Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = microbial electrochemical system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5087 KiB  
Review
Biosensors in Microbial Ecology: Revolutionizing Food Safety and Quality
by Gajanan A. Bodkhe, Vishal Kumar, Xingjie Li, Shichun Pei, Long Ma and Myunghee Kim
Microorganisms 2025, 13(7), 1706; https://doi.org/10.3390/microorganisms13071706 - 21 Jul 2025
Viewed by 552
Abstract
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial [...] Read more.
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial diversity, starter cultures, and interactions, such as competition and quorum sensing, shape food ecosystems. Diverse biosensor platforms, including electrochemical, optical, piezoelectric, thermal, field-effect transistor-based, and lateral flow assays, offer distinct advantages tailored to specific food matrices and microbial targets, enabling rapid and sensitive detection. Biosensors have been developed for detecting pathogens in real-time monitoring of fermentation and tracking spoilage. Control strategies, including bacteriocins, probiotics, and biofilm management, support food safety, while decontamination methods provide an additional layer of protection. The integration of new techniques, such as nanotechnology, CRISPR, and artificial intelligence, into Internet of Things systems is enhancing precision, particularly in addressing regional food safety challenges. However, their adoption is still hindered by complex food matrices, high costs, and the growing challenge of antimicrobial resistance. Looking ahead, intelligent systems and wearable sensors may help overcome these barriers. Although gaps in standardization and accessibility remain, biosensors are well-positioned to revolutionize food microbiology, linking ecological insights to practical solutions and paving the way for safer, high-quality food worldwide. Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
Show Figures

Figure 1

37 pages, 5333 KiB  
Review
The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study
by Shajjadur Rahman Shajid, Monjur Mourshed, Md. Golam Kibria and Bahman Shabani
Energies 2025, 18(14), 3725; https://doi.org/10.3390/en18143725 - 14 Jul 2025
Viewed by 404
Abstract
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale [...] Read more.
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale MFC deployment in Dhaka’s industrial zone, Bangladesh, as a relevant case study. Here, treating 100,000 cubic meters of wastewater daily would require a capital investment of approximately USD 500 million, with a total project cost ranging between USD 307.38 million and 1.711 billion, depending on system configurations. This setup has an estimated theoretical energy recovery of 478.4 MWh/day and a realistic output of 382 MWh/day, translating to a per-unit energy cost of USD 0.2–1/kWh. MFCs show great potential for treating wastewater and addressing energy challenges. However, this paper explores remaining challenges, including high capital costs, electrode and membrane inefficiencies, and scalability issues. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

19 pages, 3483 KiB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 266
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 4338 KiB  
Article
Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae
by Fanghui Zhu, Yiyang Liu, Chunsheng Wu, Kai Li, Yingshuai Hu, Wei Liu, Shuzhen Yu, Mingxing Li, Xiaohuan Dong and Haobo Yu
Microorganisms 2025, 13(7), 1476; https://doi.org/10.3390/microorganisms13071476 - 25 Jun 2025
Viewed by 353
Abstract
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during [...] Read more.
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during long-term service. This study uses surface characterization and electrochemical techniques to investigate the corrosion behavior of L245 pipeline steel under short-cycle conditions in a symbiotic environment of iron-oxidizing bacteria (IOB) and Shewanella algae (S. algae). Key findings revealed that localized corrosion of L245 steel was markedly exacerbated under coexisting IOB and S. algae conditions compared to monoculture systems. However, the uniform corrosion rate under symbiosis fell between the rates observed in the individual IOB and S. algae systems. Mechanistically, the enhanced corrosion under symbiotic conditions was attributed to the synergistic electron transfer interaction: IOB exploited electron carriers secreted by S. algae during extracellular electron transfer (EET), which amplified the microbial consortium’s capacity to harvest electrons from the steel substrate. These results emphasize the critical role of interspecies electron exchange in accelerating localized degradation of carbon steel under complex microbial consortia, with implications for developing targeted mitigation strategies in industrial pipelines exposed to similar microbiological environments. Full article
Show Figures

Figure 1

20 pages, 1982 KiB  
Article
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
by Ana Baía, Alonso I. Arroyo-Escoto, Nuno Ramos, Bilel Abdelkarim, Marta Pereira, Maria C. Fernandes, Yifeng Zhang and Annabel Fernandes
Energies 2025, 18(12), 3043; https://doi.org/10.3390/en18123043 - 9 Jun 2025
Viewed by 532
Abstract
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development, [...] Read more.
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development, the MEC system was progressively adapted to winery wastewater, enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v), the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L−1 d−1, with an average current density of (60 ± 4) A m−3, and COD removal efficiency exceeding 55%, highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)%, respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development, correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen, supporting circular resource management strategies. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Hydrogen Evolution)
Show Figures

Figure 1

20 pages, 3749 KiB  
Article
Performance Characteristics of a Pilot-Scale Electromethanogenic Reactor Treating Brewery Wastewater
by Kyle Bowman, Marcelo Elaiuy, George Fudge, Harvey Rutland, William Gambier, Theo Hembury, Ben Jobling-Purser, Thomas Fudge, Izzet Kale and Godfrey Kyazze
Energies 2025, 18(11), 2939; https://doi.org/10.3390/en18112939 - 3 Jun 2025
Viewed by 562
Abstract
A pilot-scale (4000 L) continuous flow electromethanogenic reactor (EMR), also known as a microbial electrochemical cell coupled with an anaerobic digester (MEC-AD), treating brewery wastewater was designed and installed at Hepworth’s Brewery, UK. This investigation presents a 4-fold increase in size compared to [...] Read more.
A pilot-scale (4000 L) continuous flow electromethanogenic reactor (EMR), also known as a microbial electrochemical cell coupled with an anaerobic digester (MEC-AD), treating brewery wastewater was designed and installed at Hepworth’s Brewery, UK. This investigation presents a 4-fold increase in size compared to the next largest pilot-scale MEC-AD system presented in the literature, providing findings to inform the operation of a 52,000 L MEC-AD system (currently under construction). Housed in a 20 ft shipping container, the pilot system features four 1000 L reaction vessels arranged in series, each with a working volume of 900 L. Each reaction vessel contained 8 electrode modules. The system was tested over varying organic loading rates (OLRs), achieved through systematic reductions in hydraulic retention time (HRT). HRTs between 24 and 1.8 days were investigated to align with commercial viability targets. OLRs were observed from 0.4 to 7.5 kgCOD/m3/d. A maximum stable OLR of 6.75 kgCOD/m3/d at a HRT of 2.3 days was observed while maintaining COD removal of 65 and 88% over the first two vessels. This pilot demonstrated commercially viable performance of an EMR at a brewery, resulting in the purchase of the technology at commercial scale (52,000 L) to form part of a wastewater treatment system. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

21 pages, 2036 KiB  
Review
A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025
by Lia Wang, Lan Liang, Ning Li, Guanyi Chen, Haixiao Guo and Li’an Hou
Appl. Sci. 2025, 15(11), 6173; https://doi.org/10.3390/app15116173 - 30 May 2025
Cited by 1 | Viewed by 1212
Abstract
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional [...] Read more.
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional wastewater treatment applications (2020–2025), receives little emphasis. In particular, a critical analysis of recent trends, application challenges, and future research directions for SDB is still limited. Unlike broader biochar reviews, this mini-review highlights the comparative advantages and limitations of SDB, identifies emerging integration strategies (e.g., bio-electrochemical systems, catalytic membranes), and outlines future research priorities toward enhancing the durability and environmental safety of SDB applications. Specifically, this review summarized the advances from 2020 to 2025, focusing exclusively on functional modifications, and practical applications of SDB across diverse wastewater treatment technologies involved in adsorption, catalytic oxidation, membrane integration, electrochemical processes and bio-treatment systems. Quantitative comparisons of adsorption capacities (e.g., >99% Cd2+ removal, >150 mg/g tetracycline adsorption) and catalytic degradation efficiencies are provided to illustrate recent improvements. The potential of SDB in evaluating traditional and emerging contaminant degradation among the Fenton-like, persulfate, and peracetic acid activation systems was emphasized. Integration with membrane technologies reduces fouling, while electrochemical applications, including microbial fuel cells, yield higher power densities. To improve the functionality of SDB-based systems in targeting contamination removal, modification strategies, i.e., thermal activation, heteroatom doping (N, S, P), and metal loading, played crucial roles. Emerging trends highlight hybrid systems and persistent free radicals for non-radical pathways. Despite progress, critical challenges persist in scalability, long-term stability, lifecycle assessments, and scale-up implementation. The targeted synthesis of this review offers valuable insights to guide the development and practical deployment of SDB in sustainable wastewater management. Full article
Show Figures

Figure 1

16 pages, 2742 KiB  
Review
Urease-Driven Microbially Induced Carbonate Precipitation (MICP) for the Circular Valorization of Reverse Osmosis Brine Waste: A Perspective Review
by Dayana Arias, Karem Gallardo, Manuel Saldana and Felipe Galleguillos-Madrid
Minerals 2025, 15(5), 543; https://doi.org/10.3390/min15050543 - 20 May 2025
Viewed by 804
Abstract
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if [...] Read more.
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if improperly managed. This perspective review explores the use of urease-driven Microbially Induced Carbonate Precipitation (MICP) as a biotechnological solution aligned with circular economy principles for the treatment and valorization of RO brines. Through the enzymatic activity of ureolytic microorganisms, MICP promotes the precipitation of calcium carbonate and other mineral phases, enabling the recovery of valuable elements and reducing environmental burdens. Beyond mineral capture, MICP shows promise in the stabilization of toxic metals and potential integration with microbial electrochemical systems for energy applications. This review summarizes current developments, identifies existing challenges, such as microbial performance in saline conditions and reliance on conventional urea sources, and proposes future directions focused on strain optimization, nutrient recycling, and process scalability for sustainable implementation. Full article
Show Figures

Figure 1

29 pages, 767 KiB  
Review
Current Natural Degradation and Artificial Intervention Removal Techniques for Antibiotics in the Aquatic Environment: A Review
by Jing Ji, Haoqing Li and Shejiang Liu
Appl. Sci. 2025, 15(9), 5182; https://doi.org/10.3390/app15095182 - 7 May 2025
Cited by 1 | Viewed by 858
Abstract
The extensive use of antibiotics as essential medications in contemporary healthcare has resulted in significant amounts of these drugs entering the environment, both in original and metabolic forms, which presents serious ecological and health hazards. This paper examines the natural processes that break [...] Read more.
The extensive use of antibiotics as essential medications in contemporary healthcare has resulted in significant amounts of these drugs entering the environment, both in original and metabolic forms, which presents serious ecological and health hazards. This paper examines the natural processes that break down antibiotics in water, including photolysis, hydrolysis, and biodegradation. It also discusses advancements in artificial degradation technologies, such as advanced oxidation processes (AOPs), physicochemical methods, ionizing radiation degradation, artificial wetland technology, microalgae technology, microbial electrochemical systems, and innovative catalysts. While current technologies demonstrate promising potential for use, they encounter challenges related to the catalyst stability, cost, and ecological safety. Future research should focus on optimizing degradation methods and creating efficient, sustainable multi-technology systems, such as the photocatalysis–membrane filtration coupling system; the ultrasound–Fenton–artificial wetland synergistic system; the electrochemical–biodegradation combined system; and the microbial fuel cell (MFC)–photocatalysis synergistic system, to tackle the complexities of antibiotic pollution in the environment. Full article
(This article belongs to the Special Issue Advances in Pollutant Removal from Water Environments)
Show Figures

Figure 1

16 pages, 14359 KiB  
Article
eBoosterTM: The First Electrochemical Disinfection System to Reduce Microbial Contamination in Drinking Water Networks Without Maintenance
by Sergio Ferro, Daniel Vallelonga, Daniel Romeo, Basil Mondello, Gusius Gus, Paul Caruso and Tony Amorico
Water 2025, 17(9), 1361; https://doi.org/10.3390/w17091361 - 30 Apr 2025
Viewed by 594
Abstract
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for [...] Read more.
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for microbial control in hospital water supplies. Unlike previous electrochemical disinfection technologies, which suffered from scale buildup and required frequent maintenance, the eBoosterTM system utilizes periodic polarity reversal to prevent electrode fouling, enabling continuous operation without external intervention. The technology has been adopted by several regional hospitals in Queensland, Australia, and this paper focuses on Dalby Hospital, where two eBoosterTM systems were installed at water meters to provide residual disinfection in an in-line configuration. Performance data collected over nearly 2 years demonstrated consistent chlorine generation for microbial control with minimal energy consumption (less than 2 kWh/day). The system’s ability to adapt to fluctuating flow rates while maintaining consistent disinfectant levels highlights its reliability in real-world applications. This work emphasizes the potential of electrochemical disinfection as a sustainable alternative to chemical dosing in drinking water systems, offering a maintenance-free, cost-effective, and environmentally friendly solution for long-term microbial safety in healthcare and other critical settings. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

14 pages, 1091 KiB  
Review
Electro-Fermentation for Biofuel and Biochemical Production
by Priya Pilania, Keshani Bhushan and Urmila Gupta Phutela
Fermentation 2025, 11(4), 219; https://doi.org/10.3390/fermentation11040219 - 15 Apr 2025
Cited by 2 | Viewed by 1222
Abstract
Electro-fermentation (EF) is an emerging bioprocess with the ability to regulate the metabolism of electrochemically active microorganisms. In various fermentation processes, electrodes perform either as an electron acceptor or donor, facilitating the formation and movement of electrons and protons. The bioelectric activity created [...] Read more.
Electro-fermentation (EF) is an emerging bioprocess with the ability to regulate the metabolism of electrochemically active microorganisms. In various fermentation processes, electrodes perform either as an electron acceptor or donor, facilitating the formation and movement of electrons and protons. The bioelectric activity created by external electrodes enhances the metabolic reactions, resulting in a higher yield of value-added chemicals. The conventional fermentation process has a number of limitations in terms of usability and economic feasibility, whereas electro-fermentation presents a hybrid technology, minimizing redox instabilities and enhancing the metabolic process in general to achieve increased product production and a higher biomass yield. Electrochemically active microorganisms such as Geobacter and Shewanella species can carry out the exchange of electrons with electrodes directly or indirectly by using electron mediators. Furthermore, the integration of microbial fuel cells (MFCs) with microbial electrolysis cells (MECs) precludes the need for external manipulation of the fermentation system as the required change in electrochemical gradient is provided by the MFC counterpart. The major beneficial aspects of electro-fermentation include its role as a potential tool for enhancing the production of value-added compounds. The mixed-culture system clearly had a favorable impact on the synthesis of butyric acid from rice straw. Furthermore, cathodic electro-fermentation (CEF) exhibited benefits over anaerobic fermentation, influencing NADH/NAD+, enabling a higher product titer, and reducing the accumulation of byproducts. Hence, in this review, we emphasize the importance of electro-fermentation over conventional fermentation for biofuel and biochemical production, covering its fundamentals, interactions, types, future challenges, and ability to provide several benefits to boost the fermentation process, such as the process efficiency and product yield, on an industrial scale. Full article
(This article belongs to the Special Issue Microbial Fuel Cell Advances)
Show Figures

Figure 1

39 pages, 3045 KiB  
Review
Microbial Degradation of Soil Organic Pollutants: Mechanisms, Challenges, and Advances in Forest Ecosystem Management
by Pengfei Liu, Shizhi Wen, Shanshan Zhu, Xi Hu and Yamin Wang
Processes 2025, 13(3), 916; https://doi.org/10.3390/pr13030916 - 20 Mar 2025
Cited by 5 | Viewed by 4383
Abstract
With industrialization and widespread chemical use, soil organic pollutants have become a major environmental issue. Forest ecosystems, among the most important on Earth, have unique potential for controlling and remediating soil pollution. This article explores the mechanisms of microbial community degradation of organic [...] Read more.
With industrialization and widespread chemical use, soil organic pollutants have become a major environmental issue. Forest ecosystems, among the most important on Earth, have unique potential for controlling and remediating soil pollution. This article explores the mechanisms of microbial community degradation of organic pollutants, their adaptability across forest ecological conditions, and the effects of environmental factors on degradation efficiency. For example, acidic pH (pH < 5.5) favors PAH degradation, near-neutral pH (6.0–7.5) enhances pharmaceutical and PPCP degradation, and alkaline conditions (pH > 7.5) facilitate petroleum hydrocarbon, VOC, and PPCP breakdown. Optimal microbial degradation occurs with humidity levels between 60% and 80%, and SOM content of 2–5%. This review analyzes advancements in microbial degradation technologies for forest ecosystem soil pollution treatment, including genetic engineering, composting, bioaugmentation, and bio-stimulation techniques, and their integration with phytoremediation. The review also addresses the challenges of real-world implementation, such as maintaining microbial diversity, managing pollutant complexity, adapting to environmental changes, and highlighting future research opportunities. The next decade will focus on synthetic biology, omics technologies, microbial-electrochemical systems, community dynamics, eco-engineering, and plant-microbe synergy to develop efficient, sustainable bioremediation strategies. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

38 pages, 2095 KiB  
Review
Energy Recovery from Organic Wastes Using Microbial Fuel Cells: Traditional and Nonconventional Organic Substrates
by Wilgince Apollon, Iryna Rusyn, Noris Evelin Paucar, Monte Hibbert, Sathish-Kumar Kamaraj and Chikashi Sato
Resources 2025, 14(3), 47; https://doi.org/10.3390/resources14030047 - 13 Mar 2025
Cited by 1 | Viewed by 2523
Abstract
Microbial fuel cells (MFCs) are environmentally friendly energy converters that use electrochemically active bacteria (EAB) as catalysts to break down organic matter while producing bioelectricity. Traditionally, MFC research has relied on simple organic substrates, such as acetate, glucose, sucrose, butyrate, and glutamate, the [...] Read more.
Microbial fuel cells (MFCs) are environmentally friendly energy converters that use electrochemically active bacteria (EAB) as catalysts to break down organic matter while producing bioelectricity. Traditionally, MFC research has relied on simple organic substrates, such as acetate, glucose, sucrose, butyrate, and glutamate, the production of which involves energy-intensive, CO2-dependent processes and chemically aggressive methods. In contrast, nonconventional waste streams offer a more sustainable alternative as feedstocks, aligning with zero-waste and regenerative agricultural principles. This review highlights the potential of nonconventional organic wastes, such as fruit and vegetable wastes, raw human and livestock urine, and farm manure, as globally available and low-cost substrates for MFCs, particularly in household and farming applications at small-scale waste levels. Furthermore, complex waste sources, including hydrocarbon-contaminated effluents and lignin-rich industrial wood waste, which present unique challenges and opportunities for their integration into MFC systems, were examined in depth. The findings of this review reveal that MFCs utilizing nonconventional substrates can achieve power outputs comparable to traditional substrates (e.g., 8314 mW m−2–25,195 mW m−2 for crude sugarcane effluent and raw distillery effluent, respectively) and even superior to them, reaching up to 88,990 mW m−2 in MFCs utilizing vegetable waste. Additionally, MFCs utilizing hydrocarbon-containing petroleum sediment achieved one of the highest reported maximum power densities of 50,570 mW m−2. By integrating diverse organic waste streams, MFCs can contribute to carbon-neutral energy generation and sustainable waste management practices. Full article
Show Figures

Figure 1

13 pages, 1618 KiB  
Article
Painted Electrode with Activated Coconut Carbon for Microbial Fuel Cell
by Paweł P. Włodarczyk and Barbara Włodarczyk
Energies 2025, 18(6), 1350; https://doi.org/10.3390/en18061350 - 10 Mar 2025
Viewed by 754
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based [...] Read more.
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based materials. Therefore, a carbon-based material (by-product of coconut processing) was selected for testing in this study. The anode was prepared by bonding activated coconut carbon with carbon paint on a glass electrode. The aim of this study was to analyze the feasibility of using an electrode prepared in this manner as a surface layer on the anode of an MFC. The performance of an electrode coated only with carbon paint was also evaluated. These two electrodes were compared with a carbon felt electrode, which is commonly used as an anode material in MFCs. In this research, the MFC was fed with a by-product of yeast production, namely a molasses decoction from yeast processing. Measurements were conducted in a standard two-chamber glass MFC with a glass membrane separating the chambers. During the experiment, parameters such as start-up time, cell voltage during MFC start-up, output cell voltage, and power density curves were analyzed. The carbon paint-coated electrode with the activated coconut carbon additive demonstrated operating parameters similar to those of the carbon felt electrode. The results indicate that it is possible to produce electrodes (on a base of by-product of coconut processing) for MFCs using a painting method; however, to achieve a performance comparable to carbon felt, the addition of activated coconut carbon is necessary. This study demonstrates the feasibility of forming a biocompatible layer on various surfaces. Incorporating activated coconut carbon does not complicate the anode fabrication process, as fine ACC grains can be directly applied to the wet carbon paint layer. Additionally, the use of carbon paint as a conductive layer for the active anode in MFCs offers versatility in designing electrodes of various shapes, enabling them to be coated with a suitable active and conductive layer to promote biofilm formation. Moreover, the findings of this study confirm that waste-derived materials can be effectively utilized as electrode components in MFC anodes. The results validate the chosen research approach and emphasize the potential for further investigations in this field, contributing to the development of cost-efficient electrodes derived from by-products for MFC applications. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 213 KiB  
Review
Challenges in Designing Electrochemical Disinfection Systems for Reducing Microbial Contamination in Drinking Water Distribution Networks
by Sergio Ferro
Water 2025, 17(5), 754; https://doi.org/10.3390/w17050754 - 4 Mar 2025
Cited by 1 | Viewed by 1315
Abstract
Electrochemical disinfection systems are gaining attention as potential solutions for reducing microbial contamination in drinking water distribution networks. While numerous recent studies suggest that these systems are easy to implement, real-world application reveals significant challenges. Many published works suffer from fundamental flaws, including [...] Read more.
Electrochemical disinfection systems are gaining attention as potential solutions for reducing microbial contamination in drinking water distribution networks. While numerous recent studies suggest that these systems are easy to implement, real-world application reveals significant challenges. Many published works suffer from fundamental flaws, including inappropriate material selection, unrealistic operating conditions, and non-compliance with regulatory standards. This review critically examines studies published over the past 24 months, highlighting key issues that limit practical applicability. It discusses common pitfalls, such as the use of unstable or toxic electrode materials and the failure to provide residual disinfectant effects. Additionally, the review outlines essential characteristics for effective electrochemical disinfection systems, emphasizing compliance with health regulations, scalability to real-world conditions, and long-term operational stability. By identifying these gaps, this review article aims to guide future research toward more viable, safe, and sustainable electrochemical disinfection solutions for drinking water treatment. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants, 2nd Edition)
Back to TopTop