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Abstract: Solid Oxide Cells (SOC) are the kind of electrochemical devices that provide reversible,
dual mode operation, where electricity is generated in a fuel cell mode and fuel is produced in
an electrolysis mode. Our current work encompasses the design, fabrication, and performance
analysis of a micro-tubular reversible SOC that is prepared through a single dip-coating technique
with multiple dips using conventional materials. Electrochemical impedance and current-voltage
responses were monitored from 700 to 800 ◦C. Maximum power densities of the cell achieved at 800,
750, and 700 ◦C, was 690, 546, and 418 mW cm−2, respectively. The reversible, dual mode operation
of the SOC was evaluated by operating the cell using 50% H2O/H2 and ambient air. Accordingly,
when the SOC was operated in the electrolysis mode at 1.3 V (the thermo-neutral voltage for steam
electrolysis), current densities of −311, −487 and −684 mA cm−2 at 700, 750 and 800 ◦C, respectively,
were observed. Hydrogen production rate was determined based on the current developed in the
cell during the electrolysis operation. The stability of the cell was further evaluated by performing
multiple transitions between fuel cell mode and electrolysis mode at 700 ◦C for a period of 500 h.
In the stability test, the cell current decreased from 353 mA cm−2 to 243 mA cm−2 in the fuel cell
mode operation at 0.7 V, while the same decreased from −250 mA cm−2 to −115 mA cm−2 in the
electrolysis operation at 1.3 V.

Keywords: micro-tubular; reversible solid oxide cells; light weight; dip-coating; fuel cell operation;
electrolysis operation; hydrogen generation; durability

1. Introduction

Solid Oxide Cells (SOCs) are the kind of electrochemical devices that have reversible,
dual modes of operation, such that, in one mode, the SOC operates in a solid oxide fuel
cell (SOFC) mode, and, in another mode, the SOC operates in a solid oxide electrolysis
cell (SOEC) mode. That is, the SOFC mode converts fuel into electricity and heat, whereas
the SOEC mode generates fuel from the electrolysis of water by utilizing electricity and
heat. From a thermodynamic view, the energy demand for the endothermic water splitting
reaction can be partially obtained from the heat generated within the cell. While the
dual mode operation of SOCs provides several advantages, the technology enabling the
reversible operation of the SOC still remains at the research and development stage and
the stability over the long term is still a challenge [1–3]. Since a compact and lightweight
fuel cell design is highly sought after for the facilitation of large-scale commercialization
of SOC systems for use in portable and transportation applications, considerable efforts
have been made to develop novel and cost-effective methods of creating lightweight and
compact reversible SOCs [4–9].

Among the SOC designs, micro tubular solid oxide cells (MT-SOCs) have attracted
strong interest due to their high tolerance to thermal-cycling, quick start-up ability, high
power density over unit volume and robust portable characteristics [10–12]. However,
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the fabrication process of MT-SOCs is challenging, where different ceramic layers, with
dissimilar compositions and properties, are placed over a cylindrical support. To complete
cell fabrication, numerous sintering processes have to be accomplished at various tempera-
tures and atmospheres. Particularly, extrusion, isostatic pressing and 3D printing methods
are common to fabricate the support layer [13,14], whereas dip-coating, electrochemical
vapor deposition, pulsed laser deposition and air plasma spray techniques are used to
fabricate multilayers on the fuel electrode support [10,15]. In comparison to other fabri-
cation methods, the dip-coating process is fast and easily controllable, while, at the same
time, it offers a low-cost method to prepare thin films. Commonly dip-coating is used for
the thin electrolyte layer coating on tubular supports [13,15,16], but very few researchers
have used dip-coating to fabricate the entire cell [11,17–20]. To date, substantial progress
has been made towards the development, fabrication and durability of the MT-SOFC at
an industrial scale, However, MT-SOEC is still in the research and development stage.
Reversible MT-SOC is garnering the attention and research in progress at a laboratory
scale. Even though the operation of the SOCs is reversible, the degree of performance
degradation over time differs significantly when tested under fuel cell mode, as compared
to the electrolysis mode [1,2,7]. For example, the work of Hagen et al. [21] suggested that
under fuel cell mode, the cell is reasonably stable over extended time at a high current
density of −1–2 A cm−2. However, under electrolysis mode, the stability of the cell is
limited to a lower current density value (at 0.25 A cm−2).

The focus of the present work is to develop cost-effective, lightweight MT-SOCs using
our unique fabrication technique and evaluate their durability when cycled between their
two reversible modes. In this work, we used a single dip-coating technique with multiple
dips to develop the full cell structure, extending from the fuel electrode support tube to
the oxygen electrode. This cell development procedure is capable of producing SOCs with
flexible size, and can rapidly improve to meet the needs of research and development, as
well as of industrial manufacturing. So far, very limited literature is available for fabrication
of the complete cells by a single dip-coating technique and no report was found on testing
such an MT-SOC in reversible mode for an extended period. This is the first time an entire
MT-SOC has been developed using a single cost-effective fabrication technique which was
successfully tested under reversible operation for more than 500 h.

2. Materials and Methods
2.1. Cell Fabrication

The fabricated cells utilized Ni-Yttria Stabilized Zirconia (Ni-3YSZ), Ni-Scandia-
Stabilized Zirconia (ScSZ), Samaria-Doped Ceria (SDC) and Lanthanum Strontium Cobalt
Ferrite (LSCF) to form the fuel electrode support, the fuel electrode functional layer, the
electrolyte, the oxygen electrode protective layer, and the oxygen electrode, respectively.
The fuel electrode-supported SOC was fabricated using a multiple dip coating process [11].
The dip-coating inks for individual layers were developed using ethyl alcohol and toluene
as the solvents. To form the fuel electrode support layer, coarse NiO (NiO-C, Fuel Cell
Materials, Lewis Center, OH, USA) and 3YSZ (Tosoh Corporation, Shunan-shi, Yamaguchi,
Japan) powders were mixed in a 65/35 wt%. For the pore formers, 8 wt% PMMA and
5 wt% cellulose was used. Furthermore, 7 wt% Polyvinyl Butyral (PVB; B-98, Tape Casting
Warehouse) was used as a binder, 3 wt% Hypermer KD-1 (Tape Casting Warehouse, Mor-
risville, PA, USA) was used as a dispersant, and dioctyl phthalate (DOP; Sigma Aldrich,
St. Louis, MO, USA) at 3 wt% was used as a plasticizer. The same solvents, binder, and
plasticizers were used to prepare the slurries for other functional layers. The details of
mixing procedures and solid pretreatments for preparation of dip-coating inks are as fol-
lows. The slurries of individual layers (fuel electrode support, fuel electrode functional
layer, electrolyte, oxygen electrode protective layer and oxygen electrode) were prepared
by dispersing the ceramic powders in a binary ethyl alcohol and toluene (ratio of ethyl
alcohol/toluene: 50/50 wt%) solvent along with 3 wt% of Hypermer KD-1 as the dispersant.
The concentration of solid in the ink, with respect to the total ink weight, was 20% for
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electrolyte ink; whereas for the fuel electrode support, fuel electrode functional layer and
oxygen electrode, it was 60%. The mixture of the ceramic powder and solvent, along with
the dispersant, were ball milled for two hours. Subsequently, an appropriate amount of
binder, plasticizer and pore former were added to the mixture and the overall mixture
was ball milled for 24 h. Note that the pore former was added only for the fuel electrode
support, to achieve and control the required porosity.

The targeted thicknesses of the fuel electrode support, the fuel electrode functional
layer, the electrolyte, the protective layer, and the oxygen electrode layer were 400 µm,
15 µm, 10 µm, 2 µm, and 20 µm, respectively. To obtain the preferred thicknesses, the
dip-coating process was repeated 14 times for the fuel electrode support, 2 times for the
fuel electrode functional layer, 6 times for the electrolyte, 2 times for the protective layer,
and 4 times for the oxygen electrode. Each dip coating was followed by drying in air
for 10 min prior to other dip coating. The speed of dipping, dwelling time, and speed of
pulling were maintained at 6 mm/s, 5 s, and 1.5 mm/s, respectively. For the fabrication
of the fuel electrode support tube, the dip coated green layer, on a highly purified carbon
rod, was fired in air in a box furnace. The firing profile was configured such that the
temperature was ramped to 450 ◦C at a heating rate of 0.5 ◦C/min, whereupon it was held
at 450 ◦C for 1 h. Next, the temperature was raised to 1000 ◦C at 1 ◦C per min and held
for 1 h, after which the furnace was cooled to room temperature at a rate of 3 ◦C/min.
The pre-firing temperature of the fuel electrode functional layer was the same as that of
the support layer. The electrolyte was coated over the pre-fired fuel electrode functional
layer and was sintered at 1400 ◦C for 3 h. Prior to electrolyte sintering, the green electrolyte
coated tube was subjected to isothermal heating at 450 ◦C for 1 h. The protective layer and
oxygen electrode layer were then successfully dip coated onto the co-sintered half cells.
The protective layer was sintered at 1300 ◦C for 2 h, whereas the oxygen electrode layer was
fired at 1100 ◦C for 1 h. The selected temperature profiles for firing individual layers are
based on the observations of our previous work [11,22]. Table 1 summarizes the conditions
for the fabrication of SOC layers.

Table 1. Summarized conditions for the fabrication of SOC layers.

Individual Layers Materials Targeted
Thickness/µm

No. of
Dips

Firing Temperature/◦C
and Duration of Firing

fuel electrode
support layer

NiO/3YSZ
(65/35 wt%) 400 14 1000/1 h

fuel electrode
functional layer

NiO/ScSZ
(60/40 wt%) 15 1 1000/1 h

electrolyte ScSZ 10 6 1400/3 h
oxygen electrode
protective layer SDC 2 6 1300/2 h

oxygen electrode LSCF 20 2 1100/1 h

2.2. Microstructural Characterizations

The open porosity of the fuel electrode support, fuel electrode functional layer, and
oxygen electrode were determined by the Archimedes’ method using deionized water as a
displacement liquid.

Open porosity =
WS − WD
WS − WI

(1)

where WS is the saturated weight of the sample tube in air, WD is the dry weight of the tube
in air, and WI is the immersed weight of the tube in deionized water. The samples were
boiled in deionized water until they were completely saturated. Note that the porosity of
the fuel electrode functional layer and the oxygen electrode was determined by preparing
separate single-layer tubes and sintering them at their respective sintering temperatures.
Furthermore, the fuel electrode support and functional layer tubes were reduced in H2 prior
to the porosity measurements. The microstructure of the fuel electrode support tubes and
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the complete cells were examined with a scanning electron microscope Apreo 2 FEI/SEM
(Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Electrochemical Testing and Characterizations

The setup used for the electrochemical testing of single cells is shown in Figure 1.
To conduct the electrochemical measurements, the MT-SOC was placed at a constant
temperature zone of a split-tube furnace. Prior to this, the fuel cell was connected to
dense alumina tubes of suitable sizes to provide both the delivery of fuel and steam and
the exhaust of water and fuel. To obtain a gastight seal, a ceramic adhesive (ResbondTM

989, Cotronics, New York, NY, USA) was used to connect the fuel cell and alumina tubes.
Electrochemical characterizations of the cell were carried out between 700 and 800 ◦C
and the temperature ramp rate of the furnace was set to 3 ◦C/min. Prior to the fuel cell
performance testing, the NiO of the fuel electrode support tube was reduced to Ni at 700 ◦C
by flowing hydrogen at a rate of 100 mL/min for 2 h. For fuel cell measurements, dry H2
was used as the fuel, whereas for electrolysis measurements, 50% H2O/H2 was supplied to
the fuel electrode. A controlled amount of water was delivered to the cell using a syringe
infusion pump. During fuel cell and electrolysis measurements, the oxygen electrode
was exposed to ambient air. Again, for all the electrochemical studies, the hydrogen
flow rate was maintained at 100 mL/min. Electrochemical performance of the MT-SOCs
was evaluated using an Autolab PGSTAT302N, (Metrohm Autolab B. V., (Utrecht, The
Netherlands) that was equipped with a frequency response analyzer (FRA) and a 20 Amp
current booster. The impedance measurements were conducted using a four-probe method,
under OCV conditions, by applying an AC amplitude of 10 mV over a 100 kHz–10 mHz
frequency range. Silver wire (0.25 mm diameter) was utilized as a current collector from
both the electrodes. After completion of the tests, and as the cooling process of the fuel cell
was performed, a protection gas (H2 or N2) was supplied continuously to the fuel electrode
to prevent re-oxidation of Ni.
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Figure 1. Schematics of the electrochemical testing setup.

3. Results and Discussion
3.1. MT-SOC Fabrication

Some important considerations in the design of lightweight MT-SOCs include:
(1) microstructure control in the fuel electrode support and fuel electrode functional layer.
It should be noted that the targeted porosity for our design of the fuel electrode support
after reduction was 60 volume percent. This high porosity was to reduce fuel gas diffu-
sion resistance and was achieved by introducing polymethyl methacrylate (PMMA) and
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cellulose-based pore former to the fuel electrode support. (2) A 2-mm diameter cell design
was selected to achieve a high electrode surface area per unit volume. (3) The wall thickness
of the support tube was maintained at around 400 µm to allow sufficient cell handling
strength, while maintaining reduced cell weight. Due to its higher mechanical strength
Ni-3YSZ was preferred to form the fuel electrode support over the relatively low strength
of traditional Ni-8YSZ-based supports [23].

During the development of the fuel cell, the temperature profiles that were utilized for
pre-firing and sintering of the individual cell layers were based on our previous work [18].
In order to suppress crack formation within the samples, due to the gases produced during
the pore-former and binder burn-out events, a low heating rate of 0.5 ◦C min−1 was used
during the temperature rise from room temperature to 450 ◦C. The slow heating allowed
the generated gases to escape through open pores that were created by firing, without
increasing the pressure inside the layers. At 450 ◦C, the temperature was held for 1 h to
ensure complete removal of any organic materials, whereupon the support was pre-fired at
1000 ◦C for 1 h. The optimized oxygen electrode firing temperature generated an adherent
layer to the protective layer, yet it had sufficient porosity to allow effective air passages to be
formed towards the electrolyte. The microscopic observation of the fuel electrode support
indicated that the defect-free layer attained a certain level of surface roughness. The surface
roughness of the fuel electrode support layer was due to the pores that were generated
during the fabrication process. Coating a thin functional layer on the fuel electrode support
is a known practice to avoid the effects of surface roughness, which, in turn, is able to
improve the performance of an SOC by increasing the active sites for electrochemical
reaction. During the electrolyte sintering process, the observed linear shrinkage of the half
cells was ~17%, leading to a dense electrolyte free of defects. The determined porosities
from the Archimedes method of the fuel electrode support, fuel electrode functional layer
and oxygen electrode were 62%, 18% and 38%, respectively. Figure 2 shows the completed
and test ready MT-SOCs with silver wires wrapped around their electrodes for current
collection. The cells had an outer diameter of 2 mm and total length of 45 mm with an
oxygen electrode length of 23 mm. The effective surface area per cell was 1.44 cm2.

Since Ni-3YSZ was utilized as the fuel electrode support, the mechanical strength of
the fabricated cells was expected to be higher than that of cells containing Ni-8YSZ support.
During thermal cycling, 3YSZ restrains a softening martensitic phase transformation of
Ni and hinders crack growth, effectively enhancing its strength [2,23–25]. The strength of
NiO–3YSZ remains nearly independent of temperature when cooled from sintering. This is
due to its higher thermal expansion coefficient and a resultant higher compressive residual
stress in the NiO-3YSZ microstructure, as compared to 3YSZ. This makes grain growth
sluggish during the sintering of 3YSZ, resulting in the formation of smaller grains—one of
the reasons why 3YSZ maintains its strength [23]. However, the poor chemical stability of
3YSZ in moist atmosphere, and its tendency for spontaneous phase transformation between
100 and 200 ◦C, can lead to a breakup of the zirconia phase [26]. Therefore, 3YSZ requires
dry atmosphere protection during its thermal cycling.

Figure 3a shows the cross-sectional image of a micro-tubular cell after the reduction
of the fuel electrode in H2. The thickness of the fuel electrode support was ~400 µm. As
seen from Figure 3b, the fuel electrode support is highly porous. Figure 3c displays a
close-up view of the cell where the constituent layers of the cell, such as the fuel electrode
functional layer, electrolyte, protective layer, oxygen electrode and silver current collector
layer, are apparent. From the SEM image, the achieved thicknesses of the fuel electrode
functional layer, electrolyte, protective layer and oxygen electrode were ~18 µm, ~10 µm,
~2 µm, and ~18 µm, respectively. It is apparent that the electrolyte layer was dense and
well-adhered to the fuel electrode functional layer. Although a few isolated closed pores
were noticed in the electrolyte, this does not affect the gas tightness of the electrolyte layer.
The pores in the fuel electrode support were formed during the burning of the pore formers
and these pores allowed rapid gas diffusion. The microstructure of the fuel electrode
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functional layer is smoother, with smaller pores and particles which offer more sites for
electrochemical reaction.
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3.2. Electrochemical Performance

Before the electrochemical measurements, the fuel electrode was subjected to full
reduction at 700 ◦C for two hours. Open circuit voltage (OCV) was monitored, until its sta-
bilization around 1.15 to 1.16 V. After this, electrochemical measurements were performed.
The Nyquist plots in Figure 4 were obtained from electrochemical impedance spectroscopy
(EIS), under OCV conditions, at a temperature range of 700 ◦C to 800 ◦C. The observed
total resistance from the EIS is a combination of ohmic resistance and electrode polarization
resistance. The ohmic resistance was derived from a high frequency intercept, while the
polarization resistance was derived from the difference between the real axis intercepts of
low frequency and high frequency on Nyquist plots. The inset image in Figure 4 presents
the ohmic resistances (high frequency intercept) at different temperatures, with each pre-
senting a combination of resistances to electronic/ionic conduction through the constituent
layers of electrodes, electrolyte and current collectors. The obtained ohmic resistances
and polarization resistances were respectively 0.32 and 0.93 Ω cm2 at 800 ◦C, 0.38 and
1.38 Ω cm2 at 750 ◦C, and 0.44 and 1.80 Ω cm2 at 700 ◦C. The higher ohmic and polarization
resistances at lower temperatures were attributed to the decreased ionic conductivity of the
electrolyte and the decreased electrochemical activity of the electrodes, respectively.
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Figure 5 exhibits the current-voltage (IV) and current-power (IP) characteristics of
the MT-SOC within a 700–800 ◦C window using hydrogen as fuel and atmospheric air
as an oxidant. The maximum power densities attained at 800, 750, and 700 ◦C were 690,
546, and 418 mW cm−2, respectively. As the temperature of the cell increased, the total
resistance of the cell decreased, and the maximum power density of the cell increased
as well. The OCVs were around 1.16 V, which is in agreement with theoretical values,
thus indicating an impermeable electrolyte and good sealing between the fuel and oxidant
sides. Table 2 summarizes the characteristics and performances of some of the MT-SOFCs
tested by different groups [17,27–34]. Due to the higher electrical conductivity of ScSZ over
YSZ, performance of the cells with the ScSZ-based electrolyte were better than those of the
YSZ-based electrolyte. Also, cells with a thinner electrolyte have better performance than
cells with thicker electrolyte.
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Table 2. Performance summary of fuel electrode supported MT-SOFC.

Ref Cell Maximum Performance

This work

Fuel support electrode: Ni-ScSZ,
dip-coating, Fuel support electrode
+ Fuel support electrode functional layer
Electrolyte: ScSZ, 10 µm
Oxygen electrode: SDC/LSCF 20 µm

690 mW cm−2,
800 ◦C

Liu et al. [17]

Fuel support electrode: Ni–YSZ,
500–600 µm
Electrolyte: ScSZ, 10 µm
Oxygen electrode: ScSZ–LSM/LSM, 70 µm

240 mW cm−2,
800 ◦C

Monzón et al. [29]

Fuel support electrode: Ni–YSZ, Extrusion,
700 µm
Electrolyte: YSZ, Dip-coating, 20 µm
Oxygen electrode: LSM–YSZ/LSM,
dip-coating 30–50 µm

600 mW cm−2,
850 ◦C

Suzuki et al. [30]

Fuel support electrode: Ni–ScSZ, Extrusion,
400 µm
Electrolyte: ScSZ, Dip-coating, 3 µm
Oxygen electrode: GDC/LSCF–GDC, 6 µm,
dip-coating

800 mW cm−2,
600 ◦C

Suzuki et al. [31]

Fuel support electrode: Ni–YSZ, Extrusion
Electrolyte: YSZ; Dip-coating, <1 µm
Oxygen electrode: GDC/LSCF–GDC,
Dip-coating, 6 µm

300 mW cm−2,
600 ◦C

Suzuki et al. [32]

Fuel support electrode: Ni–YSZ, Extrusion
Electrolyte: Ni–ScSZ/ScSZ, Dip-coating,
10 µm
Oxygen electrode: GDC/LSCF–GDC,
Dip-coating, 6 µm

600 mW cm−2,
780 ◦C

Sarkar et al. [33]

Fuel support electrode: Ni–YSZ, Fuel
support electrode + Fuel support
functional electrode
Electrolyte: YSZ <10 µm
Oxygen electrode: YSZ–LSM/LSM

190 mW cm−2,
800 ◦C

Dhir and Kendall [34]

Fuel support electrode: Ni–YSZ, Extrusion
300 µm
Electrolyte: YSZ, 15 µm
Oxygen electrode: LSM

350 mW cm−2, 800 ◦C

As seen from Table 2, at 800 ◦C performance of our cell is comparable to that of the
observed performance of Suzuki et al. [32], where 10 µm ScSZ was the electrolyte. This
indicates that one can use an easy and cost-effective dip coating technique to develop the
entire cell without any compromise in cell performance. Fabrication of the fuel electrode
support using dip coating allowed us to easily fine tune anode support porosity, which
offers potential for easy and fast delivery of fuel to the triple phase boundary. Also,
development of other coating layers on the support by dip-coating has better interfacial
contacts, which is another basic factor for a better performing cell.

3.3. Reversible Operation

To demonstrate the dual functional capabilities of our MT-SOC, we operated the cell in
reversible mode (i.e., fuel cell mode and electrolysis mode) using 50% H2O/H2 as the feed
gas to the fuel electrode. Figure 6 exhibits the current-voltage characteristics of the MT-SOC
operating in reversible mode, in a temperature range of 700 ◦C to 800 ◦C. In electrolysis
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mode, at 1.3 V (the thermo-neutral voltage for steam electrolysis), current densities of −311,
−487 and −684 mA cm−2 were obtained at 700, 750 and 800 ◦C, respectively.
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Water electrolysis using MT–SOC is the focus of the fuel cell community [35–38].
Laguna-Bercero et al. [39] reported reversible MT-SOC using Ni–YSZ/YSZ/LSM–YSZ
cells at 850 ◦C under 70%H2O/15% H2/15% N2, where a current density of −1 A cm−2

was observed at 1.3 V. Hashimoto et al. [40] performed SOEC experiments using ScSZr
electrolyte-based MT-SOFC under 18% steam. The cell exhibited modest performance of
−0.1 A cm−2 at 700 ◦C at an operation voltage of 1.37 V. SOEC study by Wang et al. [36],
on a Ni-ScSZ/ScSZ/GDC/LSCF cell delivered reasonable performances at 650 ◦C, under
36% steam (1.32 V at −0.57 A cm−2). Similarly, performances of MT-SOC with a novel
asymmetric porous hydrogen electrode by Yang et al. [41] indicated that when the MT-SOC
was operated in fuel cell mode, maximum power densities of 0.54, 0.71 and 1.25 W/cm2

were obtained at 800 ◦C, 850 ◦C and 900 ◦C, respectively. On the other hand, when the
MT-SOC functioned in electrolysis mode at 900 ◦C, current densities of 0.68 A/cm2 and
2.57 A/cm2, were obtained at the applied voltage of 1.3 V, and at 30 and 80 vol.% humidity,
respectively. Performance of our cell is moderate under electrolysis mode and falls in the
range of performance data observed in the literature. Though the performance is moderate,
the results reflect that a simple and a cost-effective technique can be used to fabricate
MT-SOCs with reversible, dual mode operation capability.

Hydrogen production rate was determined based on the cell current developed from
the electrolysis cell [42]. Assuming 100% Faradic efficiency, the estimated hydrogen gener-
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ated is presented in Figure 7. The rate of hydrogen production was calculated based on the
applied electric current at 800 ◦C by invoking the following expression:

∆NH2 =
I

2F
(2)

where I is the cell current, and F is the Faraday constant (F = 96,485 C mol−1). The hydrogen
production rate varied linearly with generated electric current, in accordance with Faraday’s
Law, suggesting that hydrogen production is proportional to the cell current generated.
Eventually, we converted the hydrogen production rate from a molar to a volumetric rate by
employing the ideal gas equation under standard temperature and pressure conditions [42].
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3.4. Durability and Stability Evaluation

To evaluate the durability and the stability of the cell, it was operated at 700 ◦C while
the 2 reversible modes were cycled. In particular, reversible operation was conducted at
an applied voltage of 0.7 V during fuel cell mode, and 1.3 V during electrolysis mode.
As shown in Figure 8, at the beginning of the fuel cell mode operation, cell current was
353 mA cm−2, and over a period of 500 h, the current decreased to 243 mA cm−2. Simi-
larly, at the beginning of the electrolysis mode, the resulting current was −250 mA cm−2

and over the period of the 500 h, the current increased to −115 mA cm−2. The rate of
degradation when the cell was operating in electrolysis mode was approximately 50%,
whereas the degradation that occurred when the cell was operated in fuel cell mode was
almost 31%. These degradation effects are evident when analyzing both the variation
of IV curves (under SOFC and SOEC modes), and cell impedance as a function of time
(Figures 9 and 10). Figure 9 shows the corresponding Nyquist plots of the cell at OCV at 0,
385 and 500 h. It is evident from Figure 9 that the increase in polarization resistance is the
major contributor to cell degradation, while the increase in ohmic resistance contributed
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by a smaller degree. During this time, the ohmic resistance in the high frequency range
increased from about 0.45 Ω cm2 at the 0th hour to 0.55 Ω cm2 at 500th hour. This increase
of 0.1 Ω cm2 can be associated with the increase in contact resistance between the electrodes
and the current collector, or it could be due to a possible partial oxidation of Ni in the
Ni/YSZ support. Moreover, a substantial increase of the overall impedance from 2.4 Ω cm2

to 3.7 Ω cm2 was observed. This corresponds to an increase in the overall polarization
impedance from 1.95 Ω cm2 after the 0th h to 2.72 Ω cm2 after 385th h and 3.15 Ω cm2

after 500th h. The steepest change can be observed during the I–V characterization mea-
surements (Figure 10). These changes can be attributed to an increase of the polarization
resistances of the oxygen and fuel electrodes. However, comparison of the microstructure
of functional layers before and after the test, shown in Figure 11, indicated grain coarsening
of the Ni-YSZ particles of the fuel electrode. This may lead to a decrease of electrochemical
activity of the fuel electrode, due to the reduction of the triple phase boundary. Further-
more, the results of the impedance spectra are in good agreement with the slope of the I-V
curves, the area-specific resistances of the cell. As observed in Figure 10, the slopes of the
electrolysis curves are much higher than those of the fuel cell curves, which is an indication
that the degradation rate is much higher when the cell operates in electrolysis mode than
its operation in fuel cell mode.
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Other likely reasons for the observed cell degradation and failures include: (1) for
Ni–YSZ supported cells, the support becomes soft during reduction, allowing rapid crack
development in the composite structure [26]. During long-term reversible operation of the
cell, water acts as an influencing factor to reduce the stability of the Ni–YSZ-based support
further [24,43–45]. Additionally, prior reports [46,47] suggest that during solid oxide cell
operation there is a possibility of formation of zirconia and NiO based nanoparticles. At the
beginning of the long-term test, these nanoparticles may activate the cell and contribute to
the enhancement of cell performance. However, over the long term, they block the Ni and
the stabilized zirconia contact, thus resulting in a reduction of H2O. Moreover, a continued
oxidation of Ni can irreversibly damage the fuel electrode. This is especially the case if the
reduction–oxidation (redox) of Ni occurs repeatedly, causing the cermet to be mechanically
destroyed because of the large volume difference between Ni and NiO [48].
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4. Conclusions

We fabricated cost-effective, lightweight MT-SOCs successfully and tested their per-
formance during reversible, dual mode operation—the fuel cell mode and the electrolysis
mode for 500 uninterrupted hours. This is the first time that the durability of the MT-SOC,
developed in its entirety using the single low-cost fabrication technique, was tested for such
prolonged duration. During the reversible operation, the cell degradation rate was much
higher in the electrolysis mode than in the fuel cell mode. There is suggestive evidence
that the coarsening of the Ni particles of the fuel electrode is one of the reasons for the
faster degradation of the SOC, leading to a decrease in the electrochemical activity of the
electrode through the reduction of the triple phase boundary. Additionally, the possibility
of formation of zirconia and NiO-based nanoparticles during the electrolysis operation is
due to the fact that, over a long term, the operation can partly block the Ni-ScSZ contact,
and contribute towards cell degradation. Based on these results, the goal of our future
efforts is to minimize the degradation rate observed in the current study.
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8. Preininger, M.; Stoeckl, B.; Subotić, V.; Hochenauer, C. Characterization and performance study of commercially available solid

oxide cell stacks for an autonomous system. Energy Convers. Manag. 2020, 203, 112215. [CrossRef]
9. Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of solid oxide electrolysis cells: A clean

energy strategy for hydrogen generation. Nanomater. Energy 2019, 8, 2–22. [CrossRef]
10. Jamil, S.M.; Othman, M.H.D.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.; Li, K. Recent fabrication techniques for micro-tubular solid

oxide fuel cell support: A review. J. Eur. Ceram. Soc. 2015, 35, 1–22. [CrossRef]
11. Panthi, D.; Tsutsumi, A. A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide

fuel cells. J. Solid State Electrochem. 2014, 18, 1899–1905. [CrossRef]
12. Panthi, D.; Hedayat, N.; Woodson, T.; Emley, B.J.; Du, Y. Tubular solid oxide fuel cells fabricated by a novel freeze casting method.

J. Am. Ceram. Soc. 2020, 103, 878–888. [CrossRef]
13. Sammes, N.; Du, Y. Fabrication and Characterization of Tubular Solid Oxide Fuel Cells. Int. J. Appl. Ceram. Technol. 2007, 4,

89–102. [CrossRef]

http://doi.org/10.1093/ce/zkz023
http://doi.org/10.1038/nature19090
http://www.ncbi.nlm.nih.gov/pubmed/27548878
http://doi.org/10.1149/1.2739211
http://doi.org/10.1149/10301.0017ecst
http://doi.org/10.3389/fenrg.2014.00022
http://doi.org/10.1016/j.enconman.2019.112215
http://doi.org/10.1680/jnaen.18.00009
http://doi.org/10.1016/j.jeurceramsoc.2014.08.034
http://doi.org/10.1007/s10008-014-2429-8
http://doi.org/10.1111/jace.16781
http://doi.org/10.1111/j.1744-7402.2007.02127.x


Energies 2022, 15, 3536 16 of 17

14. Zakaria, Z.; Awang Mat, Z.; Abu Hassan, S.H.; Boon Kar, Y. A review of solid oxide fuel cell component fabrication methods
toward lowering temperature. Int. J. Energy Res. 2020, 44, 594–611. [CrossRef]

15. Tietz, F.; Buchkremer, H.P.; Stöver, D. Components manufacturing for solid oxide fuel cells. Solid State Ion. 2002, 152, 373–381.
[CrossRef]

16. Monzon, H.; Laguna-Bercero, M. Highly stable microtubular cells for portable solid oxide fuel cell applications. Electrochim. Acta
2016, 222, 1622–1627. [CrossRef]

17. Liu, R.Z.; Wang, S.R.; Huang, B.; Zhao, C.H.; Li, J.L.; Wang, Z.R.; Wen, Z.Y.; Wen, T.L. Dip-coating and co-sintering technologies
for fabricating tubular solid oxide fuel cells. J. Solid State Electrochem. 2009, 13, 1905–1911. [CrossRef]

18. Panthi, D.; Choi, B.; Du, Y.; Tsutsumi, A. Lowering the co-sintering temperature of cathode electrolyte bilayers for micro-tubular
solid oxide fuel cells. Ceram. Int. 2017, 43, 10698–10707. [CrossRef]

19. Panthi, D.; Choi, B.; Tsutsumi, A. Fabrication and evaluation of a micro-tubular solid oxide fuel cell with an inert support using
scandia-stabilized zirconia electrolyte. J. Electrochem. Soc. 2015, 162, F1555–F1560. [CrossRef]

20. Hedayat, N.; Panthi, D.; Du, Y. Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and
reduced sintering steps. Electrochim. Acta 2017, 258, 694–702. [CrossRef]

21. Hagen, A.; Menon, M.; Rasmousse, S.; Larsen, P.H.; Barfod, R.; Henriksen, P.V. Properties and performance of SOFCs produced on
a pre-pilot plant scale. In Proceedings of the Sixth European SOFC Forum, Luzerne, Switzerland, 28 June–2 July 2004; Volume 2,
pp. 930–939.

22. Hedayat, N.; Panthi, D.; Du, Y. Fabrication of tubular solid oxide fuel cells by solvent-assisted lamination and co-firing a rolled
multilayer tape cast. Int. J. Appl. Ceram. Technol. 2018, 15, 307–314. [CrossRef]

23. Khajavi, P. Improving the Mechanical Properties and Stability of Solid Oxide Fuel and Electrolysis Cells. Ph.D. Thesis, Technical
University of Denmark, Kongens Lyngby, Denmark, 2018.

24. Ni, D.W.; Charlas, B.; Kwok, K.; Molla, T.T.; Hendriksen, P.V.; Frandsen, H.L. Influence of temperature and atmosphere on the
strength and elastic modulus of solid oxide fuel cell anode supports. J. Power Sources 2016, 311, 1–12. [CrossRef]

25. Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and
future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [CrossRef]

26. Frandsen, H.L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D.W.; Curran, D.J.; Strobl, M.; Kuhn, L.T.; Hendriksen, P.V.
Accelerated creep in solid oxide fuel cell anode supports during reduction. J. Power Sources 2016, 323, 78–89. [CrossRef]

27. Laguna-Bercero, M.A.; Campana, R.; Larrea, A.; Kilner, J.A.; Orera, V.M. Performance and aging of microtubular YSZ-based solid
oxide regenerative fuel cells. Fuel Cells 2011, 11, 116–123. [CrossRef]

28. Campana, R.; Merino, R.I.; Larrea, A.; Villarreal, I.; Orera, V.M. Fabrication, electrochemical characterization and thermal cycling
of anode supported microtubular solid oxide fuel cells. J. Power Sources 2009, 192, 120–125. [CrossRef]

29. Monzón, H.; Laguna-Bercero, M.A.; Larrea, A.; Arias, B.I.; Várez, A.; Levenfeld, B. Design of industrially scalable microtubular
solid oxide fuel cells based on an extruded support. Int. J. Hydrogen Energy 2014, 39, 5470–5476. [CrossRef]

30. Suzuki, T.; Hasan, Z.; Funahashi, Y.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Impact of anode microstructure on solid oxide fuel
cells. Science 2009, 325, 852–855. [CrossRef]

31. Suzuki, T.; Hasan, Z.; Yamaguchi, T.; Fujishiro, Y.; Awano, M.; Sammes, N. Fabrication of micro-tubular solid oxide fuel cells with
a single-grain thick yttria stabilized zirconia electrolyte. J. Power Sources 2010, 195, 7825–7828. [CrossRef]

32. Suzuki, T.; Sugihara, S.; Hamamoto, K.; Yamaguchi, T.; Fujishiro, Y. Energy efficiency of a microtubular solid-oxide fuel cell. J.
Power Sources 2011, 196, 5485–5489. [CrossRef]

33. Sarkar, P.; Yamarte, L.; Rho, H.; Johanson, L. Anode-supported tubular micro-solid oxide fuel cell. Int. J. Appl. Ceram. Technol.
2007, 4, 103–108. [CrossRef]

34. Dhir, A.; Kendall, K. Microtubular SOFC anode optimisation for direct use on methane. J. Power Sources 2008, 181, 297–303.
[CrossRef]

35. Kato, T.; Sakaki, N.; Negishi, A.; Honda, T.; Nguyen, L.; Tanaka, Y. Development of tubular solid oxide electrolysis cells for
hydrogen production. ECS Trans. 2009, 25, 1015. [CrossRef]

36. Wang, Z.; Mori, M.; Araki, T. Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and
efficiency of hydrogen production system at 300 Nm3 h-1. Int. J. Hydrogen Energy 2010, 35, 4451–4458. [CrossRef]

37. Jin, C.; Yang, C.H.; Chen, F.L. Novel micro-tubular high temperature solid oxide electrolysis cells. ECS Trans. 2011, 35, 2987–2995.
[CrossRef]

38. Shao, L.; Qian, J.; Ye, X.; Wen, T. Optimization of the electrode-supported tubular solid oxide cells for application on fuel cell and
steam electrolysis. Int. J. Hydrogen Energy 2013, 38, 4272–4280. [CrossRef]

39. Laguna-Bercero, M.A.; Campana, R.; Larrea, A.; Kilner, J.A.; Orera, V.M. Steam electrolysis using a microtubular solid oxide fuel
cell. J. Electrochem. Soc. 2010, 6, B852–B855. [CrossRef]

40. Hashimoto, S.; Liu, Y.; Mori, M.; Funahashi, Y.; Fujishiro, Y. Study of steam electrolysis using a microtubular ceramic reactor. Int.
J. Hydrogen Energy 2009, 34, 1159–1165. [CrossRef]

41. Yang, C.; Jin, C.; Chen, F. Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode.
Electrochim. Acta 2010, 56, 80–84. [CrossRef]

42. Duffy, M.; Harrison, K.; Sheahen, T. Measurement of Hydrogen Production Rate Based on Dew Point Temperatures: Independent Review;
NREL/MP-150-42237; U.S. Department of Energy Hydrogen Program: Golden, CO, USA, 2007.

http://doi.org/10.1002/er.4907
http://doi.org/10.1016/S0167-2738(02)00344-2
http://doi.org/10.1016/j.electacta.2016.11.150
http://doi.org/10.1007/s10008-008-0752-7
http://doi.org/10.1016/j.ceramint.2017.05.003
http://doi.org/10.1149/2.1031514jes
http://doi.org/10.1016/j.electacta.2017.11.115
http://doi.org/10.1111/ijac.12828
http://doi.org/10.1016/j.jpowsour.2016.02.027
http://doi.org/10.1111/j.1551-2916.2009.03278.x
http://doi.org/10.1016/j.jpowsour.2016.04.097
http://doi.org/10.1002/fuce.201000069
http://doi.org/10.1016/j.jpowsour.2008.12.107
http://doi.org/10.1016/j.ijhydene.2014.01.010
http://doi.org/10.1126/science.1176404
http://doi.org/10.1016/j.jpowsour.2009.11.149
http://doi.org/10.1016/j.jpowsour.2011.02.052
http://doi.org/10.1111/j.1744-7402.2007.02129.x
http://doi.org/10.1016/j.jpowsour.2007.11.005
http://doi.org/10.1149/1.3205626
http://doi.org/10.1016/j.ijhydene.2010.02.058
http://doi.org/10.1149/1.3570299
http://doi.org/10.1016/j.ijhydene.2012.12.144
http://doi.org/10.1149/1.3332832
http://doi.org/10.1016/j.ijhydene.2008.11.037
http://doi.org/10.1016/j.electacta.2010.09.052


Energies 2022, 15, 3536 17 of 17

43. Goutianos, S.; Frandsen, H.L.; Sørensen, B.F. Fracture properties of nickel-based anodes for solid oxide fuel cells. J. Eur. Ceram.
Soc. 2010, 30, 3173–3179. [CrossRef]

44. Boccaccini, D.N.; Frandsen, H.L.; Soprani, S.; Cannio, M.; Klemensø, T.; Gil, V.; Hendriksen, P.V. Influence of porosity on
mechanical properties of tetragonal stabilized zirconia. J. Eur. Ceram. Soc. 2018, 38, 1720–1735. [CrossRef]

45. Fleischhauer, F.; Bermejo, R.; Danzer, R.; Mai, A.; Graule, T.; Kuebler, J. High temperature mechanical properties of zirconia tapes
used for electrolyte supported solid oxide fuel cells. J. Power Sources 2015, 273, 237–243. [CrossRef]

46. Chen, M.; Sun, X.; Chatzichristodoulou, C.; Koch, S.; Hendriksen, P.V.; Mogensen, M.B. Thermoneutral operation of solid oxide
electrolysis cells in potentiostatic mode. ECS Trans. 2017, 78, 3077. [CrossRef]

47. Ahlgren, E.; Poulsen, F.W. Thermoelectric power of YSZ. Solid State Ion. 1994, 70, 528–532. [CrossRef]
48. Sammes, N.M.; Du, Y. The mechanical properties of tubular solid oxide fuel cells. J. Mater. Sci. 2003, 38, 4811–4816. [CrossRef]

http://doi.org/10.1016/j.jeurceramsoc.2010.07.028
http://doi.org/10.1016/j.jeurceramsoc.2017.09.029
http://doi.org/10.1016/j.jpowsour.2014.09.068
http://doi.org/10.1149/07801.3077ecst
http://doi.org/10.1016/0167-2738(94)90366-2
http://doi.org/10.1023/B:JMSC.0000004400.95156.dc

	Introduction 
	Materials and Methods 
	Cell Fabrication 
	Microstructural Characterizations 
	Electrochemical Testing and Characterizations 

	Results and Discussion 
	MT-SOC Fabrication 
	Electrochemical Performance 
	Reversible Operation 
	Durability and Stability Evaluation 

	Conclusions 
	References

