J.L.; Franc, A. Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 2000, 14, 398–408. [Google Scholar] [CrossRef]
- Patón, D.; García Herrera, R.; Guenca, J.; Galavis, M.; Roig, F.A. Influence of climate on radial growth of holm oaks (Quercus ilex subsp. ballota Desf.) from SW Spain. Geochronometria 2014, 41, 92–103. [Google Scholar] [CrossRef]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe drought effects on Mediterranean woody flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar] [CrossRef]
- Landmann, G.; Dreyer, E. Impacts of Drought and Heat on Forests. Synthesis of Available Knowledge, with Emphasis on the 2003 Event in Europe. Ann. For. Sci. 2006, 63, 567–652. [Google Scholar] [CrossRef]
- Faber-Langendoen, D.; Tester, J.R. Oak mortality in sand savannas following drought in east-central Minnesota. Bull. Torrey Bot. Club 1993, 120, 248–256. [Google Scholar] [CrossRef]
- Catton, H.A.; George, S.S.; Remphrey, W.R. An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada. Arboric. Urban For. 2007, 33, 22–30. [Google Scholar] [CrossRef]
- Arend, M.; Kuster, T.; Günthardt-Goerg, M.S.; Dobbertin, M. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol. 2011, 31, 287–297. [Google Scholar] [CrossRef]
- Li, M.H.; Cherubini, P.; Dobbertin, M.; Arend, M.; Xiao, W.F.; Rigling, A. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol. 2013, 15, 177–184. [Google Scholar] [CrossRef]
- Luciano, P.; Prota, R. Insect pests in Sardinian cork-oak forests. Bull. OILB/SROP 1995, 18, 1–7. [Google Scholar]
- Graf, P.; Basri, E.; Bakri, M. Cork oak decline in Morocco. In Proceedings of the International Congress “Recent Advances in Studies on Oak Decline”, Brindisi, Italy, 13–18 September 1992. [Google Scholar]
- Budeanu, M.; Besliu, E.; Pepelea, D. Testing the Radial Increment and Climate–Growth Relationship Between Swiss Stone Pine European Provenances in the Romanian Carpathians. Forests 2025, 16, 391. [Google Scholar] [CrossRef]
- Besliu, E.; Curtu, A.L.; Budeanu, M.; Apostol, E.N.; Ciocîrlan, M.I. Exploring the effects of the assisted transfer of European beech (Fagus sylvatica L.) provenances in the Romanian Carpathians. Not. Bot. Horti Agrobo. Cluj-Napoca 2024, 52, 13968. [Google Scholar] [CrossRef]
- Budeanu, M.; Apostol, E.N.; Radu, R.G.; Ioniță, L. Genetic variability and juvenile–adult correlations of Norway spruce (Picea abies) provenances, tested in multisite comparative trials. Ann. For. Res. 2021, 64, 105–122. [Google Scholar] [CrossRef]
- Huesca, M.; Ustin, S.L.; Shapiro, K.D.; Boynton, R.; Thorne, J.H. Detection of drought-induced blue oak mortality in the Sierra Nevada Mountains, California. Ecosphere 2021, 12, e03558. [Google Scholar] [CrossRef]
- Apostol, E.N.; Dinu, C.G.; Apostol, B.O.; Ciuvăț, A.L.; Lorenț, A.D.; Pleșca, I.; Postolache, D.R.; Leca, Ș.; Enescu, C.M. Importance of pubescent oak (Quercus pubescens Willd.) for Romanian forests in the context of climate change. Rev. De Silvic. și Cinegetică 2016, 21, 29–33. [Google Scholar]
- Gentilesca, T.; Camarero, J.J.; Colangelo, M.; Nolã, A.; Ripullone, F.; Nole, A. Drought-induced oak decline in the western Mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience. IForest 2017, 10, 796–806. [Google Scholar] [CrossRef]
- Dănescu, F.; Ungurean, C.; Chira, F.; Horga, D.; Jung, T. Oak decline in Livada Forest District. Rev. De Silvic. si Cineg. 2015, 37, 66–78. [Google Scholar]
- Chira, D.; Borlea, F.G.; Chira, F.; Mantale, C.Ș.; Ciocîrlan, M.I.; Turcu, D.O.; Cadar, N.; Trotta, V.; Camele, I.; Marcone, C.; et al. Selection of Elms Tolerant to Dutch Elm Disease in South-West Romania. Diversity 2022, 14, 980. [Google Scholar] [CrossRef]
- Kaproth, M.A.; Fredericksen, B.W.; González-Rodríguez, A.; Hipp, A.L.; Cavender-Bares, J. Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak (Quercus) species across a climatic gradient in the Americas. New Phytol. 2023, 239, 888–904. [Google Scholar] [CrossRef]
- Tăut, I.; Moldovan, M.; Șimonca, V.; Varga, M.I.; Rob, M.; Chira, F.; Chira, D. Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions. Microbiol. Res. 2024, 15, 1441–1458. [Google Scholar] [CrossRef]
- Buzatu, A.; Nețoiu, C.; Apostol, B.; Badea, O. The use of remote sensing indices derived from Sentinel 2 satellite images for the defoliation damage assessment of Lymantria dispar. Ann. For. Res. 2023, 66, 123–138. [Google Scholar] [CrossRef]
- Forzieri, G.; Dutrieux, L.P.; Elia, A.; Eckhardt, B.; Caudullo, G.; Taboada, F.Á.; Andriolo, A.; Bălăcenoiu, F.; Bastos, A.; Buzatu, A.; et al. The Database of European Forest Insect and Disease Disturbances: DEFID2. Glob. Change Biol. 2023, 29, 6040–6065. [Google Scholar] [CrossRef]
- Balacenoiu, F.; Netoiu, C.; Tomescu, R.; Simon, D.C.; Buzatu, A.; Toma, D.; Petritan, I.C. Chemical Control of Corythucha arcuata (Say, 1832), an Invasive Alien Species, in Oak Forests. Forests 2021, 12, 770. [Google Scholar] [CrossRef]
Crt. No. | Journal | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Forest Ecology and Management | 75 | 2987 | 81 |
2 | Forests | 38 | 396 | 31 |
3 | Science of the Total Environment | 18 | 535 | 26 |
4 | Global Change Biology | 14 | 1514 | 25 |
5 | Dendrochronologia | 13 | 184 | 24 |
6 | Agricultural and Forest Meteorology | 19 | 359 | 22 |
7 | Annals of Forest Science | 9 | 133 | 18 |
8 | European Journal of Forest Research | 9 | 143 | 16 |
9 | Journal of Ecology | 9 | 308 | 12 |
10 | Catena | 13 | 275 | 9 |
11 | Journal of Biogeography | 10 | 2252 | 9 |
12 | Ecosystems | 6 | 186 | 8 |
13 | Ecology and Evolution | 7 | 138 | 5 |
14 | Frontiers in Forest and Global Change | 9 | 49 | 4 |
15 | Ecosphere | 8 | 164 | 1 |
Crt. No. | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1 | climate-change | 190 | 509 |
2 | drought | 140 | 508 |
3 | growth | 88 | 325 |
4 | forest | 87 | 258 |
5 | climate | 95 | 251 |
6 | dynamics | 63 | 229 |
7 | oak | 66 | 216 |
8 | responses | 61 | 213 |
9 | diversity | 56 | 167 |
10 | biodiversity | 50 | 263 |
11 | temperature | 46 | 161 |
12 | vegetation | 54 | 140 |
13 | management | 40 | 125 |
14 | carbon | 36 | 124 |
15 | soil | 37 | 113 |
16 | variability | 35 | 113 |
Crt. No. | Oak Species | Region | Citing Article | Key Risk/Characteristic | Vulnerability Level |
---|---|---|---|---|---|
1 | Quercusa acutissima Carruth. | China | Chen et al., 2022 [41] | Moderate range; some drought exposure | Medium |
2 | Quercus quifolioides Rehder & Wilson | China | Liao et al., 2021 [42] | High elevation, narrow niche | Medium–High |
3 | Quercus alba L. | USA | Marquis et al., 2019 [43] | Moderate drought sensitivity | Medium |
4 | Quercus brandegeei Goldman | Mexico | Brinckwirth et al., 2023 [44] | Endemic, highly restricted range | High |
5 | Quercus brantii Lindl. | Iran | Jafarian et al., 2023; Mirhashemi et al., 2023 [45,46] | Semi-arid zone; recent dieback reported | High |
6 | Quercus canariensis Willd. | Spain | Gea-Izquierdo et al., 2012 [47] | Range contraction, low drought tolerance | High |
7 | Quercus castaneifolia C.A. Mey | Iran | Asadi et al., 2024 [48] | Localized, some decline reported | Medium–High |
8 | Quercus cerris L. | Italy; Hungary; Serbia; Bulgaria; Italy | Mazza et al., 2024; Mészáros et al., 2022; Kostić et al., 2022; Šimková et al., 2023 [49,50,51,52] | Mixed resilience, regional decline | Medium |
9 | Quercus chenii Nakai | China | Chen et al., 2022 [41] | Limited distribution | Medium |
10 | Quercus chungii F.P. Metcalf | China | Jiang et al., 2016 [53] | Local endemism | Medium–High |
11 | Quercus ciliaris C.C. Huang & Y.T. Chang | China | Zhang et al., 2022 [24] | Limited elevation band | Medium |
12 | Quercus crispula Blume | Japan | Onosato et al., 2021 [54] | High latitude, frost exposure | Medium |
13 | Quercus delgadoana S.Valencia, Nixon & L.M. Kelly | Mexico | Argüelles-Marrón et al., 2023 [55] | Endemic, vulnerable to drought | High |
14 | Quercus faginea Lam. | Spain | González-Rodríguez et al., 2011 [56] | Shrinking populations | Medium–High |
15 | Quercus floribunda Lindl. Ex A. Camus | India | Thapliyal et al., 2024 [57] | Montane, climate-sensitive | Medium–High |
16 | Quercus garryana Douglas ex Hook. | USA | Pellatt and Gedalof, 2014; Gedalof and Franks, 2019 [58,59] | Range contraction, fire regime shifts | High |
17 | Quercus guyavaefolia H.Lév. | China | Liao et al., 2021 [42] | Endemic, elevation-specific | Medium |
18 | Quercus humboldtii Bonpl. | Mexico | Zorrilla-Azcué et al., 2021 [60] | Regional endemic, climate-sensitive | Medium–High |
19 | Quercus ilex L. | United Kingdom; Spain; France; Italy | Brasier, 1996; Ruiz-Gómez et al., 2019; Le Roncé et al., 2021; Asensio et al., 2024 [61,62,63,64] | Resilient to drought | Low |
20 | Quercus infectoria Oliv. | Iraq | Hama and Khwarahm, 2023 [65] | Arid zones, fragmentation | High |
21 | Quercus ithaburensis Decne. | Turkey | Bayar, 2022 [66] | Limited range, land use pressure | High |
22 | Quercus liaotungensis Koidz. | China | Keyimu et al., 2022 [67] | Regional species, stable | Medium |
23 | Quercus libani G. Olivier | Iraq | Hama and Khwarahm, 2023 [65] | Endemic, dry conditions | High |
24 | Quercus lobata Née | USA | Koenig et al., 2020 [68] | Habitat loss, climate-sensitive | Medium–High |
25 | Quercus longinux hayata | Taiwan | Sun et al., 2024 [69] | Narrow endemic, montane | High |
26 | Quercus longispica Hand.-Mazz. | China | Liao et al., 2021 [42] | Rare species, vulnerable to shifts | Medium–High |
27 | Quercus macranthera Fisch & C.A. Mey, ex Hosen | Iran | Foroozan et al., 2017 [70] | Isolated populations | Medium |
28 | Quercus marilandica Muenchh. | USA | Rogers and Russell, 2014 [71] | Dry tolerance, some risk | Medium |
29 | Quercus meavei Valencia-A, Sabas & O.J. Soto | Mexico | Argüelles-Marrón et al., 2023 [55] | Narrow endemic | High |
30 | Quercus mongolica Fisch. Ex Ledeb. | South Korea | Altman et al., 2020 [72] | Expanding northward | Low–Medium |
31 | Quecus monimotricha Hand.-Mazz. | China | Liao et al., 2021 [42] | Rare, climate-sensitive | Medium–High |
32 | Quercus oleoides Schltdl. & Cham | Costa Rica | Center et al., 2016 [73] | Tropical dry forests, drought stress | Medium–High |
33 | Quercus oxyphylla Hand.-Mazz. | China | Zhang et al., 2022 [74] | Endemic, climate-limited range | Medium |
34 | Quercus pannosa Hand.-Mazz. | China | Liao et al., 2021 [42] | Narrow range | Medium–High |
35 | Quercus petraea (Matt.) Liebl. | Europe; Romania; Germany | Vospernik et al., 2023; Nölte et al., 2020; Friedrichs et al., 2009; Crisan et al., 2023 [18,75,76,77] | Core species, moderate resilience | Medium |
36 | Quercus pyrenaica Willd. | Spain | Moreno-Fernandez et al., 2021 [78] | Fire-sensitive, declining locally | Medium–High |
37 | Quercus pubescens Willd. | Spain; Russia; Croatia | Santonja et al., 2015; Safonova et al., 2023; Šestan, 2012 [79,80,81] | Mixed responses, some decline | Medium |
38 | Quercus robur L. | Romania; Belgium; Germany; Netherlands; Croatia; Russia | Nechita and Popa, 2012; Vranckx et al., 2014; Shupe et al., 2022; Bouwman et al., 2021; Ugarković et al., 2016; Askeyev et al., 2005 [82,83,84,85,86,87] | Heat and frost-sensitive | Medium–High |
39 | Quercus rubra L. | USA; Germany | Juice et al., 2016; Kormann et al., 2024 [88,89] | Widely planted, moderately resilient | Low–Medium |
40 | Quercus schottkyana Rehder & E.H. Wilson | China | Jiang et al., 2016 [53] | Endemic, at elevation limit | Medium |
41 | Quercus semecarpifolia Sm. | India | Saran et al., 2010; Shekhar et al., 2022 [90,91] | Alpine tree line exposure | Medium–High |
42 | Quercus senescens Hand.-Mazz. | China | Liao et al., 2021 [42] | Rare, narrow distribution | Medium |
43 | Quercus serrata Murray | Japan | Onosato et al., 2021 [54] | Broad range, some frost risk | Medium |
44 | Quercus spinosa David | China | Liao et al., 2021 [42] | Elevation specialist | Medium |
45 | Quercus stellata Wangenh. | USA | Rogers and Russell, 2014 [71] | Heat-tolerant, some resilience | Low–Medium |
46 | Quercus suber L. | Tunisia; Portugal | Bouzidi et al., 2020; Mechergui et al., 2021; Ribeiro et al., 2024 [92,93,94] | Dieback, drought/fungal stress | High |
47 | Quercus variabilis Blume | China | Yu et al., 2016 [95] | Expanding, moderate resilience | Low–Medium |
48 | Quercus velutina Lam. | USA | Keyser et al., 2016; Marquis et al., 2019 [43,96] | Eastern oak, some drought risk | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratu, I.; Dinca, L.; Constandache, C.; Murariu, G. Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests. Climate 2025, 13, 119. https://doi.org/10.3390/cli13060119
Bratu I, Dinca L, Constandache C, Murariu G. Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests. Climate. 2025; 13(6):119. https://doi.org/10.3390/cli13060119
Chicago/Turabian StyleBratu, Iulian, Lucian Dinca, Cristinel Constandache, and Gabriel Murariu. 2025. "Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests" Climate 13, no. 6: 119. https://doi.org/10.3390/cli13060119
APA StyleBratu, I., Dinca, L., Constandache, C., & Murariu, G. (2025). Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests. Climate, 13(6), 119. https://doi.org/10.3390/cli13060119