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Abstract: Solid oxide fuel cells are becoming increasingly important in various applications, from
households to large-scale power plants. However, these electrochemical energy conversion devices
have complex behavior that is difficult to understand and optimize. A numerical simulation is a
primary tool for analysis and optimization-design. One of the most significant challenges in this field
is improving microscale transport phenomena and electrode reaction models. Two main categories of
simulation are black-box and white-box models. The former requires large experimental datasets and
lacks physical constraints, while the latter inherits the inaccuracy of typical electrochemical reaction
models. Here we show a micro-scale artificial neural network-supported numerical simulation that
allows for overcoming those issues. In our research, we substituted one equation in the system, an
electrochemical model, with an artificial neural network prediction. The data-driven prediction is
constrained and must satisfy all reminded balance equations in the system. The results show that the
proposed model can simulate an anode-electrode’s thermodynamic losses with improved accuracy
compared with the classical approach. The coefficient of determination R2 for the proposed model
was equal to 0.8810 for 800 °C, 0.8720 for 900 °C, and 0.8436 for 1000 °C. The findings open a way for
improving the accuracy and computational complexity of electrochemical models in solid oxide fuel
cell simulations.

Keywords: solid oxide fuel cell; grey-box models; artificial neural network; mathematical modeling

1. Introduction

The solid oxide fuel cell (SOFC) has emerged as a highly promising energy conversion
technology, boasting energy conversion efficiency. A single solid oxide fuel cell comprises
two porous ceramic electrodes separated by a solid ceramic electrolyte. During operation,
hydrogen (or a mixture of hydrogen and carbon monoxide from the reforming process of
hydrocarbons) is fed into the anode side, and air is fed into the cathode side. The high
operating temperature of the solid oxide fuel cell, typically between 600 and 1000 °C,
promotes the transfer of oxygen ions from the cathode to the anode, where they oxidize
fuel. This electrochemical reaction releases electrons, creating an electric current that flows
through an external circuit and provides electrical power. Therefore, the electrochemical re-
action domain comprises the contact line between the electron-conducting, ion-conducting,
and pore phases, the so-called Triple-Phase Boundary (TPB). The anode must have a high
TPB length density value to sustain the electrochemical reaction. At the same time, phases
need to be well connected. A reaction domain where at least one phase is isolated, inactive,
and does not contribute to power generation. Therefore, these electrodes feature a complex
composite structure that determines the electrochemical performance of the individual cell
and also the entire stack of cells [1]. The complex pores structure of an electrode limits the
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gas transport throughout the gas diffusion layer and is critical to determining the limiting
current density of a cell [2]. Numerical simulation has demonstrated its worth as an essen-
tial tool for designing and optimizing SOFC electrodes, providing deeper insights into the
transport processes across a fuel cell. Outside of design and optimization, numerical simu-
lation provides in-depth insights into the transport phenomena occurring across a solid
oxide fuel cell. This includes the flow of fuel and oxidant in channels, ion and electrolyte
migration across the electrodes and electrolyte, electrochemical reactions at the reaction
domain, and heat generation and transfer from the electrodes. Such insights are crucial for
understanding operating principles and how to use them to improve performance.

Black-box, white-box, and gray-box models are different approaches to solid oxide
fuel cell simulations that vary in their reliance on experimental data and the incorporation
of underlying scientific theories. Black-box models are data-driven and do not lean on
an understanding of underlying physics or chemistry. A black-box model uses empirical
observations to develop relationships between input and output variables. Previously
published studies indicate effective capture of complex relationships between variables,
often with a precision exceeding that available for complex computational fluid dynamic
analyses [3]. Artificial neural networks (ANNs) are one of the most common black box
models used for fuel cell simulation, as evidenced by refs. [4–7]. The shortcomings of
using them include requiring a large amount of experimental data and a lack of physical
constraints that can limit predictive capabilities. The possibility of interpreting the data is
also limited in this case, as the mechanisms that led to the particular output are unknown.

White-box models are physics-based models built on an understanding of the under-
lying physics, chemistry, and mathematical balance equations governing the system. These
models incorporate fundamental equations, such as conservation laws and reaction kinetics,
to simulate solid oxide fuel cell behavior. However, those models have numerous assump-
tions and simplifications, which can introduce inaccuracies. Various constants in white-box
models are obtained by fitting them to the experimental data and inheriting experimental
inaccuracies, limiting the application of the model to the operating conditions and system
parameters used in the experiment. An excellent example is an electrochemical model for
solid oxide fuel cell simulations. The commonly used model is the Butler-Volmer equation;
the mathematical relation for the volumetric exchange current density iTPB (A m−3) is
presented in the following form:

iTPB = i0

[
exp

(
αnF
RT

ηact

)
− exp

(−βnF
RT

ηact

)]
, (1)

where i0 is the equilibrium exchange current density per unit volume (A m−3). i0 is associ-
ated with the available reaction domain, which is quantitatively described by TPB length
density and estimated from fitting to empirical data [8], α and β are the dimensionless
charge transfer coefficients (1) that are obtained by fitting to the experiment [9], n is the
number of electrons involved in the electrode reaction, R = 8.3144 J mol−1 K−1 is the uni-
versal gas constant, T is the temperature (K), ηact is the activation overpotential (V), and
F = 96,485.3415 s A mol−1 is the Faraday constant.

The model has several empirical constants and simplifications, including implement-
ing the reaction symmetry coefficient. In many research works, authors assume α = 0.5
and β = 0.5. This assumption is corroborated by Kazempoor and Braun’s study [10], which
is grounded in experimental findings from other research [11,12] involving an electrode
examined at temperatures of 750 °C, 800 °C, and 850 °C. It is also a common assumption
for an analytical solution of the charge equation, as it reduces exponential terms in the
Butler-Volmer model to hyperbolic sine [13,14]. This equation is widely employed in
many numerical analyses of solid oxide fuel cells, as confirmed by citations [15,16]. Those
values have become so common that some research groups adopt them without supply-
ing a source [17,18], or sources refer to an article that only applies the values, such as in
the case of refs. [19,20]. An alternative approach dedicated to SOFCs was introduced by
Kawada et al. [21] more than three decades ago. They assert that α = 1 and β = 0.5 most ac-
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curately reflect the experimental data gathered for solid oxide fuel cells. The Butler-Volmer
equation, as formulated by Kawada et al. [21], continues to be extensively employed in
the numerical simulation of SOFCs, as substantiated by citations [22–24]. Furthermore,
Kawada et al. [21] demonstrate in supplementary experiments that both sintering tem-
perature and nickel source powder (microstructure) can influence the parameters of the
Butler-Volmer equation. In recent work, Gnatowski et al. [25] proposed a computational
scheme that employs an artificial neural network to update the charge transfer coefficients
based on operational conditions and available datasets. The artificial neural network pro-
posed functional relationships between the charge transfer coefficients and temperature
as well as withdrawn current. The study showed that using an artificial neural network
to update the electrochemical reaction model improved the accuracy of the predictions
made by the model in Solid Oxide Fuel Cell modeling. The approach developed by Gna-
towski et al. [25] fell into the category of gray-box models, which combine elements of both
black-box and white-box modeling, blending data-driven techniques with knowledge of
the underlying physics or chemistry. These models might use machine learning algorithms
to approximate certain aspects of the fuel cell system while incorporating fundamental
equations and constraints from the white-box approach.

This study aims to build on our previous findings [25,26] and propose a gray-box
approach in which the entire electrochemical model of the solid oxide fuel cell anode is
replaced by an artificial neural network approximation. At the same time, the neural
network prediction is constrained by the fulfillment of charge and mass conservation laws
in the system, making the simulation results physically feasible.

2. Mathematical Model
A numerical analysis of the transport phenomena red in the depth direction of an

anode was conducted using a system of four differential equations, which are grounded in
the fundamental conservation laws of mass and electrical charge. Two different equations
for electric potential are incorporated: one addressing the electron current in the nickel
phase and the other for ion transfer in the yttrium-stabilized zirconia phase. A diffusion
equation is also included for each species in the steam-hydrogen gas mixture that is present
within the electrode’s open porosity. Given the thinness of the anode to be 50 µm in this
study, we assume isothermal conditions. This notion of minor temperature variation
within a single electrode is confirmed by our heat transfer simulations, as evidenced in
references [8,27,28]. Furthermore, our previous research has shown that the isothermal
model can accurately reproduce the experimental results for an actual SOFC system across a
broad range of operational conditions [1]. The complete set of equations is provided below:

iTPB = ∇ ·
(

σeff
ele∇φele

)
, φele|0 = η,

dφele
dx
|L = 0

−iTPB = ∇ ·
(

σeff
ion∇φion

)
,

dφion
dx
|0 = 0, φion|L = 0

− iTPB
2F

= ∇ ·
(

ϑeff
H2O∇pH2O

)
, pH2O|0 = pbulk

H2O,
dpH2O

dx
|L = 0

iTPB
2F

= ∇ ·
(

ϑeff
H2
∇pH2

)
, pH2 |0 = pbulk

H2
,

dpH2

dx
|L = 0,

(2)

where σeff
ele is the effective electron conductivity of the nickel phase (S m−1), σeff

ion is the
effective ionic conductivity of yttria-stabilized zirconia (S m−1), ϑeff

H2
is a function of the

effective diffusion coefficients in the porous electrode and is estimated using the bulk
diffusion coefficients of hydrogen, the pores’ volume fraction, and the pore phase tortuosity
factor, ϑeff

H2O is a function of the effective diffusion coefficients in the porous electrode and
is estimated using the bulk diffusion coefficients of steam, the pore phase volume fraction,
and the pore phase tortuosity factor, φele is the electric potential of nickel phase (V), φion is
the electric potential of yttria-stabilized zirconia phase (V), pH2 is the partial pressure of
hydrogen (Pa), pH2O is the partial pressure of steam (Pa), η is the total anode’s overpotential
(V), and iTPB is volumetric current density and is estimated by the artificial neural network
in this study. Cell’s performance is characterized by j(T, η), where j (A m−2) is the current
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density. This value can be directly measured and used for validation. The current density
can be calculated as an integral of iTPB:

j =
∫ L

0
iTPB dx , (3)

whereas ionic and electronic currents can be evaluated as:

jele = −σeff
ele∇φele (4)

jion = −σeff
ion∇φion. (5)

As the experimental data does not contain direct information about values of volumet-
ric current density iTPB, which is a scalar field inside an anode. Therefore, the following
design is used: the artificial neural network predicts the value of volumetric current density
iTPB for a given temperature, current density, and position required by the numerical model.
The numerical model solves the system of differential equations with the help of the data
provided by the ANN. The number of ANN predictions required for one simulation de-
pends on the mesh of the numerical model. Potentials obtained with the numerical model
are used to evaluate the discrepancy between the experiment and the model prediction
Etrain,i. The shape of volumetric current density iTPB estimated by the ANN is used to
evaluate additional error Eaug,i related to a set of constraints with a minimum possible
value equal to zero. The process is repeated for each training data point i. An arbitrary
number of arbitrary points can be used to ensure constraints on the required domain.
The errors Etrain,i and Eaug,i are used to find values of weights and biases. A block diagram
of the methodology is presented in Figure 1 and a detailed training process is presented in
Algorithm 1.

Figure 1. Block diagram of artificial neural network training in integrated model.

Detailed artificial neural network training process is described in the Algorithm 1.
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Algorithm 1 Neural Network Training with CMA-ES

Require: Empirical data set D =
{
(Texp

i , jexp
i , η

exp
i )|0 ≤ i ≤ N

}
, CMA-ES optimization parameters pCMA, SOFC’s nu-

merical model M, artificial neural network parameters pANN
1: fmin = ∞
2: (Dtrain, Dtest) = divideData(D) // Divide data to training and test sets
3: Daug = augmentedDataset() // Include arbitrary data points within the bounds of experimental data set
4: CMAoptimizer = initializeCMA(pCMA)
5: repeat
6: nextGeneration(CMAoptimizer)
7: P = getPopulation(CMAoptimizer) // Get current population
8: for ci ∈ P do
9: I = network(ci, pANN)

10: IM = integrate(M, I) // integrate the SOFC’s numerical model and the ANN
11: Etrain = averageSquaredError(IM, Dtrain)
12: Eaug = averageSquaredError(IM, Daug)
13: ECMA = 0.5Etrain + 0.5Eaug
14: setCandidateFitness(ci, ECMA)
15: Etest = averageSquaredError(IM, Dtest)
16: Eglobal = E2

CMA + E2
test

17: if fmin > Eglobal then
18: fmin ← Eglobal
19: save(ci)
20: end if
21: end for
22: until !stopCondition(CMAoptimizer)

The experimental data is related to a power generation experiment conducted on a
particular anode-electrode at various temperatures and current densities. Therefore, only
those boundaries are supplied to the neural network. It is important to note that, theoreti-
cally, microstructural parameters and fuel composition can also be included as artificial
neural network inputs. However, in order to do that, experimental data covering the range
of desired inputs must be additionally provided. Providing a suitable dataset covering
even tens of different microstructures is time-consuming and challenging. The workflow
would include manufacturing cells using different anode slurry compositions, sintering,
electrochemical testing, and analyzing microstructure using athe combination of focused
ion-beam scanning electron microscopes and three-dimensional reconstruction techniques.
For the latter, a single microstructure might take as much as one month of operator work
time. Alternatively, data points from the three-dimensional heterogeneous numerical model
can be used for network training. Having said that, in this research, we focus on the ability
of the integrated model to provide higher accuracy than the classical Butler-Volmer model.

The architecture of the ANN was determined by employing a trial-and-error approach
with various configurations, ultimately refining our model to produce satisfactory results.
This final architecture comprises three input neurons corresponding to temperature T,
overpotential η, and position within the electrode x. The ANN features two hidden
layers, each containing three neurons and a single output neuron corresponding to the
exchange current density iTPB. Combinations with two and three hidden layers with three
or five neurons were tested as alternative architectures. The Bent Identity function was
chosen as the activation function for all neurons as its continuous nature helps prevent
abrupt jumps or discontinuities in the gradient, resulting in more stable learning and
convergence. In comparison to other activation functions (Softplus, hyperbolic tangent,
sigmoid function, arctan), the Bent Identity function demonstrated superior performance
in our tests, contributing to the overall efficacy of our chosen neural network model
in conjunction with the CMA evolution algorithm. Inputs are scaled to the [0, 1] range.
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The final layer is scaled by 1× 109 due to the scale of exchange current density values.
The error function consists of a linear combination of seven error terms:

e1(j, T, η) = jexp − j(T, η) (6)

e2(j, T, η) = iTPB(0, T, η) (7)

e3(j, T, η) =
∂iTPB

∂x
(0, T, η) (8)

e4(j, T, η) = η − η′(T, η) (9)

e5(j, T, η) =
1
M

M

∑
i

∂2iTPB

∂x2 (xi, T, η) (10)

e6(j, T, η) =
1
M

M

∑
i

jexp − j(T, η) (11)

e7(j, T, η) =
1
M

M

∑
i
H
(

∂iTPB

∂x
(xi, T, η)

)
, (12)

where M is the number of sampling points (50 in this study). Error terms, in the above
order, control for current density discrepancy Equation (6), exchange current density at
the electrode’s interface Equation (7), exchange current density derivative at the elec-
trode’s interface Equation (8), overpotential discrepancy Equation (9), the convex shape
of exchange current density Equation (10), and the sum of electronic and ionic currents
across the electrode Equation (11), and the monotonic shape of exchange current density,
Equation (12). For the augmented data set, errors e1 and e6 are not evaluated. The function
for optimization takes the form:

E = ∑
k

αk

n

∑
i=1

√
e2

k(ji, Ti, ηi)/n, (13)

where ji, Ti, ηi with i = 1 . . . n are data points from corresponding data set and αk are scaling
factors for error terms. Results presented in this work were obtained with setting the αi
values as presented in Table 1.

Table 1. Values of scaling factors in Equation (13).

α1 α2 α3 α4 α5 α6 α7

1× 10−4 2× 10−8 1× 10−13 20 1× 10−18 1× 10−3 1× 10−12

The train set contains 14 points for 800 °C and 1000 °C, seven points each, and the test
set was made from the remaining seven points for 900 °C. Test and training sets include
points with j = 0 A m−2. The augmented data set consists of arbitrary points within the
bounds of experimental points, with Ti ∈ (850, 850, 850, 900, 900, 900, 950, 950, 950) K and
ηi ∈ (0.05, 0.1, 0.15, 0.04, 0.06, 0.08, 0.02, 0.04, 0.06) V. Augmented points do not include
corresponding current densities. The reason to include them is to ensure the required shape
of exchange current density in the whole domain.

3. Results

To investigate the response of overpotential to current density, we conducted a com-
parative analysis between the computational results from the present study, our previous
study [25], and experimental data taken from the open literature [29].

Figure 2 illustrates the juxtaposition of our models’ predictions vs. experimental
data, representing experiments conducted at 800 °C, 900 °C, and 1000 °C. The abscissa axis
represents the anode overpotential measured for a particular electrode at a given current
density. The ordinate axis represents the predicted anode overpotential for a given current
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density from the experiment. Therefore, the points situated on the continuous line present
a perfect fit between empirical observation and prediction. As can be seen from Figure 2,
most of the points are situated in the vicinity of the line, indicating fair agreement between
calculated and measured data. To compare predictions from this study and our previous
model [25], Pearson correlation coefficients ri and coefficients of determination R2

i were
calculated for each temperature and are juxtaposed in Table 2.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Experimental overpotential ηexp (V)
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0.025

0.050
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0.100
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j = 3106 A/m2

Prev.
This study

Figure 2. Comparison between predicted (this study and our previous study [25]) and measured
overpotentials at varying temperatures (800 °C, 900 °C, and 1000 °C). Experimental data from [29].

Table 2. Pearson correlation coefficients ri and coefficients of determination R2
i for the data presented

in Figure 2. Index N corresponds to this study, while index P to our previous model [25].

T (°C) rN (1) rP (1) R2
N (1) R2

P (1)

800 0.9988 0.9856 0.8810 0.9687

900 0.9897 0.9776 0.8720 0.9191

1000 0.9948 0.9960 0.8436 0.9637

In comparison to our previous model, the current solution exhibits lower coefficients
of determination along with higher correlation coefficients (except for 1000 °C, where
values differ insignificantly). A higher coefficient of determination signifies better overall
agreement with the experimental values of our previous study. On the other hand, higher
correlation coefficients indicate that the derivative of the overpotential with respect to the
current density is more aligned with the observed experimental data in the present study.
This essentially means that the present study offers a more accurate characterization of
the trend across all investigated temperatures. It is important to note that the experiment
presented in Kishimoto et al. [29] was conducted with the use of a reference electrode
located at the electrolyte support. In order to exclude from the measured overpotential
the effect of the electrolyte’s resistance and leave only the overpotential of the electrode,
the ohmic loss was excluded from the measurements as an anode is a good electrode
conductor. Despite this simplification, the measured electrode overpotential is considered
the ground truth for the artificial neural network training. The conducted comparative
analysis indicates that the proposed hybrid model can properly reproduce the experimental
measurements for various temperatures and current densities used in validation.

To explore the relationship between the volumetric current density at the triple-phase
boundary and the anode’s depth, we conducted a further examination of the results
obtained for validation described in the previous paragraph, specifically at temperatures
of 800 °C, 900 °C, and 1000 °C. Figure 3 displays continuous lines in blue, red, and green
colors, representing the outcomes of simulations carried out at 800 °C, 900 °C, and 1000 °C,
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respectively. The left end of the figure corresponds to the anode surface, while the right
end represents the anode-electrolyte interface. The electrochemical reaction concentrates
near the electrolyte due to the limited ion conductivity of the electrolyte in comparison
to the electron conductivity and pace of diffusion at the anode electrode. Upon closer
inspection, the trends predicted by the artificial neural network accurately capture the
underlying physics and chemistry, aligning with previously published data in terms of
shape, order of values, and trends [22,30]. Most notably, the electrochemical reactions occur
predominantly in the vicinity of the electrolyte, thus avoiding the typical errors associated
with applying the Butler-Volmer (BV) equation. These errors include the assumption that
the electrochemical reactions take place throughout the entire electrode, that solution of BV
leads to a parabolic course with the minimum of current exchange density in the middle
of the electrode, and in some instances, resulting in negative values for exchange-current
densities at specific points. The current study successfully overcomes these limitations and
errors, demonstrating a more reliable approach to understanding the relationship between
volumetric current density and anode depth.

0 1 2 3 4 5

Anode depth x (m) ×10−5

0

1

2

3

4

5

T
P
B
cu
rr
en
t
de
ns
ity

i T
P

B
(A

/m
3 )

×108

800 °C
900 °C
1000 °C

Figure 3. Exploration of the relationship between volumetric current density at the triple-phase
boundary and anode depth at varying temperatures (800 °C, 900 °C, and 1000 °C). The continuous
lines in blue, red, and green colors represent simulation results at respective temperatures. The neural
network predictions accurately capture the underlying physics and chemistry, aligning with previ-
ously published data while avoiding the typical errors associated with the Butler-Volmer equation.

Figure 4 illustrates a distribution of electronic (red line) and ionic (blue line) current
densities within the anode’s depth. x = 0 m corresponds to the anode surface, while
x = 5× 10−5 m represents the anode-electrolyte interface. The calculation was performed
with the total anode’s overpotential maintained at 0.1 V, resulting in an average current
density of 1469 A m−2. The charge transfer revealed by the rate at which current changes
its form from ionic to electronic indicates an electrochemically active layer. Evidently,
the electrochemical reactions predicted by the artificial neural network are most intensive
at the anode-electrolyte interface and rapidly decrease towards the anode surface direction.
This observation suggests that the majority of the electrochemical reaction takes place in
close proximity to the anode-electrolyte interface, within approximately 10 µm. The active
reaction region’s thickness in cermet anodes remains an open research question, but 10 µm
is a reasonable approximation for an anode with the considered microstructure and is
consistent with the previous observation, both experimental [31] and numerical [24,32].
To summarize, the artificial neural network that substituted the electrochemistry model
could correctly represent the macroscopic behavior of the anode in the form of a polarization
curve and correctly predict the electrochemically active layer.
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0 1 2 3 4 5
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Figure 4. Distribution of electronic (red line) and ionic (blue line) current densities within the anode’s
depth in the thickness direction, as predicted by an artificial neural network. The figure demonstrates
the electrochemically active layer, where the majority of reactions occur near the anode-electrolyte
interface, within approximately 10 µm. The artificial neural network accurately represents both
the macroscopic behavior of the anode (polarization curve) and the electrochemically active layer,
confirming its consistency with previous research.)

Figure 5 illustrates the distribution of electric potential for both ion- and electron-
conducting phases as they span the depth of the anode. It is essential to note that the
relationship between these potentials is governed by the Butler-Volmer equation in the
standard approach. When replacing the model with predictions from an artificial neural
network, it is important to verify the physicality of the predictions. A comparison of the
results shown in the figure with those from existing literature reveals a high degree of
consistency in both values and derivatives at the boundaries of the evaluated intervals [33].
This further reinforces the conclusion that the artificial neural network has successfully
captured the underlying physical phenomena within its constraints. These constraints are
imposed by the need to satisfy all balance equations within the system.

0 1 2 3 4 5
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Figure 5. Distribution of electric potentials of electron and ion-conducting phases within the anode
in the thickness direction, as predicted by an artificial neural network. Temperature is set to 800 °C
and overpotential to 0.1 V.
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4. Conclusions

In conclusion, this study demonstrated the development and validation of an artificial
neural network-supported numerical simulation in which the Butler-Volmer equation was
replaced by a data-driven prediction. It was shown that such a hybrid approach correctly
reproduces transport phenomena across an anode-electrode. The accuracy and reliability of
capturing the relationship between volumetric current density and overpotential were in-
vestigated by comparing the proposed model’s predictions with experimental data at three
different temperatures (800 °C, 900 °C, and 1000 °C). The proposed surrogate model effec-
tively overcomes some common limitations associated with the use of the Butler-Volmer
equation while correctly representing the complex relationship between current density
and anode depth in solid oxide fuel cells. Future works should include microstructural
features as an input to artificial neural networks. Experimental data featuring a range of
microstructural inputs must be acquired to achieve this. Alternatively, data points from the
three-dimensional heterogeneous numerical model can be employed for network training.
To conclude, the primary objective, which was to assess the capacity of the artificial neural
network to replace the Butler-Volmer equation while maintaining physically correct predic-
tion, was met. Focusing on this goal aimed to highlight the advantages of using an artificial
neural network-supported simulation to predict the behavior of solid oxide fuel cells un-
der various conditions. For cathodes in Solid Oxide Fuel Cells applications, the oxygen
transition from gaseous molecules in the pore phase into ions O2− is also described with a
Butler-Volmer equation. The form of the Butler-Volmer equation varies between different
composites. For example, for two-phase electrodes, such as an LSCF cathode, the BV form
is analogous to the anode form presented in this study. We expect that the results will be
similar, and we plan to examine this case next. For three-phase microstructures, reactions
occurring at the double-phase boundary and triple-phase boundary can often be described
with two Butler-Volmer equations, each corresponding to a different reaction place. In such
cases, two neural networks or a neural network with two outputs must be used to model
the electrochemical reactions. As learning the artificial neural network in this study is a
challenging task, we plan to address the application of the presented methodology to other
cases involving different anodes and cathodes in our future research.
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