Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = micro-Solid Oxide Fuel Cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3358 KiB  
Article
Water-Soluble Sacrificial Layer of Sr3Al2O6 for the Synthesis of Free-Standing Doped Ceria and Strontium Titanate
by Simone Sanna, Olga Krymskaya and Antonello Tebano
Appl. Sci. 2025, 15(4), 2192; https://doi.org/10.3390/app15042192 - 19 Feb 2025
Viewed by 2833
Abstract
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and [...] Read more.
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and micro-Solid Oxide Electrochemical Cells for portable energy conversion and storage devices. The sacrificial layer technique offers a pathway to engineering free-standing membranes of electrolytes, cathodes, and anodes with total thicknesses on the order of a few nanometers. Furthermore, the ability to etch the SAO sacrificial layer and transfer ultra-thin oxide films from single-crystal substrates to silicon-based circuits opens possibilities for creating a novel class of mixed electronic and ionic devices with unexplored potential. In this work, we report the growth mechanism and structural characterization of the SAO sacrificial layer. Epitaxial samarium-doped ceria films, grown on SrTiO3 substrates using Sr3Al2O6 as a buffer layer, were successfully transferred onto silicon wafers. This demonstration highlights the potential of the sacrificial layer method for integrating high-quality oxide thin films into advanced device architectures, bridging the gap between oxide materials and silicon-based technologies. Full article
(This article belongs to the Special Issue Advanced Materials for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

17 pages, 6669 KiB  
Article
Understanding the Effect of Dispersant Rheology and Binder Decomposition on 3D Printing of a Solid Oxide Fuel Cell
by Man Yang, Santosh Kumar Parupelli, Zhigang Xu and Salil Desai
Micromachines 2024, 15(5), 636; https://doi.org/10.3390/mi15050636 - 9 May 2024
Cited by 5 | Viewed by 2149
Abstract
Solid oxide fuel cells (SOFCs) are a green energy technology that offers a cleaner and more efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. In this research [...] Read more.
Solid oxide fuel cells (SOFCs) are a green energy technology that offers a cleaner and more efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. In this research work, the parallel-connected inter-digitized design of micro-single-chamber SOFCs (µ-SC-SOFCs) was fabricated by a direct-write microfabrication technique. To understand and optimize the direct-write process, the cathode electrode slurry was investigated. Initially, the effects of dispersant Triton X-100 on LSCF (La0.6Sr0.2Fe0.8Co0.2O3-δ) slurry rheology was investigated. The effect of binder decomposition on the cathode electrode lines was evaluated, and further, the optimum sintering profile was determined. Results illustrate that the optimum concentration of Triton X-100 for different slurries was around 0.2–0.4% of the LSCF solid loading. A total of 60% of solid loading slurries had high viscosities and attained stability after 300 s. In addition, 40–50% solid loading slurries had relatively lower viscosity and attainted stability after 200 s. Solid loading and binder affected not only the slurry’s viscosity but also its rheology behavior. Based on the findings of this research, a slurry with 50% solid loading, 12% binder, and 0.2% dispersant was determined to be the optimal value for the fabricating of SOFCs using the direct-write method. This research work establishes guidelines for fabricating the micro-single-chamber solid oxide fuel cells by optimizing the direct-write slurry deposition process with high accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

28 pages, 5483 KiB  
Article
Thermodynamics Analysis of a Novel Compressed Air Energy Storage System Combined with Solid Oxide Fuel Cell–Micro Gas Turbine and Using Low-Grade Waste Heat as Heat Source
by Chen Yang, Li Sun and Hao Chen
Energies 2023, 16(19), 7010; https://doi.org/10.3390/en16197010 - 9 Oct 2023
Cited by 3 | Viewed by 2192
Abstract
As the next generation of advanced adiabatic compressed air energy storage systems is being developed, designing a novel integrated system is essential for its successful adaptation in the various grid load demands. This study proposes a novel design framework for a hybrid energy [...] Read more.
As the next generation of advanced adiabatic compressed air energy storage systems is being developed, designing a novel integrated system is essential for its successful adaptation in the various grid load demands. This study proposes a novel design framework for a hybrid energy system comprising a CAES system, gas turbine, and high-temperature solid oxide fuel cells, aiming for power generation and energy storage solutions. The overall model of the hybrid power generation system was constructed in Aspen PlusTM, and the mass balance, energy balance, and thermodynamic properties of the thermal system were simulated and analyzed. The results demonstrate that the hybrid system utilizes the functional complementarity of CAES and solid oxide fuel cells (SOFCs), resulting in the cascade utilization of energy, a flexible operation mode, and increased efficiency. The overall round-trip efficiency of the system is 63%, and the overall exergy efficiency is 67%, with a design net power output of 12.5 MW. Additionally, thermodynamic analysis shows that it is advisable to operate the system under lower ambient temperatures of 25 °C, higher compressor and turbine isentropic efficiencies of 0.9, a higher fuel utilization of 0.62, and optimal SOFC/MGT split air flow rates of 1.1 kg/s. The results of this article provide guidance for designing innovative hybrid systems and system optimization. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

12 pages, 868 KiB  
Article
A Surrogate Model of the Butler-Volmer Equation for the Prediction of Thermodynamic Losses of Solid Oxide Fuel Cell Electrode
by Szymon Buchaniec, Marek Gnatowski, Hiroshi Hasegawa and Grzegorz Brus
Energies 2023, 16(15), 5651; https://doi.org/10.3390/en16155651 - 27 Jul 2023
Cited by 2 | Viewed by 2304
Abstract
Solid oxide fuel cells are becoming increasingly important in various applications, from households to large-scale power plants. However, these electrochemical energy conversion devices have complex behavior that is difficult to understand and optimize. A numerical simulation is a primary tool for analysis and [...] Read more.
Solid oxide fuel cells are becoming increasingly important in various applications, from households to large-scale power plants. However, these electrochemical energy conversion devices have complex behavior that is difficult to understand and optimize. A numerical simulation is a primary tool for analysis and optimization-design. One of the most significant challenges in this field is improving microscale transport phenomena and electrode reaction models. Two main categories of simulation are black-box and white-box models. The former requires large experimental datasets and lacks physical constraints, while the latter inherits the inaccuracy of typical electrochemical reaction models. Here we show a micro-scale artificial neural network-supported numerical simulation that allows for overcoming those issues. In our research, we substituted one equation in the system, an electrochemical model, with an artificial neural network prediction. The data-driven prediction is constrained and must satisfy all reminded balance equations in the system. The results show that the proposed model can simulate an anode-electrode’s thermodynamic losses with improved accuracy compared with the classical approach. The coefficient of determination R2 for the proposed model was equal to 0.8810 for 800 °C, 0.8720 for 900 °C, and 0.8436 for 1000 °C. The findings open a way for improving the accuracy and computational complexity of electrochemical models in solid oxide fuel cell simulations. Full article
Show Figures

Figure 1

16 pages, 3376 KiB  
Article
Energy and Exergy Analysis of the Impact of Renewable Energy with Combined Solid Oxide Fuel Cell and Micro-Gas Turbine on Poly-Generation Smart-Grids
by Tzu-Chia Chen, T. Ch. Anil Kumar, Ngakan Ketut Acwin Dwijendra, Ali Majdi, Abdul Rab Asary, Acim Heri Iswanto, Imran Khan, Dag Øivind Madsen and Reza Alayi
Water 2023, 15(6), 1069; https://doi.org/10.3390/w15061069 - 10 Mar 2023
Cited by 11 | Viewed by 2945
Abstract
In this study, the thermodynamic performance of a combined gas turbine system equipped with a tubular solid oxide fuel cell and hydrogen fuel was investigated. All components of the system were separately modeled using thermodynamic relations. The simulation results showed that the efficiency [...] Read more.
In this study, the thermodynamic performance of a combined gas turbine system equipped with a tubular solid oxide fuel cell and hydrogen fuel was investigated. All components of the system were separately modeled using thermodynamic relations. The simulation results showed that the efficiency of the combined system decreased with an increase in the turbine inlet temperature, whereas the power of the system increased. In addition, increasing the temperature entering the turbine and increasing the pressure ratio increased the production entropy and, as a result, increased the irreversibility of the system. The results of the research at the design point showed that 65% of the irreversibility of the system was caused by the combustion chamber and fuel cell (35% of the amount of entropy produced, the contribution of the combustion chamber, and 30% of the contribution of the solid oxide fuel cell) and 19% was due to the contribution of the heat exchanger. In addition, the combined system has an efficiency of 9.81%, while the system without a fuel cell has an efficiency of 33.4%, which shows the extraordinary performance of the combined system. Full article
(This article belongs to the Special Issue Renewable Energy Systems Flexibility for Water Desalination)
Show Figures

Figure 1

19 pages, 7108 KiB  
Article
Direct Electrophoretic Deposition and Characterization of Thin-Film Membranes Based on Doped BaCeO3 and CeO2 for Anode-Supported Solid Oxide Fuel Cells
by Elena Pikalova, Denis Osinkin and Elena Kalinina
Membranes 2022, 12(7), 682; https://doi.org/10.3390/membranes12070682 - 30 Jun 2022
Cited by 25 | Viewed by 2743
Abstract
In this work, a technology was developed for the formation of BaCe0.8Sm0.2O3+1 wt% CuO (BCS-CuO)/Ce0.8Sm0.2O1.9 (SDC) thin-film electrolyte membranes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) on porous NiO-BCS-CuO anode substrates using [...] Read more.
In this work, a technology was developed for the formation of BaCe0.8Sm0.2O3+1 wt% CuO (BCS-CuO)/Ce0.8Sm0.2O1.9 (SDC) thin-film electrolyte membranes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) on porous NiO-BCS-CuO anode substrates using direct electrophoretic deposition (EPD). The effect of increasing the zeta potential when modifying the base suspension of a micro-sized SDC-gn powder (glycine–nitrate method) with the addition of a SDC-lec nanopowder (laser evaporation–condensation) was investigated. Dependences of the current strength on the deposition time and the deposited weight on the EPD voltage were obtained, and evolution of the morphology of the coatings during the modification of the SDC-gn suspension and a suspension of BCS-CuO powder was studied. The compatibility of the shrinkage kinetics of the SDC, the BCS-CuO electrolyte coatings and the NiO-BCS-CuO anode substrate was studied during the high-temperature sintering. Dense BCS-CuO/SDC films of different thicknesses were obtained for the first time on porous NiO-BCS-CuO anode substrates and comprehensive microstructural and electrochemical studies were carried out. The developed technology can be applied to the formation of anode-supported SOFCs with thin-film electrolyte membranes. Full article
Show Figures

Figure 1

20 pages, 2504 KiB  
Article
Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study
by Konstantina Peloriadi, Petros Iliadis, Panagiotis Boutikos, Konstantinos Atsonios, Panagiotis Grammelis and Aristeidis Nikolopoulos
Energies 2022, 15(11), 3892; https://doi.org/10.3390/en15113892 - 25 May 2022
Cited by 9 | Viewed by 3055
Abstract
Liquefied natural gas (LNG) is regarded as the cleanest among fossil fuels due to its lower environmental impact. In power plants, it emits 50–60% less carbon dioxide into the atmosphere compared to regular oil or coal-fired plants. As the demand for a lower [...] Read more.
Liquefied natural gas (LNG) is regarded as the cleanest among fossil fuels due to its lower environmental impact. In power plants, it emits 50–60% less carbon dioxide into the atmosphere compared to regular oil or coal-fired plants. As the demand for a lower environmental footprint is increasing, fuel cells powered by LNG are starting to appear as a promising technology, especially suitable for off-grid applications, since they can supply both electricity and heating. This article presents a techno-economic assessment for an integrated system consisting of a solid oxide fuel cell (SOFC) stack and a micro gas turbine (MGT) fueled by LNG, that feeds the waste heat to a multi-effect desalination system (MED) on the Greek island of Patmos. The partial or total replacement of the diesel engines on the non-interconnected island of Patmos with SOFC systems is investigated. The optimal system implementation is analyzed through a multi-stage approach that includes dynamic computational analysis, techno-economic evaluation of different scenarios using financial analysis and literature data, and analysis of the environmental and social impact on the island. Specific economic indicators such as payback, net present value, and internal rate of return were used to verify the economic feasibility of this system. Early results indicate that the most sensitive and important design parameter in the system is fuel cell capital cost, which has a significant effect on the balance between investment cost and repayment years. The results of this study also indicate that energy production with an LNG-fueled SOFC system is a promising solution for non-interconnected Greek islands, as an intermediate carrier prior to the long-term target of a CO₂-free economy. Full article
(This article belongs to the Special Issue Energy Efficiency in LNG Production and Use)
Show Figures

Figure 1

17 pages, 3126 KiB  
Article
Fabrication and Performance of Micro-Tubular Solid Oxide Cells
by Sulata K. Sahu, Dhruba Panthi, Ibrahim Soliman, Hai Feng and Yanhai Du
Energies 2022, 15(10), 3536; https://doi.org/10.3390/en15103536 - 12 May 2022
Cited by 11 | Viewed by 2954
Abstract
Solid Oxide Cells (SOC) are the kind of electrochemical devices that provide reversible, dual mode operation, where electricity is generated in a fuel cell mode and fuel is produced in an electrolysis mode. Our current work encompasses the design, fabrication, and performance analysis [...] Read more.
Solid Oxide Cells (SOC) are the kind of electrochemical devices that provide reversible, dual mode operation, where electricity is generated in a fuel cell mode and fuel is produced in an electrolysis mode. Our current work encompasses the design, fabrication, and performance analysis of a micro-tubular reversible SOC that is prepared through a single dip-coating technique with multiple dips using conventional materials. Electrochemical impedance and current-voltage responses were monitored from 700 to 800 °C. Maximum power densities of the cell achieved at 800, 750, and 700 °C, was 690, 546, and 418 mW cm−2, respectively. The reversible, dual mode operation of the SOC was evaluated by operating the cell using 50% H2O/H2 and ambient air. Accordingly, when the SOC was operated in the electrolysis mode at 1.3 V (the thermo-neutral voltage for steam electrolysis), current densities of −311, −487 and −684 mA cm−2 at 700, 750 and 800 °C, respectively, were observed. Hydrogen production rate was determined based on the current developed in the cell during the electrolysis operation. The stability of the cell was further evaluated by performing multiple transitions between fuel cell mode and electrolysis mode at 700 °C for a period of 500 h. In the stability test, the cell current decreased from 353 mA cm−2 to 243 mA cm−2 in the fuel cell mode operation at 0.7 V, while the same decreased from −250 mA cm−2 to −115 mA cm−2 in the electrolysis operation at 1.3 V. Full article
Show Figures

Figure 1

20 pages, 24946 KiB  
Article
Modeling of a Grid-Independent Set-Up of a PV/SOFC Micro-CHP System Combined with a Seasonal Energy Storage for Residential Applications
by Rahaf S. Ghanem, Laura Nousch and Maria Richter
Energies 2022, 15(4), 1388; https://doi.org/10.3390/en15041388 - 14 Feb 2022
Cited by 13 | Viewed by 3612
Abstract
Renewable energy sources based on solar and wind energy provide clean and efficient energy. The intermittent behaviour of these sources is challenging. At the same time, the needs for efficient, continuous and clean energy sources are increased for serving both electricity and thermal [...] Read more.
Renewable energy sources based on solar and wind energy provide clean and efficient energy. The intermittent behaviour of these sources is challenging. At the same time, the needs for efficient, continuous and clean energy sources are increased for serving both electricity and thermal demands for residential buildings. Consequently, complimentary systems are essential in order to ensure a continuous power generation. One of the promising energy sources that helps in reducing CO2 emissions, in addition to providing electrical and thermal energy efficiently, is a Solid Oxide Fuel Cell (SOFC) system operated in a combined heat and power (CHP) mode, due to high electrical efficiencies (in full and part load) and the fuel flexibility. Currently, most studies tend to focus on fuel cell model details with basic information about the building’s energy requirements. Nevertheless, a deep understanding of integrating fuel cell micro-CHP systems with renewable energy systems for the residential sector is required. Moreover, it is important to define an operating strategy for the system with a specific controlling method. This helps in evaluating the performance and the efficiency of the building energy system. In this study, an investigation of different configurations of a hybrid power system (HPS) was carried out. The intended aim of this investigation was to optimize a HPS with minimal CO2 emissions, serving the energy demands for a single-family house efficiently and continuously. As a result of this study, a photovoltaic (PV)/SOFC micro-CHP system has satisfied the intended goal, where the CO2 emissions are significantly reduced by 88.6% compared to conventional systems. The SOFC micro-CHP plant operated as a complimentary back-up generator that serves the energy demands during the absence of the solar energy. Integrating the Power to Gas (PtG) technology leads to a similar emission reduction, while the PtG plant provided a seasonal energy storage. The excess energy produced during summer by the PV system is stored in the fuel storage for a later use (during winter). This SOFC micro-CHP configuration is recommended from an energy and environmental perspective. In terms of feasibility, the costs of SOFC based micro-CHP systems are significantly higher than traditional technologies. However, further technology developments and the effect of economy of scale may cause a substantial drop in costs and the micro-CHP shall become economically competitive and available for residential users; thus, enabling a self-sufficient and efficient energy production on site. Full article
(This article belongs to the Special Issue Fuel Cell-Based and Hybrid Power Generation Systems Modeling)
Show Figures

Figure 1

26 pages, 7721 KiB  
Article
Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel
by Hazrul Adzfar Shabri, Siti Norlaila Faeizah Mohd Rudin, Shahirah Deraman, Mazlinda Ab Rahman, Mohd Hafiz Dzarfan Othman, Siti Munira Jamil, Tonni Agustiono Kurniawan, Tao Li, Suriani Abu Bakar, Nafisah Osman, Juhana Jaafar, Mukhlis A Rahman and Ahmad Fauzi Ismail
Sustainability 2021, 13(24), 13789; https://doi.org/10.3390/su132413789 - 14 Dec 2021
Cited by 4 | Viewed by 3137
Abstract
The study examines the effect of using low nickel (Ni) with high ceria (CeO2) anode content towards the oxidation of H2 and CH4 fuel by evaluating the activation energy of the ohmic process and charge transfer process. Using a [...] Read more.
The study examines the effect of using low nickel (Ni) with high ceria (CeO2) anode content towards the oxidation of H2 and CH4 fuel by evaluating the activation energy of the ohmic process and charge transfer process. Using a micro-tubular solid oxide fuel cell (MT-SOFC), the anodes are made up of 50% YSZ with varying NiO:CeO2 percentages from 0% NiO, 50% CeO2 to 50% NiO, 0% CeO2. The performance is measured based on maximum power density (MPD), electrochemical impedance spectroscopy (EIS) and activation energy, Ea of the ohmic (Rohm) and charge transfer (Rct) processes. We found that by lowering the Ni content to lower than 50% NiO, anode conductivity will drop by 7-fold. An anode containing 37.5% NiO, 12.5% CeO2 yield MPD of 41.1 and 2.9 mW cm−2 when tested on H2 and CH4 fuels thus have the lowest Ni content without an abrupt negative effect on the MPD and EIS. The significant effect of conductivity drops on MPD and EIS are observed to occur at 25% NiO, 25% CeO2 and lower NiO content. However, anode content of 25% NiO, 25% CeO2 has the lowest Ea for Rct (29.74 kJ mol−1) for operation in CH4, making it the best anode composition to oxidize CH4. As a conclusion, an anode containing 25% NiO:25% CeO2:50% YSZ and 37.5% NiO:12.5% CeO2:50% YSZ shows promising results in becoming the low Ni anode for coking-tolerant SOFC. Full article
(This article belongs to the Special Issue Fuel Cells and Hydrogen Economy)
Show Figures

Figure 1

24 pages, 9780 KiB  
Article
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
by Niccolò Caramanico, Giuseppe Di Florio, Maria Camilla Baratto, Viviana Cigolotti, Riccardo Basosi and Elena Busi
Energies 2021, 14(18), 5847; https://doi.org/10.3390/en14185847 - 15 Sep 2021
Cited by 17 | Viewed by 4048
Abstract
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For [...] Read more.
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems, in addition to their environmental performance, it is necessary, however, to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario, using a homeowner perspective approach. Moreover, two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings, but their high capital costs still would make the investments not profitable. However, the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary, the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis, environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost, the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one, while the reversible-Solid Oxide Fuel Cell system reduces it. Full article
(This article belongs to the Special Issue Environmental Aspects and Impacts of Hydrogen Technologies)
Show Figures

Figure 1

19 pages, 6376 KiB  
Article
On the High-Temperature Oxidation and Area Specific Resistance of New Commercial Ferritic Stainless Steels
by Valeria Bongiorno, Roberto Spotorno, Daniele Paravidino and Paolo Piccardo
Metals 2021, 11(3), 405; https://doi.org/10.3390/met11030405 - 1 Mar 2021
Cited by 15 | Viewed by 3235
Abstract
Two commercial ferritic stainless steels (FSSs), referred to as Steel A and Steel B, designed for specific high-temperature applications, were tested in static air for 2000 h at 750 °C to evaluate their potential as base materials for interconnects (ICs) in Intermediate Temperature [...] Read more.
Two commercial ferritic stainless steels (FSSs), referred to as Steel A and Steel B, designed for specific high-temperature applications, were tested in static air for 2000 h at 750 °C to evaluate their potential as base materials for interconnects (ICs) in Intermediate Temperature Solid Oxide Fuel Cell stacks (IT-SOFCs). Their oxidation behavior was studied through weight gain and Area Specific Resistance (ASR) measurements. Additionally, the oxide scales developed on their surfaces were characterized by X-ray Diffraction (XRD), Micro-Raman Spectroscopy (μ-RS), Scanning Electron Microscopy, and Energy Dispersive X-ray Fluorescence Spectroscopy (SEM-EDS). The evolution of oxide composition, structure, and electrical conductivity in response to aging was determined. Comparing the results with those on AISI 441 FSS, steels A and B showed a comparable weight gain but higher ASR values that are required by the application. According to the authors, Steel A and B compositions need an adjustment (i.e., a plain substitution of the elements which form insulant oxides or a marginal modification in their content) to form a thermally grown oxide (TGO) with the acceptable ASR level. Full article
(This article belongs to the Special Issue High-Temperature Corrosion and Protection of Alloys)
Show Figures

Figure 1

27 pages, 5499 KiB  
Review
The Development of Current Collection in Micro-Tubular Solid Oxide Fuel Cells—A Review
by Oujen Hodjati-Pugh, Aman Dhir and Robert Steinberger-Wilckens
Appl. Sci. 2021, 11(3), 1077; https://doi.org/10.3390/app11031077 - 25 Jan 2021
Cited by 37 | Viewed by 7539
Abstract
Micro-tubular solid oxide fuel cells (µT-SOFCs) are suited to a broad range of applications with power demands ranging from a few watts to several hundred watts. µT-SOFCs possess inherently favourable characteristics over alternate configurations such as high thermo-mechanical stability, high volumetric power density [...] Read more.
Micro-tubular solid oxide fuel cells (µT-SOFCs) are suited to a broad range of applications with power demands ranging from a few watts to several hundred watts. µT-SOFCs possess inherently favourable characteristics over alternate configurations such as high thermo-mechanical stability, high volumetric power density and rapid start-up times, lending them particular value for use in portable applications. Efficient current collection and interconnection constitute a bottleneck in the progression of the technology. The development of current collector designs and configuration reported in the literature since the inception of the technology are the focus of this study. Full article
(This article belongs to the Special Issue Advances in Solid-Oxide Fuel Cell Technology)
Show Figures

Figure 1

17 pages, 4566 KiB  
Article
Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis
by Chelladurai Karuppiah, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li and Chun-Chen Yang
Catalysts 2021, 11(1), 76; https://doi.org/10.3390/catal11010076 - 7 Jan 2021
Cited by 35 | Viewed by 5536
Abstract
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of [...] Read more.
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries. Full article
(This article belongs to the Special Issue Catalysts in Energy Applications)
Show Figures

Graphical abstract

18 pages, 2332 KiB  
Article
The Effects of Temperature and Humidity on the Microstructure of Sulfonated Syndiotactic–polystyrene Ionic Membranes
by Maria-Maddalena Schiavone, David Hermann Lamparelli, Yue Zhao, Fengfeng Zhu, Zsolt Revay and Aurel Radulescu
Membranes 2020, 10(8), 187; https://doi.org/10.3390/membranes10080187 - 14 Aug 2020
Cited by 9 | Viewed by 3697
Abstract
Polymeric membranes based on the semi-crystalline syndiotactic–polystyrene (sPS) become hydrophilic, and therefore conductive, following the functionalization of the amorphous phase by the solid-state sulfonation procedure. Because the crystallinity of the material, and thus the mechanical strength of the membranes, is maintained and the [...] Read more.
Polymeric membranes based on the semi-crystalline syndiotactic–polystyrene (sPS) become hydrophilic, and therefore conductive, following the functionalization of the amorphous phase by the solid-state sulfonation procedure. Because the crystallinity of the material, and thus the mechanical strength of the membranes, is maintained and the resistance to oxidation decomposition can be improved by doping the membranes with fullerenes, the sPS becomes attractive for proton-exchange membranes fuel cells (PEMFC) and energy storage applications. In the current work we report the micro-structural characterization by small-angle neutron scattering (SANS) method of sulfonated sPS films and sPS–fullerene composite membranes at different temperatures between 20 °C and 80 °C, under the relative humidity (RH) level from 10% to 70%. Complementary characterization of membranes was carried out by FTIR, UV-Vis spectroscopy and prompt–γ neutron activation analysis in terms of composition, following the specific preparation and functionalization procedure, and by XRD with respect to crystallinity. The hydrated ionic clusters are formed in the hydrated membrane and shrink slightly with the increasing temperature, which leads to a slight desorption of water at high temperatures. However, it seems that the conductive properties of the membranes do not deteriorate with the increasing temperature and that all membranes equilibrated in liquid water show an increased conductivity at 80 °C compared to the room temperature. The presence of fullerenes in the composite membrane induces a tremendous increase in the conductivity at high temperatures compared to fullerenes-free membranes. Apparently, the observed effects may be related to the formation of additional hydrated pathways in the composite membrane in conjunction with changes in the dynamics of water and polymer. Full article
(This article belongs to the Special Issue Ionic Conductive Membranes for Fuel Cells)
Show Figures

Graphical abstract

Back to TopTop