Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = micro-apertures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4423 KiB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 400
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

12 pages, 3480 KiB  
Article
Laser Micromachining for the Nucleation Control of Nickel Microtextures for IR Emission
by Tatsuhiko Aizawa, Hiroki Nakata and Takeshi Nasu
Micromachines 2025, 16(6), 696; https://doi.org/10.3390/mi16060696 - 11 Jun 2025
Viewed by 656
Abstract
Femtosecond laser micromachining was utilized to build up a micro-through-hole array into a sacrificial film, which was coated onto a copper specimen. This micro-through hole was shaped in the paraboloidal profile, with its micro-dimple on the interface between the copper substrate and the [...] Read more.
Femtosecond laser micromachining was utilized to build up a micro-through-hole array into a sacrificial film, which was coated onto a copper specimen. This micro-through hole was shaped in the paraboloidal profile, with its micro-dimple on the interface between the copper substrate and the film. This profile was simply in correspondence with the laser energy profile. The array was used as a nucleation and growth site for nickel cluster deposition during wet plating. The micro-pillared unit cells nucleated at the micro-dimple and grew on the inside of the micro-through hole. After removing the sacrificial film, cleansing, and polishing, the nickel micro-pillar array was obtained, standing on the copper substrate. These unit cells and their alignments were measured through scanning electron microscopy and laser microscopy. Thermographic microscopy with FT-IR was utilized to measure the IR emittance as a function of wavelength. The focused areas were varied by controlling the aperture to analyze the effects of arrayed microtextures on the IR emittance. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

12 pages, 2383 KiB  
Article
Novel Focusing Performances of High-Numerical-Aperture Micro-Fresnel Zone Plates with Selective Occlusion
by Qiang Liu, Yunpeng Wu, Yuanhao Deng, Junli Wang, Wenshuai Liu and Xiaomin Yao
Photonics 2025, 12(4), 372; https://doi.org/10.3390/photonics12040372 - 13 Apr 2025
Viewed by 457
Abstract
In this study, novel focusing performances of high-numerical-aperture (NA) micro-Fresnel zone plates (FZPs) with selective occlusion are identified and investigated through numerical calculations based on vectorial angular spectrum (VAS) theory, and further rigorously validated using the finite-difference time-domain (FDTD) method. The central occlusion [...] Read more.
In this study, novel focusing performances of high-numerical-aperture (NA) micro-Fresnel zone plates (FZPs) with selective occlusion are identified and investigated through numerical calculations based on vectorial angular spectrum (VAS) theory, and further rigorously validated using the finite-difference time-domain (FDTD) method. The central occlusion of a standard micro-FZP can significantly extend the depth of focus while keeping the lateral size of the focusing spot essentially unchanged. When a standard micro-FZP only retains two separated transparent rings and all other rings are obstructed, it will result in multi-focus phenomena; at the same time, the number of focal points is equal to the difference in number between the two separated transparent rings. Furthermore, a focusing light needle can be generated by combining the central occlusion and wavelength shift of a standard micro-FZP. This study not only provides new ideas for the design and optimization of micro-FZPs but also provides reference for the expansion of practical applications of FZPs. Full article
Show Figures

Figure 1

19 pages, 10147 KiB  
Article
Transmitters and Receivers for High Capacity Indoor Optical Wireless Communication
by Mikolaj Wolny, Eduardo Muller and Eduward Tangdiongga
Telecom 2025, 6(2), 26; https://doi.org/10.3390/telecom6020026 - 11 Apr 2025
Viewed by 2513
Abstract
In this paper, we present recent advancements in transmitter and receiver technologies for Optical Wireless Communication (OWC). OWC offers very wide license-free optical spectrum which enables very high capacity transmission. Additionally, beam-steered OWC is more power-efficient and more secure due to low divergence [...] Read more.
In this paper, we present recent advancements in transmitter and receiver technologies for Optical Wireless Communication (OWC). OWC offers very wide license-free optical spectrum which enables very high capacity transmission. Additionally, beam-steered OWC is more power-efficient and more secure due to low divergence of light. One of the main challenges of OWC is wide angle transmission and reception because law of conservation of etendue restricts maximization of both aperture and field of view (FoV). On the transmitter side, we use Micro Electro-Mechanical System cantilevers activated by piezoelectric actuators together with silicon micro-lenses for narrow laser beam steering. Such design allowed us to experimentally demonstrate at least 10 Gbps transmission over 100° full angle FoV. On the receiver side, we show the use of photodiode array, and Indium-Phosphide Membrane on Silicon (IMOS) Photonic Integrated Circuit (PIC) with surface grating coupler (SGC) and array of SGC. We demonstrate FoV greater than 32° and 16 Gbps reception with photodiode array. PIC receiver allowed to receive 100 Gbps WDM with single SGC, and 10 Gbps with an array of SGC which had 8° FoV in the vertical angle and full FoV in the horizontal angle. Our results suggest that solutions presented here are scalable in throughputs and can be adopted for future indoor high-capacity OWC systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

19 pages, 7022 KiB  
Review
Advancements in Research and Applications of PP-Based Materials Utilizing Melt-Blown Nonwoven Technology
by Ziyang Fang, Jie Wang, Sijia Xie, Zhouyang Lian, Zhengwei Luo, Yan Du and Xueying Zhang
Polymers 2025, 17(8), 1013; https://doi.org/10.3390/polym17081013 - 9 Apr 2025
Viewed by 1149
Abstract
Melt-blown nonwoven materials have demonstrated significant advancements in a multitude of industrial sectors, mainly due to their high production efficiency, extensive specific surface area, and narrow aperture. The demand for melt-blown nonwoven materials has increased further in recent time, particularly in the wake [...] Read more.
Melt-blown nonwoven materials have demonstrated significant advancements in a multitude of industrial sectors, mainly due to their high production efficiency, extensive specific surface area, and narrow aperture. The demand for melt-blown nonwoven materials has increased further in recent time, particularly in the wake of the novel coronavirus (COVID-19) pandemic. Polypropylene (PP) is extensively used in production and research due to its low cost, low weight, and easy processing, and the melt-blown materials made from it share similar characteristics. We systematically summarize the research advancements of melt-blown nonwoven technology and applications of PP-based melt-blown materials over the last few years. First, the principles and processes of melt-blown nonwoven that govern the production of micro/nano fibers are described. Then the raw materials and process technology of melt-blown are reviewed. After these, we highlight the use of PP-based melt-blown materials in key fields, including media filtration, oil–water separation, heavy metal ions removal, organic pollutants removal and battery separator. Finally, we summary and suggest some potential future research directions of melt-blown nonwoven technology and PP-based melt-blown materials. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

23 pages, 11195 KiB  
Article
The Assembly, Integration and Test of the DORA Telescope, a Deployable Optics System in Space for Remote Sensing Applications
by Igor Di Varano, Fabrizio Capaccioni, Giovanna Rinaldi, Gianrico Filacchione, David Biondi, Giancarlo Bellucci, Alfredo Morbidini and Bortolino Saggin
Aerospace 2025, 12(3), 224; https://doi.org/10.3390/aerospace12030224 - 10 Mar 2025
Viewed by 670
Abstract
The paper deals with the assembling, integration, and test (AIT) phase of the laboratory model of an innovative telescope in the framework of the project DORA (deployable optics for remote sensing applications). The telescope is a Cassegrain type of instrument, with an entrance [...] Read more.
The paper deals with the assembling, integration, and test (AIT) phase of the laboratory model of an innovative telescope in the framework of the project DORA (deployable optics for remote sensing applications). The telescope is a Cassegrain type of instrument, with an entrance pupil of ∅300 mm, f/16 aperture, and FOV of 0.16°. It has been designed to be mounted onboard a micro-satellite frame, allowing for switching between a stowed configuration during the launch phase and a deployed one once in orbit. The telescope is matched to an infrared Fourier spectrometer, operating in the spectral range of 5–25 μm, for the observation of terrestrial atmospheric phenomena, but it can also be adopted for planetary exploration missions. The telescope breadboard has been assembled in the INAF-IAPS premises and has undergone measurements for the determination of the accuracy and repeatability of the mechanism opening. The mechanical tests have demonstrated that the deployment mechanism adopted complies with the requirements imposed by the infrared Fourier spectrometer, guaranteeing a repositioning of the secondary mirror with respect to the primary mirror within 100 μm (in-plane displacement) and 0.01° (tilt) of the nominal position. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

28 pages, 2126 KiB  
Review
Application of Acoustic Emission Technique in Landslide Monitoring and Early Warning: A Review
by Jialing Song, Jiajin Leng, Jian Li, Hui Wei, Shangru Li and Feiyue Wang
Appl. Sci. 2025, 15(3), 1663; https://doi.org/10.3390/app15031663 - 6 Feb 2025
Cited by 2 | Viewed by 1707
Abstract
Landslides present a significant global hazard, resulting in substantial socioeconomic losses and casualties each year. Traditional monitoring approaches, such as geodetic, geotechnical, and geophysical methods, have limitations in providing early warning capabilities due to their inability to detect precursory subsurface deformations. In contrast, [...] Read more.
Landslides present a significant global hazard, resulting in substantial socioeconomic losses and casualties each year. Traditional monitoring approaches, such as geodetic, geotechnical, and geophysical methods, have limitations in providing early warning capabilities due to their inability to detect precursory subsurface deformations. In contrast, the acoustic emission (AE) technique emerges as a promising alternative, capable of capturing the elastic wave signals generated by stress-induced deformation and micro-damage within soil and rock masses during the early stages of slope instability. This paper provides a comprehensive review of the fundamental principles, instrumentation, and field applications of the AE method for landslide monitoring and early warning. Comparative analyses demonstrate that AE outperforms conventional techniques, with laboratory studies establishing clear linear relationships between cumulative AE event rates and slope displacement velocities. These relationships have enabled the classification of stability conditions into “essentially stable”, “marginally stable”, “unstable”, and “rapidly deforming” categories with high accuracy. Field implementations using embedded waveguides have successfully monitored active landslides, with AE event rates linearly correlating with real-time displacement measurements. Furthermore, the integration of AE with other techniques, such as synthetic aperture radar (SAR) and pore pressure monitoring, has enhanced the comprehensive characterization of subsurface failure mechanisms. Despite the challenges posed by high attenuation in geological materials, ongoing advancements in sensor technologies, data acquisition systems, and signal processing techniques are addressing these limitations, paving the way for the widespread adoption of AE-based early warning systems. This review highlights the significant potential of the AE technique in revolutionizing landslide monitoring and forecasting capabilities to mitigate the devastating impacts of these natural disasters. Full article
Show Figures

Figure 1

17 pages, 3863 KiB  
Article
Adsorption Pore Volume Distribution Heterogeneity of Middle and High Rank Coal Reservoirs and Determination of Its Influencing Factors
by Kai Wang, Fangkai Quan, Shizhao Zhang, Yubo Zhao, He Shi, Tingting Yin and Zhenyuan Qin
Processes 2025, 13(2), 429; https://doi.org/10.3390/pr13020429 - 6 Feb 2025
Viewed by 900
Abstract
Heterogeneity of adsorption pore volume distribution affects desorption and diffusion processes of coal reservoirs. In this paper, N2 and CO2 adsorption and desorption experiment tests were used to study the pore structure of middle and high rank coal reservoirs in the [...] Read more.
Heterogeneity of adsorption pore volume distribution affects desorption and diffusion processes of coal reservoirs. In this paper, N2 and CO2 adsorption and desorption experiment tests were used to study the pore structure of middle and high rank coal reservoirs in the study area. The fractal theory of volume and surface area is used to achieve a full-scale fractal study of adsorption pores (pore diameter is less than 100 nm) in the study area. Firstly, adaptability and control factors of volume fractals and surface area fractals within the same aperture scale range are studied. Secondly, fractal characteristics of micro-pores and meso-pores are studied. Thirdly, fractal characteristics within different aperture scales and the influencing factors of fractal characteristics within different scale ranges are studied. The results are as follows. With the increase in coal rank, pore volume and specific surface area of pores less than 0.8 nm increase, and dominant pore size changes from 0.55~0.8 nm (middle coal rank) to 0.5~0.7 nm (high coal rank). As coal rank increases, TPV and average pore diameter (APD) decrease under the BJH model, while SSA changes are not significant under the BET model. Moreover, as the pore diameter decreases, the correlation between the integral dimension of pore volume and degree of coal metamorphism decreases. This result can provide a theoretical basis for the precise characterization of the target coal seam pore and fracture structure and support the optimization of favorable areas for coalbed methane. Full article
Show Figures

Figure 1

25 pages, 42288 KiB  
Article
An Analysis of Arrays with Irregular Apertures in MEMS Smart Glasses for the Improvement of Clear View
by Roland Donatiello, Mustaqim Siddi Que Iskhandar, Md Kamrul Hasan, Philipp Kästner, Muhammad Hasnain Qasim, Jiahao Chen, Shilby Baby, Basma Elsaka, Guilin Xu and Hartmut Hillmer
Micromachines 2025, 16(2), 176; https://doi.org/10.3390/mi16020176 - 31 Jan 2025
Cited by 1 | Viewed by 1116
Abstract
An innovative glass substrate surface technology including integrated micro-electro-mechanical systems (MEMS) is presented as an advanced light modulation, heat control, and energy management system. This smart technology is based on millions of metallic micromirrors per square meter fabricated on the glass surface, which [...] Read more.
An innovative glass substrate surface technology including integrated micro-electro-mechanical systems (MEMS) is presented as an advanced light modulation, heat control, and energy management system. This smart technology is based on millions of metallic micromirrors per square meter fabricated on the glass surface, which are arranged in arrays and electrostatically actuated. The smart window application exploits an elaborate MEMS glass technology for active daylight steering and energy management in buildings, enabling energy saving, CO2 emission reduction, a positive health impact, and improved well-being. When light interacts with a glass substrate that has regular, repetitive patterning at the microscopic scale on its surface, these microstructures can cause the diffraction of the transmitted light, resulting in the potential deterioration of the view quality through the smart glass. A reduction in optical artifacts for improved clear view is presented by using irregular geometric micromirror apertures. Several non-periodic, irregular micromirror aperture designs are compared with corresponding periodic regular designs. For each considered aperture geometry, the irregular array reveals a reduction in optical artifacts and, therefore, by far a clearer view than the corresponding regular array. A systematic and comprehensive study was conducted through design, simulation, technological fabrication, experimental characterization, and analysis. Full article
Show Figures

Graphical abstract

14 pages, 3519 KiB  
Article
Homogeneity of Electro-Mechanical and Optical Characteristics in Ring-Shaped MEMS Shutter Arrays with Subfield Addressing for Interference Microscopy
by Philipp Kästner, Basma Elsaka, Mustaqim Siddi Que Iskhandar, Steffen Liebermann, Roland Donatiello, Shujie Liu and Hartmut Hillmer
Micromachines 2025, 16(2), 168; https://doi.org/10.3390/mi16020168 - 30 Jan 2025
Cited by 1 | Viewed by 847
Abstract
We present a MEMS array-based approach for micro-irises called “ring shutter”, utilizing subfield addressing for applications in advanced micro-optics, such as interference microscopy. This experimental study is focused on investigating the homogeneity of electro-mechanical and optical characteristics within and between subfields of a [...] Read more.
We present a MEMS array-based approach for micro-irises called “ring shutter”, utilizing subfield addressing for applications in advanced micro-optics, such as interference microscopy. This experimental study is focused on investigating the homogeneity of electro-mechanical and optical characteristics within and between subfields of a lab demonstrator device. The characterization aims to ensure crosstalk-free and swift optical performance, as demonstrated in a previous study. For this purpose, the transmission in the initial state, actuation voltages, and response dynamics are measured for each electrode and the entire device, and the results are thoroughly compared. The measurements are conducted by expanding an existing optical actuation setup via tailored 3D-printed apertures, to isolate selected rings and zones. Evaluation of measurement data confirms the stable and crosstalk-free operation of the ring shutter. Both angular and radial homogeneity are robust and follow the expectations in the experiment. While transmission, actuation voltage and closing time slightly rise (up to 25%) with increased radial position represented by five discrete ring sections, the characteristics for different angular zones remain nearly constant. Response times are measured below 40 µs, actuation voltages do not exceed 60 V, and the overall transmission of the ring shutter yields 53.6%. Full article
Show Figures

Figure 1

19 pages, 40083 KiB  
Article
A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity
by Virginia Zamparelli, Pietro Mastro, Antonio Pepe and Simona Verde
J. Mar. Sci. Eng. 2025, 13(1), 164; https://doi.org/10.3390/jmse13010164 - 18 Jan 2025
Cited by 1 | Viewed by 1510
Abstract
In this work, we present the results of a comparative analysis between the first-generation Advanced Synthetic Aperture Radar (ASAR) sensor mounted on board the ENVISAT platform and the novel ICEYE micro-satellite synthetic aperture radar (SAR) sensor in measuring the radial velocity of ocean [...] Read more.
In this work, we present the results of a comparative analysis between the first-generation Advanced Synthetic Aperture Radar (ASAR) sensor mounted on board the ENVISAT platform and the novel ICEYE micro-satellite synthetic aperture radar (SAR) sensor in measuring the radial velocity of ocean currents through the Doppler Centroid Anomaly (DCA) technique. First, the basic principles of DCA and the theoretical precision of the Doppler Centroid (DC) estimates are introduced. Subsequently, the role of the DC measurements in retrieving the sea surface current velocity is addressed. To achieve this goal, two sets of SAR data gathered by ASAR (C-band) and from the X-band ICEYE instruments, respectively, are exploited. The standard deviation of DCA measurements is derived and tested against what is expected by theory. The presented analysis results are beneficial to evaluate the pros and cons of the new-generation X-band to the first-generation ASAR/ENVISAT system, which has been extensively exploited for ocean currents monitoring applications. As an outcome, we find that with inherently selected methods for DC estimates, the performance offered by ICEYE is comparable to, or even better than (with specific parameters selection), the consolidated approaches based on the ASAR sensor. Nonetheless, new SAR constellations offer an undoubted advantage regarding improved spatial resolution and time repeatability. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

19 pages, 9719 KiB  
Article
Beam Tilt Aberration Detection of the Seven-Unit Phased Fiber Laser Array
by Xin Yu, Xingyue Wang, Jing Liang, Cai Liu, Xiaolong Ni, Suping Bai, Jiasu Li, Zeping Liu and Lijie Hou
Micromachines 2025, 16(1), 38; https://doi.org/10.3390/mi16010038 - 30 Dec 2024
Viewed by 804
Abstract
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber [...] Read more.
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array. The apochromatic theory was used to meet the multispectral (1064 ± 0.3 nm, 1030 ± 0.3 nm, and 633 ± 0.2 nm) detection needs. A far-field detection unit was also designed to evaluate beam quality. When the actual beam was offset by 1 pixel, the beam tilt was about 0.7 µrad. The maximum detection error of the seven-element system was about 7 µrad. It could not only directly detect the beam’s tilt angle but also maintained detection accuracy while reducing the algorithm complexity. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

16 pages, 6518 KiB  
Article
Design and On-Orbit Performance of Ku-Band Phased-Array Synthetic-Aperture Radar Payload System
by Wei Yan, Xiaomin Tan, Jiang Wu, Mingze Yuan, Hongxing Dang and Wujun Chang
Sensors 2024, 24(20), 6741; https://doi.org/10.3390/s24206741 - 20 Oct 2024
Cited by 3 | Viewed by 2122
Abstract
The current emphasis in the advancement of space-based synthetic-aperture radar (SAR) is on lightweight payloads under 100 kg with resolutions surpassing 1 m. This focus is directed toward meeting the launch criteria for multiple satellites on a single rocket and cutting costs. This [...] Read more.
The current emphasis in the advancement of space-based synthetic-aperture radar (SAR) is on lightweight payloads under 100 kg with resolutions surpassing 1 m. This focus is directed toward meeting the launch criteria for multiple satellites on a single rocket and cutting costs. This article discusses the creation and progress of a Ku-band SAR payload for the Taijing-4(03) satellite, launched on 23 January 2024 and accompanied by four other satellites. The SAR payload design was customized to meet the demands of a micro-nano satellite platform, resulting in a lightweight, flat design weighing less than 80 kg, seamlessly integrated with the plate-shaped satellite platform. The article also introduces a beam optimization strategy for the phased array SAR antenna, significantly boosting the SAR system’s performance. The SAR payload provides various operating modes like slide-spot, strip, Scan 1, Scan 2, and others, with a maximum achievable resolution exceeding 1 m. Extensive in-orbit testing of the payload produced numerous high-quality SAR images with potential uses in emergency disaster mitigation, safeguarding ecosystems, monitoring forests, managing crops, tracking sea ice, and more. Full article
Show Figures

Figure 1

24 pages, 16886 KiB  
Article
A Multiple Targets ISAR Imaging Method with Removal of Micro-Motion Connection Based on Joint Constraints
by Hongxu Li, Qinglang Guo, Zihan Xu, Xinfei Jin, Fulin Su and Xiaodi Li
Remote Sens. 2024, 16(19), 3647; https://doi.org/10.3390/rs16193647 - 29 Sep 2024
Cited by 1 | Viewed by 1376
Abstract
Combining multiple data sources, Digital Earth is an integrated observation platform based on air–space–ground–sea monitoring systems. Among these data sources, the Inverse Synthetic Aperture Radar (ISAR) is a crucial observation method. ISAR is typically utilized to monitor both military and civilian ships due [...] Read more.
Combining multiple data sources, Digital Earth is an integrated observation platform based on air–space–ground–sea monitoring systems. Among these data sources, the Inverse Synthetic Aperture Radar (ISAR) is a crucial observation method. ISAR is typically utilized to monitor both military and civilian ships due to its all-day and all-weather superiority. However, in complex scenarios, multiple targets may exist within the same radar antenna beam, resulting in severe defocusing due to different motion conditions. Therefore, this paper proposes a multiple-target ISAR imaging method with the removal of micro-motion connections based on the integration of joint constraints. The fully motion-compensated targets exhibit low rank and local similarity in the high-resolution range profile (HRRP) domain, while the micro-motion components possess sparsity. Additionally, targets display sparsity in the image domain. Inspired by this, we formulate a novel optimization by promoting the low-rank, the Laplacian, and the sparsity constraints of targets and the sparsity constraints of the micro-motion components. This optimization problem is solved by the linearized alternative direction method with adaptive penalty (LADMAP). Furthermore, the different motions of various targets degrade their inherent characteristics. Therefore, we integrate motion compensation transformation into the optimization, accordingly achieving the separation of rigid bodies and the micro-motion components of different targets. Experiments based on simulated data demonstrate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

20 pages, 8018 KiB  
Article
Biomimetic Wings for Micro Air Vehicles
by Giorgio Moscato and Giovanni P. Romano
Biomimetics 2024, 9(9), 553; https://doi.org/10.3390/biomimetics9090553 - 14 Sep 2024
Cited by 3 | Viewed by 1674
Abstract
In this work, micro air vehicles (MAVs) equipped with bio-inspired wings are investigated experimentally in wind tunnel. The starting point is that insects such as dragonflies, butterflies and locusts have wings with rigid tubular elements (corrugation) connected by flexible parts (profiling). So far, [...] Read more.
In this work, micro air vehicles (MAVs) equipped with bio-inspired wings are investigated experimentally in wind tunnel. The starting point is that insects such as dragonflies, butterflies and locusts have wings with rigid tubular elements (corrugation) connected by flexible parts (profiling). So far, it is important to understand the specific aerodynamic effects of corrugation and profiling as applied to conventional wings for the optimization of low-Reynolds-number aerodynamics. The present study, in comparison to previous investigations on the topic, considers whole MAVs rather than isolated wings. A planform with a low aperture-to-chord ratio is employed in order to investigate the interaction between large tip vortices and the flow over the wing surface at large angles of incidence. Comparisons are made by measuring global aerodynamic loads using force balance, specifically drag and lift, and detailed local velocity fields over wing surfaces, by means of particle image velocimetry (PIV). This type of combined global–local investigation allows describing and relating overall MAV performance to detailed high-resolution flow fields. The results indicate that the combination of wing corrugation and profiling gives effective enhancements in performance, around 50%, in comparison to the classical flat-plate configuration. These results are particularly relevant in the framework of low-aspect-ratio MAVs, undergoing beneficial interactions between tip vortices and large-scale separation. Full article
(This article belongs to the Special Issue Biomechanics and Biomimetics for Insect-Inspired MAVs)
Show Figures

Figure 1

Back to TopTop