Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (220)

Search Parameters:
Keywords = micro-hypoxia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 487 KiB  
Review
Recent Trends in the Management of Varicocele
by Tamás Takács, Anett Szabó and Zsolt Kopa
J. Clin. Med. 2025, 14(15), 5445; https://doi.org/10.3390/jcm14155445 - 2 Aug 2025
Viewed by 380
Abstract
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the [...] Read more.
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the PubMed database, covering clinical studies, systematic reviews, meta-analyses, and current international guidelines from the past ten years. Emphasis was placed on studies investigating novel diagnostic modalities, therapeutic innovations, and prognostic markers. Emerging evidence supports the multifactorial pathophysiology of varicocele, involving oxidative stress, hypoxia, inflammatory pathways, and potential genetic predisposition. Biomarkers, including microRNAs, antisperm antibodies, and sperm DNA fragmentation, offer diagnostic and prognostic utility, though their routine clinical implementation requires further validation. Advances in imaging, such as shear wave elastography, may improve diagnostic accuracy. While microsurgical subinguinal varicocelectomy remains the gold standard, technological refinements and non-surgical alternatives are being explored. Indications for treatment have expanded to include selected cases of non-obstructive azoospermia, hypogonadism, and optimization for assisted reproduction, though high-level evidence is limited. Full article
Show Figures

Figure 1

19 pages, 766 KiB  
Systematic Review
Molecular Mechanisms Underlying Inflammation in Early-Onset Neonatal Sepsis: A Systematic Review of Human Studies
by Anca Vulcănescu, Mirela-Anișoara Siminel, Anda-Lorena Dijmărescu, Maria-Magdalena Manolea, Sidonia-Maria Săndulescu, Virginia Maria Rădulescu, Valeriu Gheorman and Sorin-Nicolae Dinescu
J. Clin. Med. 2025, 14(15), 5315; https://doi.org/10.3390/jcm14155315 - 28 Jul 2025
Viewed by 308
Abstract
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be [...] Read more.
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be challenging. Clinical presentations are often nonspecific, laboratory confirmation is often delayed, and immune responses vary considerably among neonates. Expanding our understanding of the molecular mechanisms underlying EOS is essential in enhancing early detection, refining risk stratification, and guiding therapeutic strategies. This systematic review aims to synthesize the available information on the molecular pathways involved in EOS, focusing on pathogen-induced inflammation, systemic immune responses, sterile inflammatory processes, interactions between infectious and non-infectious pathways, as well as emerging molecular diagnostic approaches. Methods: A comprehensive review of original research articles and reviews published between January 2015 and January 2025 was conducted; studies were included based on their focus on human neonates and their analysis of molecular or immunological mechanisms relevant to EOS pathogenesis, immune dysregulation, or novel diagnostic strategies. Results: Pathogen-driven inflammation typically involves the activation of Toll-like receptors (TLRs), the recruitment of neutrophils, and the release of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α, particularly in response to vertical transmission of organisms like Escherichia coli and Streptococcus agalactiae. Systemic inflammatory responses are marked by cytokine dysregulation, contributing to multi-organ dysfunction. Sterile inflammation, often initiated by hypoxia–reperfusion injury or intrauterine stress, amplifies susceptibility to sepsis. Interactions between immune, metabolic, and endothelial pathways further exacerbate tissue injury. Recent advances, including transcriptomic profiling, microRNA-based biomarkers, and immune checkpoint studies, offer promising strategies for earlier diagnosis and individualized therapeutic options. Conclusions: EOS arises from a complex interplay of infectious and sterile inflammatory mechanisms. A deeper molecular understanding holds promise for advancing correct diagnostics and targeted therapies, aiming to improve neonatal outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

21 pages, 3237 KiB  
Article
Temporal miRNA Biomarkers for Pupal Age Estimation in Sarcophaga peregrina (Diptera: Sarcophagidae)
by Yang Xia, Hai Wu, Sile Chen, Yuanxing Wang, Jiasheng Sun, Yi Li, Yadong Guo and Yanjie Shang
Insects 2025, 16(8), 754; https://doi.org/10.3390/insects16080754 - 23 Jul 2025
Viewed by 404
Abstract
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina [...] Read more.
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina, a forensically important species, by profiling microRNA (miRNA) expression dynamics. High-throughput sequencing across early, mid, and late pupal stages identified 191 known miRNAs, of which nine exhibited distinct monotonic temporal trends. Six miRNAs (miR-210-3p, miR-285, miR-927-5p, miR-956-3p, miR-92b, and miR-275-5p) were validated by qRT-PCR and demonstrated consistent time-dependent expression patterns. Polynomial regression models revealed a strong correlation between miRNA abundance and developmental age (R2 = 0.88–0.99). Functional enrichment analyses of predicted miRNA targets highlighted their roles in key regulatory pathways, including ecdysteroid signaling, hypoxia response, autophagy, and energy metabolism. This study establishes, for the first time, a robust miRNA-based framework for estimating pupal age in forensic entomology, underscoring the potential of miRNAs as temporally precise biomarkers for PMI estimation. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

21 pages, 15328 KiB  
Article
An Electrospun DFO-Loaded Microsphere/SAIB System Orchestrates Angiogenesis–Osteogenesis Coupling via HIF-1α Activation for Vascularized Bone Regeneration
by Xujia Shan, Xiaoyan Yuan and Xiaohong Wu
Polymers 2025, 17(11), 1538; https://doi.org/10.3390/polym17111538 - 31 May 2025
Viewed by 584
Abstract
This study developed electrosprayed deferoxamine (DFO)-loaded poly(lactic-co-glycolic acid) microspheres (DFO-MS) combined with a sucrose acetate isobutyrate (SAIB) depot (DFO-MS@SAIB) for bone-defect repair, targeting the coordinated regulation of angiogenesis and osteogenesis in vascularized bone regeneration—where new blood vessels support functional bone integration. In vitro/in [...] Read more.
This study developed electrosprayed deferoxamine (DFO)-loaded poly(lactic-co-glycolic acid) microspheres (DFO-MS) combined with a sucrose acetate isobutyrate (SAIB) depot (DFO-MS@SAIB) for bone-defect repair, targeting the coordinated regulation of angiogenesis and osteogenesis in vascularized bone regeneration—where new blood vessels support functional bone integration. In vitro/in vivo evaluations confirmed its dual pro-angiogenic and pro-osteogenic effects via HIF-1α pathway activation. Background/Objectives: Emerging evidence underscores the indispensability of vascularization in bone-defect repair, a clinical challenge exacerbated by limited intrinsic healing capacity. While autologous grafts and growth-factor-based strategies remain mainstream, their utility is constrained by donor-site morbidity, transient bioactivity, and poor spatiotemporal control over angiogenic–osteogenic coupling. Here, we leveraged DFO, a hypoxia-mimetic HIF-1α stabilizer with angiogenic potential, to engineer an injectable DFO-MS@SAIB depot. This system was designed to achieve sustained DFO release, thereby synchronizing vascular network formation with mineralized tissue regeneration in critical-sized defects. Methods: DFO-MS were fabricated via electrospraying and combined with SAIB (DFO-MS@S) to form an injectable sustained-release depot. Their physicochemical properties, including morphology, encapsulation efficiency, degradation, release kinetics, and rheology, were systematically characterized. In vitro, the angiogenic capacity of HUVECs co-cultured with DFO-MS was evaluated; conditioned HUVECs were then co-cultured with BMSCs to assess the BMSCs’ cytocompatibility and osteogenic differentiation. In vivo bone regeneration in a rat calvarial defect model was evaluated using micro-CT, histology, and immunohistochemistry. Results: The DFO-MS@SAIB system achieved sustained DFO release, stimulating HUVEC proliferation, migration, and tubulogenesis. In a Transwell co-culture model, pretreated HUVECs promoted BMSC migration and osteogenic differentiation via paracrine signaling involving endothelial-secreted factors (e.g., VEGF). HIF-1α pathway activation upregulated osteogenic markers (ALP, Col1a1, OCN), while in vivo experiments demonstrated enhanced vascularized bone regeneration, with significantly increased bone volume/total volume (BV/TV) and new bone area compared with controls. Conclusion: The DFO-MS@SAIB system promotes bone regeneration via sustained deferoxamine release and HIF-1α-mediated signaling. Its angiogenesis–osteogenesis coupling effect facilitates vascularized bone regeneration, thereby offering a translatable strategy for critical-sized bone-defect repair. Full article
(This article belongs to the Topic Advances in Controlled Release and Targeting of Drugs)
Show Figures

Figure 1

39 pages, 778 KiB  
Review
Epigenetic Drivers of Atrial Fibrillation: Mechanisms, Biomarkers, and Therapeutic Targets
by Paschalis Karakasis, Panagiotis Theofilis, Nikias Milaras, Panayotis K. Vlachakis, Dimitrios Patoulias, Theodoros Karamitsos, Antonios P. Antoniadis and Nikolaos Fragakis
Int. J. Mol. Sci. 2025, 26(11), 5253; https://doi.org/10.3390/ijms26115253 - 29 May 2025
Cited by 3 | Viewed by 842
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia, associated with significant morbidity, mortality, and healthcare burdens. Despite therapeutic advances, recurrence rates remain high, particularly in persistent AF, underscoring the need for deeper mechanistic insight. Epigenetic regulation—comprising DNA methylation, histone modifications, chromatin remodeling, [...] Read more.
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia, associated with significant morbidity, mortality, and healthcare burdens. Despite therapeutic advances, recurrence rates remain high, particularly in persistent AF, underscoring the need for deeper mechanistic insight. Epigenetic regulation—comprising DNA methylation, histone modifications, chromatin remodeling, RNA methylation, and non-coding RNAs—has emerged as a key contributor to the structural, electrical, and inflammatory remodeling underlying AF. These mechanisms operate at the interface of genetic susceptibility and environmental exposure, offering a dynamic framework for understanding disease progression. Systemic stressors such as aging, obesity, diabetes, hypertension, hypoxia, and alcohol have been shown to induce epigenetic reprogramming in atrial tissue, further promoting atrial cardiomyopathy and arrhythmogenesis. Additionally, circulating epigenetic markers, particularly microRNAs, are being investigated for their potential in AF diagnosis, risk stratification, and therapeutic monitoring. Therapeutic strategies targeting epigenetic pathways—ranging from histone deacetylase inhibitors and miRNA-based therapeutics to CRISPR/dCas9-mediated epigenome editing—are under investigation. Additionally, sodium-glucose cotransporter 2 inhibitors may indirectly influence epigenetic programs and miRNA expression relevant to atrial remodeling. While promising, these approaches require further validation in terms of safety, delivery specificity, and long-term efficacy. High-resolution epigenomic mapping and integrative multi-omic approaches may enhance understanding of AF heterogeneity and enable personalized treatment strategies. This review provides an integrated appraisal of epigenetic mechanisms in AF and outlines their emerging diagnostic and therapeutic relevance. Full article
Show Figures

Figure 1

23 pages, 2239 KiB  
Review
Molecular Mechanisms of Epithelial–Mesenchymal Transition in Retinal Pigment Epithelial Cells: Implications for Age-Related Macular Degeneration (AMD) Progression
by Na Wang, Yaqi Wang, Lei Zhang, Wenjing Yang and Songbo Fu
Biomolecules 2025, 15(6), 771; https://doi.org/10.3390/biom15060771 - 27 May 2025
Viewed by 729
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness worldwide, represents a complex neurodegenerative disorder whose pathogenesis remains elusive. At the core of AMD pathophysiology lies the retinal pigment epithelium (RPE), whose epithelial–mesenchymal transition (EMT) has emerged as a critical pathological mechanism [...] Read more.
Age-related macular degeneration (AMD), the leading cause of irreversible blindness worldwide, represents a complex neurodegenerative disorder whose pathogenesis remains elusive. At the core of AMD pathophysiology lies the retinal pigment epithelium (RPE), whose epithelial–mesenchymal transition (EMT) has emerged as a critical pathological mechanism driving disease progression. This transformative process, characterized by RPE cell dedifferentiation and subsequent extracellular matrix remodeling, is orchestrated through a sophisticated network of molecular interactions and cellular signaling cascades. Our review provides a comprehensive analysis of the molecular landscape underlying RPE EMT in AMD, with particular emphasis on seven interconnected pathological axes: (i) oxidative stress and mitochondrial dysfunction, (ii) hypoxia-inducible factor signaling, (iii) autophagic flux dysregulation, (iv) chronic inflammatory responses, (v) complement system overactivation, (vi) epigenetic regulation through microRNA networks, and (vii) key developmental signaling pathway reactivation. Furthermore, we evaluate emerging therapeutic strategies targeting EMT modulation, providing a comprehensive perspective on potential interventions to halt AMD progression. By integrating current mechanistic insights with therapeutic prospects, this review aims to bridge the gap between fundamental research and clinical translation in AMD management. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1412 KiB  
Article
Hsa-miR-21-5p and Hsa-miR-145-5p Expression: From Normal Tissue to Malignant Changes—Context-Dependent Correlation with Estrogen- and Hypoxia–Vascularization-Related Pathways Genes: A Pilot Study
by Mateusz Górecki, Aleksandra Żbikowska, Małgorzata Tokłowicz, Stefan Sajdak, Monika Englert-Golon and Mirosław Andrusiewicz
Int. J. Mol. Sci. 2025, 26(9), 4461; https://doi.org/10.3390/ijms26094461 - 7 May 2025
Viewed by 1037
Abstract
Ovarian cancer (OC) is a severe gynecological malignancy with a high mortality rate among women worldwide. It is often diagnosed at advanced stages due to the lack of effective screening methods. This study investigated the expression patterns of microRNAs (miRNAs) hsa-miR-21-5p and hsa-miR-145-5p [...] Read more.
Ovarian cancer (OC) is a severe gynecological malignancy with a high mortality rate among women worldwide. It is often diagnosed at advanced stages due to the lack of effective screening methods. This study investigated the expression patterns of microRNAs (miRNAs) hsa-miR-21-5p and hsa-miR-145-5p as potential OC prognostic and diagnostic biomarkers and their correlation with estrogen-dependent (ESR1 & 2, PELP1 and c-SRC) and hypoxia–neovascularization-induced (HIF1A, EPAS1, and VEGFA) pathway genes. Tissue samples obtained from twenty patients with confirmed ovarian cancer and twenty controls were analyzed using quantitative polymerase chain reaction (qPCR) to examine miRNA and mRNA levels. The qPCR analysis revealed significantly higher hsa-miR-21-5p and lower hsa-miR-145-5p expression in OC tissues than controls. Moreover, a significant trend was observed in hsa-miR-21-5p and hsa-miR-145-5p expression levels across normal, non-cancerous changes and malignant ovarian tissues. The hsa-miR-21-5p showed better diagnostic potential than hsa-miR-145-5p. We also observed inconsistent correlations in hsa-miR-21-5p and hsa-mir-145-5p and estrogen-related and hypoxia–neovascularization-dependent genes in ovarian cancer across all groups. This suggests that the relationship between these miRNAs and the selected genes is context-specific. Our findings suggest that hsa-miR-21-5p and hsa-miR-145-5p expression levels may be prognostic or diagnostic markers for ovarian cancer patients. Full article
(This article belongs to the Special Issue Molecular Genetics in Ovarian Cancer)
Show Figures

Figure 1

25 pages, 1135 KiB  
Review
Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology
by Moon Nyeo Park, Myoungchan Kim, Soojin Lee, Sojin Kang, Chi-Hoon Ahn, Trina Ekawati Tallei, Woojin Kim and Bonglee Kim
Antioxidants 2025, 14(5), 501; https://doi.org/10.3390/antiox14050501 - 22 Apr 2025
Viewed by 1441
Abstract
Reactive oxygen species (ROS) play a dual role in cancer progression, acting as both signaling molecules and drivers of oxidative damage. Emerging evidence highlights the intricate interplay between ROS, microRNAs (miRNAs), and exosomes within the tumor microenvironment (TME), forming a regulatory axis that [...] Read more.
Reactive oxygen species (ROS) play a dual role in cancer progression, acting as both signaling molecules and drivers of oxidative damage. Emerging evidence highlights the intricate interplay between ROS, microRNAs (miRNAs), and exosomes within the tumor microenvironment (TME), forming a regulatory axis that modulates immune responses, angiogenesis, and therapeutic resistance. In particular, oxidative stress not only stimulates exosome biogenesis but also influences the selective packaging of redox-sensitive miRNAs (miR-21, miR-155, and miR-210) via RNA-binding proteins such as hnRNPA2B1 and SYNCRIP. These miRNAs, delivered through exosomes, alter gene expression in recipient cells and promote tumor-supportive phenotypes such as M2 macrophage polarization, CD8+ T-cell suppression, and endothelial remodeling. This review systematically explores how this ROS–miRNA–exosome axis orchestrates communication across immune and stromal cell populations under hypoxic and inflammatory conditions. Particular emphasis is placed on the role of NADPH oxidases, hypoxia-inducible factors, and autophagy-related mechanisms in regulating exosomal output. In addition, we analyze the therapeutic relevance of natural products and herbal compounds—such as curcumin, resveratrol, and ginsenosides—which have demonstrated promising capabilities to modulate ROS levels, miRNA expression, and exosome dynamics. We further discuss the clinical potential of leveraging this axis for cancer therapy, including strategies involving mesenchymal stem cell-derived exosomes, ferroptosis regulation, and miRNA-based immune modulation. Incorporating insights from spatial transcriptomics and single-cell analysis, this review provides a mechanistic foundation for the development of exosome-centered, redox-modulating therapeutics. Ultimately, this work aims to guide future research and drug discovery efforts toward integrating herbal medicine and redox biology in the fight against cancer. Full article
Show Figures

Figure 1

22 pages, 9847 KiB  
Article
MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy
by Rita Alonaizan, Ujang Purnama, Sophia Malandraki-Miller, Mala Gunadasa-Rohling, Andrew Lewis, Nicola Smart and Carolyn Carr
J. Funct. Biomater. 2025, 16(4), 147; https://doi.org/10.3390/jfb16040147 - 21 Apr 2025
Viewed by 735
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key [...] Read more.
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

19 pages, 1328 KiB  
Review
Interactions Between Non-Coding RNAs and HIF-1alpha in the Context of Colorectal Cancer
by Lianfeng Gong, Haixia Zhang, Ying Liu, Xianwang Wang and Ruohan Xia
Biomolecules 2025, 15(4), 510; https://doi.org/10.3390/biom15040510 - 1 Apr 2025
Cited by 2 | Viewed by 916
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular adaptation to hypoxia, drives colorectal cancer (CRC) progression by fueling angiogenesis, metastasis, and therapy resistance. Emerging evidence delineates intricate crosstalk between non-coding RNAs (ncRNAs)—including microRNAs, long non-coding RNAs, and circular RNAs—and HIF-1α, forming bidirectional regulatory [...] Read more.
Hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular adaptation to hypoxia, drives colorectal cancer (CRC) progression by fueling angiogenesis, metastasis, and therapy resistance. Emerging evidence delineates intricate crosstalk between non-coding RNAs (ncRNAs)—including microRNAs, long non-coding RNAs, and circular RNAs—and HIF-1α, forming bidirectional regulatory networks that orchestrate CRC pathogenesis. By interacting with HIF-1α, these non-coding RNAs contribute to the orchestration of the aggressive hypoxic tumor microenvironment. Recent studies have evaluated the clinical potential of lncRNAs and miRNAs in the realms of non-invasive liquid biopsies and RNA-targeted therapies. This review offers a comprehensive synthesis of recent investigations into the mechanisms by which lncRNAs and miRNAs interact with HIF-1α to modulate CRC progression. Additionally, we further explore the clinical implications of ncRNA/HIF-1α crosstalk, emphasizing their potential as diagnostic biomarkers and therapeutic targets, while also spotlighting intriguing and promising areas of ncRNA research. Methods: In this study, our search strategy employed in databases such as PubMed, Web of Science, and EMBASE is as follows: we will specify search terms, including combinations of “non-coding RNA”, “HIF-1α”, and “colorectal cancer”, along with a date range for the literature search (for example, from 2000 to 2025) to capture the most relevant and up-to-date research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 803 KiB  
Review
MicroRNAs in Preeclampsia: Bridging Diagnosis and Treatment
by Angeliki Gerede, Sofoklis Stavros, Maria Danavasi, Anastasios Potiris, Efthalia Moustakli, Nikolaos Machairiotis, Athanasios Zikopoulos, Konstantinos Nikolettos, Peter Drakakis, Nikolaos Nikolettos, Makarios Eleftheriades and Ekaterini Domali
J. Clin. Med. 2025, 14(6), 2003; https://doi.org/10.3390/jcm14062003 - 15 Mar 2025
Cited by 3 | Viewed by 955
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder that typically manifests after the twentieth week of pregnancy, significantly impacting perinatal mortality and neonatal morbidity. Its development is influenced by immunological components, systemic inflammation, and genetic factors, with placental malfunction playing a crucial role. While [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder that typically manifests after the twentieth week of pregnancy, significantly impacting perinatal mortality and neonatal morbidity. Its development is influenced by immunological components, systemic inflammation, and genetic factors, with placental malfunction playing a crucial role. While many aspects of its pathophysiology have been elucidated, its key mechanisms remain incompletely understood. MicroRNAs (miRNAs), small noncoding RNA molecules that regulate gene expression, have emerged as promising biomarkers and therapeutic targets in PE. Dysregulated miRNAs have been identified in pregnant PE patients, highlighting their role in disease onset. Placenta-specific miRNAs, such as miR-210 and miR-155, influence inflammation, endothelial function, and hypoxia responses, which are closely associated with PE development. These miRNAs play a crucial role in regulating trophoblast invasion, angiogenesis, and immune modulation, further linking their dysregulation to the pathophysiology of PE. This review aims to provide a comprehensive overview of the role of miRNAs in PE, focusing on their potential as diagnostic biomarkers and therapeutic targets. By integrating recent advancements in molecular research, we explore their implications in clinical practice, particularly in risk assessment, early detection, and novel treatment strategies. Full article
Show Figures

Figure 1

19 pages, 2996 KiB  
Review
MYOSLID: A Critical Modulator of Cancer Hallmarks
by Kanupriya Medhi, Sagarika Mukherjee, Aastha Dagar, Ashutosh Kumar Tiwari, Sia Daffara, Sanjana Bana, Vivek Uttam, Md Rizwan Ansari, Vikas Yadav, Hardeep Singh Tuli and Aklank Jain
Genes 2025, 16(3), 341; https://doi.org/10.3390/genes16030341 - 14 Mar 2025
Viewed by 1430
Abstract
Despite being the leading cause of death worldwide, cancer still lacks precise biomarkers for effective targeting, limiting efforts to reduce mortality rates. This review explores the role and clinical significance of a newly identified long non-coding RNA, MYOSLID, in cancer progression. MYOSLID [...] Read more.
Despite being the leading cause of death worldwide, cancer still lacks precise biomarkers for effective targeting, limiting efforts to reduce mortality rates. This review explores the role and clinical significance of a newly identified long non-coding RNA, MYOSLID, in cancer progression. MYOSLID has emerged as a critical modulator in cancer progression by influencing key hallmarks such as proliferation, immune evasion, metastasis, and metabolic reprogramming. It promotes tumor cell growth by stabilizing hypoxia-inducible factor 1 and acting as a competing endogenous RNA (ceRNA) to sequester tumor-suppressive microRNAs like miR-29c-3p, thereby enhancing oncogene expression. It facilitates immune evasion by upregulating PD-L1, suppressing T cell activation, and modulating necroptosis pathways involving RIPK1 and RIPK3. Additionally, MYOSLID drives metastasis by regulating epithelial–mesenchymal transition markers such as LAMB3 and Slug while promoting RAB13-mediated cytoskeletal remodeling and enhancing cancer cell invasion. We have obtained the expression of MYOSLID from TCGA and the ENCORI database. The expression of colorectal adenocarcinoma (COAD) and head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis and lower survival rate. Given its significant potential as a diagnostic biomarker and therapeutic target, further research is required to elucidate its precise molecular mechanisms and therapeutic applications in cancer treatment. Full article
Show Figures

Figure 1

25 pages, 12999 KiB  
Article
Bicarbonate-Rich Mineral Water Mitigates Hypoxia-Induced Osteoporosis in Mice via Gut Microbiota and Metabolic Pathway Regulation
by Yufan Ding, Weili Liu, Xi Zhang, Bin Xue, Xiaobo Yang, Chen Zhao, Chenyu Li, Shang Wang, Zhigang Qiu, Chao Li, Jingfeng Wang and Zhiqiang Shen
Nutrients 2025, 17(6), 998; https://doi.org/10.3390/nu17060998 - 12 Mar 2025
Cited by 1 | Viewed by 1254
Abstract
Background: High-altitude hypoxia is known to adversely affect bone health, leading to accelerated bone loss and metabolic alterations. Recent studies suggest that factors such as bicarbonate and gut microbiota may play key roles in bone health. Mineral water, rich in bicarbonate, may influence [...] Read more.
Background: High-altitude hypoxia is known to adversely affect bone health, leading to accelerated bone loss and metabolic alterations. Recent studies suggest that factors such as bicarbonate and gut microbiota may play key roles in bone health. Mineral water, rich in bicarbonate, may influence bone health and the gut–bone axis under such conditions. Methods: Mice were exposed to hypoxia and treated with different concentrations of drinking water. Bone-related parameters were assessed using dual-energy X-ray absorptiometry (DXA) and Micro-CT. Bone health was assessed using the measurement of serum biomarkers. Additionally, Untargeted Metabolomics was employed to analyze differential metabolites between groups, while gut microbiota composition was analyzed using 16S rRNA sequencing. Results: BMW consumption increased bone mineral density (BMD) and helped alleviate the damage to the microstructure of bones caused by hypoxia and delayed the progression of osteoporosis. Additionally, BMW was shown to enhance probiotics such as Akkermansia and Dubosiella and regulate the longevity-regulating pathway as well as the PI3K/AKT/mTOR (PAM) signaling pathway. This study also discovered changes in metabolic products due to BMW intervention, predominantly in pathways such as the amino acid, prostaglandin, and purine metabolisms, with correlation analysis further exploring the relationships between gut microbiota and these differential metabolites. Conclusions: Long-term exposure to high-altitude hypoxic conditions affects the structure of gut microbiota and bone metabolism in mice. The consumption of BMW improves the structure of gut microbiota and regulates the metabolic pathways to maintain bone health under high-altitude hypoxia. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 2069 KiB  
Review
Retinopathy of Prematurity and MicroRNAs
by Giuseppe Maria Albanese, Giacomo Visioli, Ludovico Alisi, Marta Armentano, Francesca Giovannetti, Luca Lucchino, Marco Marenco, Paola Pontecorvi and Magda Gharbiya
Biomedicines 2025, 13(2), 400; https://doi.org/10.3390/biomedicines13020400 - 7 Feb 2025
Cited by 1 | Viewed by 1767
Abstract
Retinopathy of Prematurity (ROP), a leading cause of blindness in preterm infants, arises from dysregulated angiogenesis and inflammation. Without timely intervention, ROP can progress to severe outcomes, including dense fibrovascular plaques and retinal detachment. MicroRNAs (miRNAs) regulate key pathways such as hypoxia response, [...] Read more.
Retinopathy of Prematurity (ROP), a leading cause of blindness in preterm infants, arises from dysregulated angiogenesis and inflammation. Without timely intervention, ROP can progress to severe outcomes, including dense fibrovascular plaques and retinal detachment. MicroRNAs (miRNAs) regulate key pathways such as hypoxia response, VEGF signaling, and vascular remodeling. Studies have identified miRNAs (e.g., miR-210, miR-146a, and miR-21) as potential biomarkers and therapeutic targets. Preclinical evidence supports miRNA-based therapies (e.g., miR-18a-5p and miR-181a), targeting HIF-1α and VEGFA to mitigate neovascularization, with nanoparticle delivery systems enhancing stability and specificity. These strategies, combined with anti-VEGF agents, show significant potential for improving ROP management. While promising, miRNA therapies require validation in clinical trials to ensure safety and efficacy. This review discusses the role of miRNAs in ROP, highlighting their relevance as diagnostic and therapeutic tools. Full article
Show Figures

Figure 1

14 pages, 3306 KiB  
Article
MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion
by Jose Luis Guerrero-Orriach, Maria Dolores Carmona-Luque, Maria Jose Rodriguez-Capitan and Guillermo Quesada-Muñoz
Pharmaceuticals 2025, 18(2), 146; https://doi.org/10.3390/ph18020146 - 23 Jan 2025
Viewed by 1116
Abstract
Background: Our research team analyzed the microRNA (miRNA)-197-3p involved in cardioprotection, and we demonstrated that the overexpression of miRNA-197-3p could be linked to a higher risk of cardiac damage. Recent research indicated that miRNA-197-3p inhibits the effector proteins of the anaesthetic preconditioning mechanism [...] Read more.
Background: Our research team analyzed the microRNA (miRNA)-197-3p involved in cardioprotection, and we demonstrated that the overexpression of miRNA-197-3p could be linked to a higher risk of cardiac damage. Recent research indicated that miRNA-197-3p inhibits the effector proteins of the anaesthetic preconditioning mechanism of halogenated drugs. In this scenario, we proposed to determine the role of miRNA-197-3p in cardiac injury and its effects on myocardial conditioning under halogenated exposure. Hypothesis: Patients having myocardial revascularization surgery have increased heart damage due to postoperative miRNA-197-3p upregulation. Methods: Human cardiac myocytes (HCMs) were used in an in vitro hypoxia/reperfusion (H/R) model. The miRNA-197-3p-MIMIC was transfected into the HCMs. Three H/R-induced HCM groups were performed: negative MIMIC-control transfected, MIMIC transfected, and non-transfected. Each H/R cell group was exposed to Propofol (P), Sevoflurane (S), or non-exposed. Healthy cell cultures were the control group. ELISA assays were used to assess the Akt1 and p53 cell secretion capacity, and the Next Generation Sequencing assay was used to measure the differential expression of miRNA targets. Results: The secretion capacity of H/R-induced HCMs transfected with the MIMIC was higher under sevoflurane exposure regarding Akt-1 cytokine (I/R + S: 0.80 ± 0.06 ng/mL; I/R + P: 0.45 ± 0.28 ng/mL; p > 0.05), and lower regarding p53 cytokine (I/R + S: 38.62 ± 6.93 ng/mL; I/R + P: 43.34 ± 15.20 ng/mL; p > 0.05) compared to propofol. In addition, a significant gene overexpression of five miRNAs, in the sevoflurane group, was linked to cardioprotection: miRNA-29-3p, 24-3p, 21-3p, 532, and miRNA-335-5p. Conclusions: miRNA-197-3p inhibits the cardioprotection induced by halogenated exposure and can be considered a biomarker of cardiac damage. Additional research is required to validate our findings in other clinical settings. Full article
(This article belongs to the Special Issue Use of Anesthetic Agents: Management and New Strategy)
Show Figures

Graphical abstract

Back to TopTop