Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = micro-sized needles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10372 KiB  
Article
PRONOBIS: A Robotic System for Automated Ultrasound-Based Prostate Reconstruction and Biopsy Planning
by Matija Markulin, Luka Matijević, Janko Jurdana, Luka Šiktar, Branimir Ćaran, Toni Zekulić, Filip Šuligoj, Bojan Šekoranja, Tvrtko Hudolin, Tomislav Kuliš, Bojan Jerbić and Marko Švaco
Robotics 2025, 14(8), 100; https://doi.org/10.3390/robotics14080100 - 22 Jul 2025
Viewed by 173
Abstract
This paper presents the PRONOBIS project, an ultrasound-only, robotically assisted, deep learning-based system for prostate scanning and biopsy treatment planning. The proposed system addresses the challenges of precise prostate segmentation, reconstruction and inter-operator variability by performing fully automated prostate scanning, real-time CNN-transformer-based image [...] Read more.
This paper presents the PRONOBIS project, an ultrasound-only, robotically assisted, deep learning-based system for prostate scanning and biopsy treatment planning. The proposed system addresses the challenges of precise prostate segmentation, reconstruction and inter-operator variability by performing fully automated prostate scanning, real-time CNN-transformer-based image processing, 3D prostate reconstruction, and biopsy needle position planning. Fully automated prostate scanning is achieved by using a robotic arm equipped with an ultrasound system. Real-time ultrasound image processing utilizes state-of-the-art deep learning algorithms with intelligent post-processing techniques for precise prostate segmentation. To create a high-quality prostate segmentation dataset, this paper proposes a deep learning-based medical annotation platform, MedAP. For precise segmentation of the entire prostate sweep, DAF3D and MicroSegNet models are evaluated, and additional image post-processing methods are proposed. Three-dimensional visualization and prostate reconstruction are performed by utilizing the segmentation results and robotic positional data, enabling robust, user-friendly biopsy treatment planning. The real-time sweep scanning and segmentation operate at 30 Hz, which enable complete scan in 15 to 20 s, depending on the size of the prostate. The system is evaluated on prostate phantoms by reconstructing the sweep and by performing dimensional analysis, which indicates 92% and 98% volumetric accuracy on the tested phantoms. Three-dimansional prostate reconstruction takes approximately 3 s and enables fast and detailed insight for precise biopsy needle position planning. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

12 pages, 2383 KiB  
Article
Novel Focusing Performances of High-Numerical-Aperture Micro-Fresnel Zone Plates with Selective Occlusion
by Qiang Liu, Yunpeng Wu, Yuanhao Deng, Junli Wang, Wenshuai Liu and Xiaomin Yao
Photonics 2025, 12(4), 372; https://doi.org/10.3390/photonics12040372 - 13 Apr 2025
Viewed by 494
Abstract
In this study, novel focusing performances of high-numerical-aperture (NA) micro-Fresnel zone plates (FZPs) with selective occlusion are identified and investigated through numerical calculations based on vectorial angular spectrum (VAS) theory, and further rigorously validated using the finite-difference time-domain (FDTD) method. The central occlusion [...] Read more.
In this study, novel focusing performances of high-numerical-aperture (NA) micro-Fresnel zone plates (FZPs) with selective occlusion are identified and investigated through numerical calculations based on vectorial angular spectrum (VAS) theory, and further rigorously validated using the finite-difference time-domain (FDTD) method. The central occlusion of a standard micro-FZP can significantly extend the depth of focus while keeping the lateral size of the focusing spot essentially unchanged. When a standard micro-FZP only retains two separated transparent rings and all other rings are obstructed, it will result in multi-focus phenomena; at the same time, the number of focal points is equal to the difference in number between the two separated transparent rings. Furthermore, a focusing light needle can be generated by combining the central occlusion and wavelength shift of a standard micro-FZP. This study not only provides new ideas for the design and optimization of micro-FZPs but also provides reference for the expansion of practical applications of FZPs. Full article
Show Figures

Figure 1

14 pages, 4873 KiB  
Article
Design and Testing of MEMS Component for Electromagnetic Pulse Protection
by Shiyi Li, Hengzhen Feng, Wenzhong Lou, Yuecen Zhao, Sining Lv and Wenxing Kan
Sensors 2025, 25(1), 221; https://doi.org/10.3390/s25010221 - 2 Jan 2025
Cited by 1 | Viewed by 3453
Abstract
With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a [...] Read more.
With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip’s size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component. The results showed that after the strong electromagnetic pulse injection, the pulse breakdown voltage of the MEMS electromagnetic energy-releasing component increased exponentially in terms of the pulse injection voltage, and the residual pulse current decreased significantly from one-third to one-half of the original, representing a significant protective effect. In a DC environment, the breakdown voltage of the needle–needle structure of the MEMS electromagnetic energy-releasing component was 144 V, and the on-time was about 0.5 ms. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 3616 KiB  
Article
Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications
by Immacolata Greco, Hatim Machrafi and Carlo S. Iorio
Gels 2024, 10(11), 684; https://doi.org/10.3390/gels10110684 - 23 Oct 2024
Cited by 2 | Viewed by 1941
Abstract
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA [...] Read more.
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA ensuring biocompatibility. Fibroblast cells were included in the bioink and printed with a Reg4Life bioprinter employing micro-extrusion technology. The optimisation of printing parameters included needle size and flow velocities. This led to precise structure development and yielded results with a negligible deviation in printed angles and better control of line widths. The rheological characteristics of the bioink were evaluated, demonstrating appropriate viscosity and shear-thinning behaviour for efficient extrusion. The mechanical characterisation revealed an average compressive modulus of 0.38 MPa, suitable for tissue engineering applications. The printability of the bioink was further confirmed through the evaluations of morphology and diffusion rates, confirming structural integrity. Biocompatibility assessments demonstrated a high cell viability rate of 82.65% following 48 h of incubation, supporting the bioink’s suitability for facilitating cell survival. This study introduced a reliable technique for producing tissue-engineered scaffolds that exhibit outstanding mechanical characteristics and cell viability, highlighting the promise of PEGDA–SA hydrogels in bioprinting applications. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

36 pages, 1954 KiB  
Review
Microneedles’ Device: Design, Fabrication, and Applications
by Cristiana Oliveira, José A. Teixeira, Nelson Oliveira, Sónia Ferreira and Cláudia M. Botelho
Macromol 2024, 4(2), 320-355; https://doi.org/10.3390/macromol4020019 - 15 May 2024
Cited by 41 | Viewed by 24548
Abstract
The delivery of therapeutical molecules through the skin, particularly to its deeper layers, is impaired due to the stratum corneum layer, which acts as a barrier to foreign substances. Thus, for the past years, scientists have focused on the development of more efficient [...] Read more.
The delivery of therapeutical molecules through the skin, particularly to its deeper layers, is impaired due to the stratum corneum layer, which acts as a barrier to foreign substances. Thus, for the past years, scientists have focused on the development of more efficient methods to deliver molecules to skin distinct layers. Microneedles, as a new class of biomedical devices, consist of an array of microscale needles. This particular biomedical device has been drawing attention due to its ability to breach the stratum corneum, forming micro-conduits to facilitate the passage of therapeutical molecules. The microneedle device has several advantages over conventional methods, such as better medication adherence, easiness, and painless self-administration. Moreover, it is possible to deliver the molecules swiftly or over time. Microneedles can vary in shape, size, and composition. The design process of a microneedle device must take into account several factors, like the location delivery, the material, and the manufacturing process. Microneedles have been used in a large number of fields from drug and vaccine application to cosmetics, therapy, diagnoses, tissue engineering, sample extraction, cancer research, and wound healing, among others. Full article
Show Figures

Graphical abstract

13 pages, 9302 KiB  
Article
Study on the Effect of Nanoporous Copper Particle Size on Copper-Based Azide
by Jiabao Wang, Jie Ren, Shuang Li, Mingyu Li and Qingxuan Zeng
Micromachines 2024, 15(4), 462; https://doi.org/10.3390/mi15040462 - 29 Mar 2024
Cited by 1 | Viewed by 1417
Abstract
Preparing copper-based azide by in situ reaction is well-suited for MEMS processing technology and holds promising prospects in the field of MEMS micro-initiators. This study involved the preparation of porous copper with particle sizes of approximately 30 nm, 60 nm and 100 nm [...] Read more.
Preparing copper-based azide by in situ reaction is well-suited for MEMS processing technology and holds promising prospects in the field of MEMS micro-initiators. This study involved the preparation of porous copper with particle sizes of approximately 30 nm, 60 nm and 100 nm through powder sintering. These were used as precursors for a gas–solid in situ azide reaction to produce copper-based azide with varying morphologies and compositions. Copper-based azide micro-initiators were designed, and their output performance was evaluated using CL-20 and HNS-IV explosives. Analytical results revealed that the product from the reaction of the 100 nm precursor exhibited a lumpy and uneven structure with a conversion rate of 90.36%. The product from the 60 nm precursor reaction had a dense surface with a conversion rate of 94.56%, while the 30 nm precursor resulted in a needle-like form with a conversion rate of 92.82%. Detonation experiments demonstrated that the copper-based azide micro-initiators prepared with 100 nm of a porous copper precursor exhibited unstable output performance, requiring a 1.6 mg charge to successfully detonate CL-20 explosives. On the other hand, copper-based azide micro-initiators prepared from 60 nm and 30 nm of porous copper precursors exhibited stable output performance. A charge of 0.8 mg was adequate for reliably and consistently detonating CL-20 and HNS-IV explosives. The reduced particle size of the precursor enhanced the output performance of the copper-based azide micro-initiators, providing increased energy redundancy during detonation and improving overall usage reliability. Full article
Show Figures

Figure 1

17 pages, 858 KiB  
Article
Cyto-Histological Profile of MicroRNAs as Diagnostic Biomarkers in Differentiated Thyroid Carcinomas
by Maria de Lurdes Matos, Mafalda Pinto, Marta Alves, Sule Canberk, Ana Gonçalves, Maria João Bugalho, Ana Luísa Papoila and Paula Soares
Genes 2024, 15(3), 389; https://doi.org/10.3390/genes15030389 - 21 Mar 2024
Cited by 4 | Viewed by 2082
Abstract
Introduction: The repertoire of microRNAs (miRNAs) in thyroid carcinomas starts to be elucidated. Among differentiated thyroid carcinomas (DTCs), papillary thyroid carcinoma (PTC) is the most frequent. The assessment of miRNAs expression may contribute to refine the pre-surgical diagnosis in order to obtain a [...] Read more.
Introduction: The repertoire of microRNAs (miRNAs) in thyroid carcinomas starts to be elucidated. Among differentiated thyroid carcinomas (DTCs), papillary thyroid carcinoma (PTC) is the most frequent. The assessment of miRNAs expression may contribute to refine the pre-surgical diagnosis in order to obtain a personalized and more effective treatment for patients. Aims: This study aims to evaluate (1) the miRNAs in a series of DTCs, and their association with the presence of selected genetic mutations in order to improve diagnosis and predict the biologic behavior of DTC/PTC. (2) The reliability of molecular tests in Ultrasound-guided Fine Needle Aspiration Cytology (US-FNAC) for a more precise preoperative diagnosis. Material and Methods: This series includes 176 samples (98 cytology and 78 histology samples) obtained from 106 patients submitted to surgery, including 13 benign lesions (controls) and 93 DTCs (cases). The microRNA expression was assessed for miR-146b, miR-221, miR-222, and miR-15a through quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results were analyzed by the 2−ΔΔCT method, using miR16 as an endogenous control. Regarding PTC diagnosis, the discriminative ability of miRNAs expression was assessed by the area under the Receiver Operating Characteristic Curve (AUC). In PTCs, the association of miRNAs expression, clinicopathological features, and genetic mutations (BRAF, RAS, and TERTp) was evaluated. Results/Discussion: All the analyzed miRNAs presented a tendency to be overexpressed in DTCs/PTCs when compared with benign lesions, both in cytology and histology samples. In cytology, miRNAs expression levels were higher in malignant tumors than in benign tumors. In histology, the discriminative abilities regarding PTC diagnosis were as follows: miR-146b (AUC 0.94, 95% CI 0.87–1), miR-221 (AUC 0.79, 95% CI 0.68–0.9), miR-222 (AUC 0.76, 95% CI 0.63–0.89), and miR-15a (AUC 0.85, 95% CI 0.74–0.97). miR-146b showed 89% sensitivity (se) and 87% specificity (sp); miR-221 se = 68.4, sp = 90; miR-222 se = 73, sp = 70; and mi-R15a se = 72, sp = 80. MicroRNAs were associated with worst-prognosis clinicopathological characteristics in PTCs (p < 0.05), particularly for miR-222. Our data reveal a significant association between higher expression levels of miR-146b, miR-221, and miR-222 in the presence of the BRAF mutation (p < 0.001) and miR-146b (p = 0.016) and miR-221 (p = 0.010) with the RAS mutation, suggesting an interplay of these mutations with miRNAs expression. Despite this study having a relatively small sample size, overexpression of miRNAs in cytology may contribute to a more precise preoperative diagnosis. The miRNAs presented a good discriminative ability in PTC diagnosis. The association between the miRNAs expression profile and genetic alterations can be advantageous for an accurate diagnosis of DTCs/PTCs in FNAC. Full article
(This article belongs to the Special Issue Feature Papers: Molecular Genetics and Genomics 2024)
Show Figures

Figure 1

14 pages, 3686 KiB  
Article
Fabrication of Micro/Nano Dual Needle Structures with Morphological Gradient Based on Two-Photon Polymerization Laser Direct Writing with Proactive Focus Compensation
by Chenxi Xu, Chen Zhang, Wei Zhao, Yining Liu, Ziyu Li, Zeyu Wang, Baole Lu, Kaige Wang and Jintao Bai
Photonics 2024, 11(2), 187; https://doi.org/10.3390/photonics11020187 - 18 Feb 2024
Cited by 2 | Viewed by 1827
Abstract
Micro/nano structures with morphological gradients possess unique physical properties and significant applications in various research domains. This study proposes a straightforward and precise method for fabricating micro/nano structures with morphological gradients utilizing single-voxel synchronous control and a nano-piezoelectric translation stage in a two-photon [...] Read more.
Micro/nano structures with morphological gradients possess unique physical properties and significant applications in various research domains. This study proposes a straightforward and precise method for fabricating micro/nano structures with morphological gradients utilizing single-voxel synchronous control and a nano-piezoelectric translation stage in a two-photon laser direct writing technique. To address the defocusing issue in large-scale fabrication, a methodology for laser focus dynamic proactive compensation was developed based on fluorescence image analysis, which can achieve high-precision compensation of laser focus within the entire range of the nano-piezoelectric translation stage. Subsequently, the fabrication of micro/nano dual needle structures with morphological gradients were implemented by employing different writing speeds and voxel positions. The minimum height of the tip in the dual needle structure is 80 nm, with a linewidth of 171 nm, and a dual needle total length reaching 200 μm. Based on SEM (scanning electron microscope) and AFM (atomic force microscope) characterization, the dual needle structures fabricated by the method proposed in this study exhibit high symmetry and nanoscale gradient accuracy. Additionally, the fabrication of hexagonal lattice periodic structures assembled from morphological gradient needle structures and the size gradient Archimedean spiral structures validate the capability of the single voxel-based fabrication and proactive focus compensation method for complex gradient structure fabrication. Full article
(This article belongs to the Special Issue New Advances in Ultrashort Pulse Fiber Lasers and Their Applications)
Show Figures

Figure 1

21 pages, 4781 KiB  
Article
Exploration of the Delivery of Oncolytic Newcastle Disease Virus by Gelatin Methacryloyl Microneedles
by Qiang Zhang, Jintong Na, Xiyu Liu and Jian He
Int. J. Mol. Sci. 2024, 25(4), 2353; https://doi.org/10.3390/ijms25042353 - 16 Feb 2024
Cited by 7 | Viewed by 2344
Abstract
Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared [...] Read more.
Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was −13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV. Full article
(This article belongs to the Special Issue Functional Polymeric Materials: From Synthesis to Applications)
Show Figures

Figure 1

12 pages, 6728 KiB  
Article
Performance Improvement of an STS304-Based Dispensing Needle via Electrochemical Etching
by Yong-Taek Kwon, Sanghyun Jeon, Jun Lee, Juheon Kim, Sangmin Lee and Hyungmo Kim
Micromachines 2023, 14(12), 2183; https://doi.org/10.3390/mi14122183 - 30 Nov 2023
Cited by 2 | Viewed by 1432
Abstract
In this study, we explored the formation of micro-/nanosized porous structures on the surface of a needle composed of STS304 and examined the effect of conventional needles and needles capable of liquid ejection. Aqua regia, composed of HCl and HNO3, was [...] Read more.
In this study, we explored the formation of micro-/nanosized porous structures on the surface of a needle composed of STS304 and examined the effect of conventional needles and needles capable of liquid ejection. Aqua regia, composed of HCl and HNO3, was electrochemically etched to form appropriately sized micro-/nanoporous structures. We observed that when dispensing liquids with low surface tension, they do not immediately fall downward but instead spread over the exterior surface of the needle before falling. We found that the extent of spreading on the surface is influenced by an etched porous structure. Furthermore, to analyze the effect of surface tension differences, we dispensed liquids with varying surface tensions using etched needles. Through the analysis, it was confirmed that, despite the low surface tension, the ejected droplet volume and speed could be stably maintained on the etched needle. This indicates that the spreading phenomenon of the liquid on the needle surface just before ejection can be controlled by the micro/nanoporous structure. We anticipate that these characteristics of etched needles could be utilized in industries where precision dispensing of low-surface-tension liquids is essential. Full article
(This article belongs to the Special Issue MEMS Nano/Microfabrication)
Show Figures

Figure 1

22 pages, 7476 KiB  
Article
Increasing the Hydration Activity of Tricalcium Silicate by Adding Microdispersed Ettringite as a Nucleating Agent
by Yurii R. Krivoborodov, Svetlana V. Samchenko, Andrey V. Korshunov, Irina V. Kozlova and Dmitrii G. Alpacky
Materials 2023, 16(22), 7078; https://doi.org/10.3390/ma16227078 - 8 Nov 2023
Cited by 5 | Viewed by 1527
Abstract
Tricalcium silicate (C3S) as a binder material has a decisive influence on the processes of hardening and strength gain of cements and concretes. One of the promising directions is the introduction of dispersed additives into cement mixtures, which allow micro-level control [...] Read more.
Tricalcium silicate (C3S) as a binder material has a decisive influence on the processes of hardening and strength gain of cements and concretes. One of the promising directions is the introduction of dispersed additives into cement mixtures, which allow micro-level control of the composition of hydration products and change the dynamics of the structure formation of cement stone. In this paper, the effect of a microdisperse ettringite additive on the kinetics of the hydration and hardening process of tricalcium silicate was studied. It was shown that ettringite crystals selectively adsorb Ca2+ and OH ions from a saturated solution of calcium hydroxide, which contributes to the formation of hydrosilicate nuclei on their surface during cement hydration. Hydration of C3S in the presence of ettringite proceeds more intensively; the addition of ettringite contributes to an increase in the content of calcium hydrosilicates in hydration products at the initial stage of the process. Addition of 10 wt.% ettringite to C3S reduces the induction period of the beginning of the main phase of heat release by around two times and increases the amount of heat released on the 1st day of hydration by 15% compared to the control sample. According to electron microscopy data, it was found that during the first hours of hydration of modified C3S, a significant number of nuclei of fibrous particles of calcium hydrosilicates with sizes of 0.2–2 microns were formed on the surface of ettringite crystals. According to the results of kinetic modeling of the setting process of cement pastes using the Avrami–Erofeyev model, it was shown that in the presence of the addition of microcrystals of ettringite, the setting rate is characterized by a slowdown in nucleation, whereas for a sample without an additive, this process proceeds with an acceleration of the formation of solid-phase nuclei. Based on the comparison of kinetic results and mechanical measurements, it is concluded that needle crystals of ettringite during C3S hydration and cement stone hardening are preformed centers for the growth of hydrosilicate nuclei, and they also act as a reinforcing filler, increasing the bending strength of modified samples. The results of the work can be used in practice in the development of methods for controlling the processes of hydration and hardening of cements, as well as for controllable structure formation of cement stone which is important in particular for 3D printing of building products and constructions. Full article
(This article belongs to the Special Issue Advances in Binders for Construction Materials (Second Volume))
Show Figures

Figure 1

13 pages, 3317 KiB  
Article
Mineralized Microgels via Electrohydrodynamic Atomization: Optimization and In Vitro Model for Dentin–Pulp Complex
by Iriczalli Cruz-Maya, Rosaria Altobelli, Marco Antonio Alvarez-Perez and Vincenzo Guarino
Gels 2023, 9(11), 846; https://doi.org/10.3390/gels9110846 - 25 Oct 2023
Cited by 2 | Viewed by 1695
Abstract
There is growing interest in the use of micro-sized hydrogels, including bioactive signals, as efficient platforms for tissue regeneration because they are able to mimic cell niche structure and selected functionalities. Herein, it is proposed to optimize bioactive composite microgels via electrohydrodynamic atomization [...] Read more.
There is growing interest in the use of micro-sized hydrogels, including bioactive signals, as efficient platforms for tissue regeneration because they are able to mimic cell niche structure and selected functionalities. Herein, it is proposed to optimize bioactive composite microgels via electrohydrodynamic atomization (EHDA) to regenerate the dentin–pulp complex. The addition of disodium phosphate (Na2HPO4) salts as mineral precursors triggered an in situ reaction with divalent ions in solution, thus promoting the encapsulation of different amounts of apatite-like phases. Morphological analysis via image analysis of optical images confirmed a narrow distribution of perfectly rounded particles, with an average diameter ranging from 223 ± 18 μm to 502 ± 64 μm as a function of mineral content and process parameters used. FTIR, TEM, and EDAX analyses confirmed the formation of calcium phosphates with a characteristic Ca/P ratio close to 1.67 and a needle-like crystal shape. In vitro studies—using dental pulp stem cells (DPSCs) in crown sections of natural teeth slices—showed an increase in cell viability until 14 days, recording a decay of proliferation at 21 days, independent on the mineral amount, suggesting that differentiation is started, as confirmed by the increase of ALP activity at 14 days. In this view, mineralized microgels could be successfully used to support in vitro osteogenesis, working as an interesting model to study dental tissue regeneration. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in Italy)
Show Figures

Figure 1

18 pages, 17246 KiB  
Article
Color Origin of Red Beds within the Danxia Basin, Southern China
by Wang He, Zhijun Yang, Jintao Hu, Ke Zhang and Hongwei Li
Minerals 2023, 13(8), 1054; https://doi.org/10.3390/min13081054 - 9 Aug 2023
Cited by 4 | Viewed by 2011
Abstract
Sedimentary facies color is an important paleoclimate indicator, but may be unreliable in thick continental red beds. The Danxia Formation is the landscape strata of the Danxia basin, and its color fluctuates between reddish-brown and reddish-purple vertically. This study examined the ferric oxides [...] Read more.
Sedimentary facies color is an important paleoclimate indicator, but may be unreliable in thick continental red beds. The Danxia Formation is the landscape strata of the Danxia basin, and its color fluctuates between reddish-brown and reddish-purple vertically. This study examined the ferric oxides characteristics, distribution, and mineral composition of the Danxia Formation using a variety of analytical techniques, including optical microscopy, high-resolution scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and micro-Raman spectroscopy. The results indicate that the reddish-brown mineral is composed primarily of fine hematite with traces of goethite, while the reddish-purple mineral consists solely of fine hematite. These hematites exhibit a particle size range of submicron to micron and display various morphologies, including spherical, flake, and fibrous forms. Goethite particles are needle-shaped and often form star-shaped aggregates containing twins. Whole rock geochemical analysis reveals a strong positive correlation between iron and iron group elements, as well as phosphorus and rare earth elements. The findings suggest that the reddening of the Danxia Formation occurs during diagenesis, with fine hematite forming as a result of the alteration of iron-bearing detrital grains. In addition, vertical color variations in Danxia Formation are not attributable to the paleoclimate records, but rather the result of the differentiation of sediment sources. This study provides a novel viewpoint for examining the coloration of thick continental red beds in other regions. Full article
(This article belongs to the Special Issue Geology and Geochemistry of Marine Mineral Resources)
Show Figures

Figure 1

11 pages, 5802 KiB  
Article
Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy
by Jixue Zhou, Dongqing Zhao, Shouqiu Tang, Yu Liu, Suqing Zhang, Yunteng Liu, Jianhua Wu, Xiaocun Song, Hongtao Liu, Xinfang Zhang, Pengfei Yan and Xitao Wang
Metals 2023, 13(8), 1333; https://doi.org/10.3390/met13081333 - 26 Jul 2023
Cited by 1 | Viewed by 1324
Abstract
In the present study, the microstructure and mechanical properties of a new Mg-4Al-3.5Ca-2Gd (AXE432) alloy are investigated. The microstructure of the as-cast AXE432 alloy consists of α-Mg, C14 (Mg2Ca), and C36((Mg, Al)2Ca) phases. After the heat treatment at 480 [...] Read more.
In the present study, the microstructure and mechanical properties of a new Mg-4Al-3.5Ca-2Gd (AXE432) alloy are investigated. The microstructure of the as-cast AXE432 alloy consists of α-Mg, C14 (Mg2Ca), and C36((Mg, Al)2Ca) phases. After the heat treatment at 480 °C for 8 h, the C14 with fine lamellar structure changes from narrow stripes to micro-scale particles, and part of the C36 and the C14 dissolve into the α-Mg matrix, with many short needle-shaped C15 (Al2Ca) phase precipitating in the primary a-Mg grains. The AXE432 alloy extruded at a temperature as high as 420 °C exhibits a refined dynamically recrystallized (DRXed) microstructure with grain sizes less than 1.5 ± 0.5 μm and a strong {0001}<101¯0> basal texture with a maximum intensity of 5.62. A complex combination of the effects from grain size, texture, second-phase particles, and strain hardening results in balanced mechanical properties, with the tensile yield strength (TYS), ultimate tensile strength (UTS), elongation (El), compressive yield strength (CYS), and ultimate compressive strength (UCS) of 331.4 ± 2.1 MPa, 336.9 ± 3.8 MPa, 16.1 ± 2.3%, 270.4 ± 1.6 MPa and 574.5 ± 12.4 MPa, respectively. Full article
(This article belongs to the Special Issue Advance of Carbon Reinforced Metal-Matrix Composites)
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Injectable Hydrated Calcium Phosphate Bone-like Paste: Synthesis, In Vitro, and In Vivo Biocompatibility Assessment
by Anastasia Yu. Teterina, Vladislav V. Minaychev, Polina V. Smirnova, Margarita I. Kobiakova, Igor V. Smirnov, Roman S. Fadeev, Alexey A. Egorov, Artem A. Ashmarin, Kira V. Pyatina, Anatoliy S. Senotov, Irina S. Fadeeva and Vladimir S. Komlev
Technologies 2023, 11(3), 77; https://doi.org/10.3390/technologies11030077 - 15 Jun 2023
Cited by 3 | Viewed by 3028
Abstract
The injectable hydrated calcium phosphate bone-like paste (hCPP) was developed with suitable rheological characteristics, enabling unhindered injection through standard 23G needles. In vitro assays showed the cytocompatibility of hCPP with mesenchymal embryonic C3H10T1/2 cell cultures. The hCPP was composed of aggregated micro-sized particles [...] Read more.
The injectable hydrated calcium phosphate bone-like paste (hCPP) was developed with suitable rheological characteristics, enabling unhindered injection through standard 23G needles. In vitro assays showed the cytocompatibility of hCPP with mesenchymal embryonic C3H10T1/2 cell cultures. The hCPP was composed of aggregated micro-sized particles with sphere-like shapes and low crystallinity. The ability of hCPP particles to adsorb serum proteins (FBS) was investigated. The hCPP demonstrated high protein adsorption capacity, indicating its potential in various biomedical applications. The results of the in vivo assay upon subcutaneous injection in Wistar rats indicated nontoxicity and biocompatibility of experimental hCPP, as well as gradual resorption of hCPP, comparable to the period of bone regeneration. The data obtained are of great interest for the development of commercial highly effective osteoplastic materials for bone tissue regeneration and augmentation. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2022))
Show Figures

Figure 1

Back to TopTop