Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,730)

Search Parameters:
Keywords = miR-326

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3329 KiB  
Article
Conserved miR156 Mediates Phase-Specific Coordination Between Cotyledon Morphogenesis and Embryo Dormancy During Somatic Embryogenesis in Larix kaempferi
by Xin Li, Yuqin Huang, Wenhua Yang, Liwang Qi, Lifeng Zhang and Chenghao Li
Int. J. Mol. Sci. 2025, 26(17), 8206; https://doi.org/10.3390/ijms26178206 (registering DOI) - 23 Aug 2025
Abstract
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and [...] Read more.
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and heterologous functional validation in Arabidopsis. Four MIR156 family members (LkMIR156s) were identified in Larix kaempferi, each with a characteristic stem-loop structure and highly conserved mature sequences. Computational predictions indicated that these LkMIR156s target four LkSPL family genes (LkSPL1, LkSPL2, LkSPL3, and LkSPL9). qRT-PCR analysis showed that mature LkmiR156s expression remained relatively low during early embryonic development but was significantly upregulated at the cotyledonary stage (21–42 days). Precursor transcript levels peaked earlier (around 28 days) than those of the mature LkmiR156, which remained highly expressed throughout cotyledonary embryo development. This sustained high expression coincided with cotyledon morphogenesis and embryonic dormancy. Functional validation via heterologous overexpression of LkMIR156b1 in Arabidopsis resulted in increased rosette leaf numbers (42.86% ± 6.19%) and individual leaf area (54.90% ± 6.86%), phenotypically consistent with the established role of miR156 in growth regulation. This study reveals the temporal expression dynamics of LkmiR156s during L. kaempferi somatic embryogenesis and its coordinated expression patterns with cotyledon development and embryonic dormancy. The functional conservation of the miR156-SPL module was confirmed in a model plant, providing key molecular insights into the developmental regulatory network of conifers. These findings offer potential strategies for optimizing somatic embryogenesis techniques in conifer species. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
22 pages, 1593 KiB  
Article
In Silico Analysis of Possible microRNAs Involved in the Pathogenesis of White-Nose Syndrome in Myotis lucifugus
by Anouska Agarwal, Craig K. R. Willis and Anuraag Shrivastav
Int. J. Mol. Sci. 2025, 26(17), 8200; https://doi.org/10.3390/ijms26178200 (registering DOI) - 23 Aug 2025
Abstract
Since 2007, white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has killed millions of bats across North America by disrupting hibernation cycles, causing premature fat depletion and starvation. Little brown bats (Myotis lucifugus) from some populations persisting after WNS [...] Read more.
Since 2007, white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has killed millions of bats across North America by disrupting hibernation cycles, causing premature fat depletion and starvation. Little brown bats (Myotis lucifugus) from some populations persisting after WNS store larger pre-hibernation fat reserves than bats did before WNS, which may help bats survive winter starvation and mount an immune response to Pd in spring. MicroRNAs (miRNAs) are highly conserved, small, non-coding RNA molecules that regulate gene expression post-transcriptionally. Aberrant miRNA expression can affect metabolic pathways in mammals and has been linked to various diseases. If fat reserves and immune mechanisms influence survival from WNS, then miRNAs regulating metabolic and immune-related genes might affect WNS pathogenesis and bat survival. A previous study identified 43 miRNAs differentially expressed in bats with WNS. We analyzed these miRNAs for their roles in metabolism and immune-related pathways, using DIANA Tools and KEGG analysis, to determine a subset that could serve as biomarkers of pathophysiology or survival in WNS-affected bats. We identified miR-543, miR-27a, miR-92b, and miR-328 as particularly important because they regulate multiple pathways likely important for WNS (i.e., immune response, lipogenesis, insulin signaling, and FOXO signaling). As proof-of-concept, we used reverse transcription quantitative real-time PCR (RT-qPCR) to quantify the prevalence of these miRNAs in plasma samples of bats (n = 11) collected from a post-WNS population during fall fattening. All the selected miRNAs were detectable in at least some bats during fall fattening although prevalence varied among miRNAs. Future in vivo validation studies would help confirm functional roles and biomarker utility of these miRNAs for WNS-affected bats. Full article
(This article belongs to the Special Issue Regulation by Non-Coding RNAs 2025)
Show Figures

Figure 1

15 pages, 2443 KiB  
Article
Bone Microstructural Deterioration and miR-155/RHOA-Mediated Osteoclastogenesis in Type 2 Diabetes Mellitus
by Mouza M. Alaleeli, Suneesh Kaimala, Ernest Adeghate and Sahar Mohsin
Int. J. Mol. Sci. 2025, 26(17), 8159; https://doi.org/10.3390/ijms26178159 - 22 Aug 2025
Abstract
Type 2 diabetes mellitus (T2DM) is known to increase the risk of fragility fractures; however, the underlying mechanism is still elusive. Reduced miR-155 and elevated RHOA are known to drive bone resorption, but their role in T2DM remains unclear. This study investigates bone [...] Read more.
Type 2 diabetes mellitus (T2DM) is known to increase the risk of fragility fractures; however, the underlying mechanism is still elusive. Reduced miR-155 and elevated RHOA are known to drive bone resorption, but their role in T2DM remains unclear. This study investigates bone remodeling imbalances in T2DM through miR-155 and RHOA expression profiling. Three-month-old female Wistar rats were fed a high-calorie diet for 3 weeks, followed by intraperitoneal injections of two lower doses of streptozotocin at weekly intervals to induce T2DM. Bone analysis from diabetic rats tested using qRT-PCR showed significantly reduced miR-155 levels and elevated RHOA. Histological analysis showed a 12.65% increase in Tb.Sp, 10.07% decrease in Tb.Th, and significant increase (p < 0.05) in apoptotic osteocytes. The bone turnover marker CTx-1 level was increased by 20.84%, and RANKL levels were significantly increased in T2DM. IL-1β and TNF-α were increased in T2DM. Bone resorption is more likely to occur in T2DM as both IL-1β and TNF-α work synergistically to promote osteoclastogenesis. MiR-155 could be an important modulator of bone remodeling in T2DM and a potential therapeutic target for diabetic osteopathy. Full article
(This article belongs to the Special Issue Type 2 Diabetes: Molecular Pathophysiology and Treatment)
Show Figures

Figure 1

24 pages, 34589 KiB  
Article
Extracellular Vesicle-Mediated miR-155 from Visceral Adipocytes Induces Skeletal Muscle Dysplasia in Obesity
by Yunyan Ji, Zeen Gong, Rui Liang, Di Wu, Wen Sun, Xiaomao Luo, Yi Yan, Jiayin Lu, Juan Wang and Haidong Wang
Cells 2025, 14(17), 1302; https://doi.org/10.3390/cells14171302 - 22 Aug 2025
Abstract
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated [...] Read more.
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated regulatory mechanisms remain incompletely elucidated. This study established an AAV-mediated miR-155 obese mouse model and a co-culture system (HFD VAD-evs/RAW264.7 cells/C2C12 cells) to demonstrate that high-fat diet-induced VA-derived extracellular vesicles (HFD VAD-evs) preferentially accumulate in skeletal muscle and induce developmental impairment. HFD VAD-evs disrupt skeletal muscle homeostasis through dual mechanisms: the direct suppression of myoblast development via exosomal miR-155 cargo and the indirect inhibition of myogenesis through macrophage-mediated inflammatory responses in skeletal muscle. Notably, miR-155 inhibition in HFD VAD-evs reversed obesity-associated myogenic deficits. These findings provide novel mechanistic insights into obesity-induced skeletal muscle dysregulation and facilitate potential therapeutic strategies targeting exosomal miRNA signaling. Full article
Show Figures

Figure 1

25 pages, 1496 KiB  
Review
Unraveling the Epigenetic Landscape of Mature B Cell Neoplasia: Mechanisms, Biomarkers, and Therapeutic Opportunities
by Nawar Maher, Francesca Maiellaro, Joseph Ghanej, Silvia Rasi, Riccardo Moia and Gianluca Gaidano
Int. J. Mol. Sci. 2025, 26(17), 8132; https://doi.org/10.3390/ijms26178132 - 22 Aug 2025
Abstract
Epigenetic regulation is critical to B cell development, guiding gene expression via DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. In mature B cell neoplasms, particularly diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL), these mechanisms [...] Read more.
Epigenetic regulation is critical to B cell development, guiding gene expression via DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. In mature B cell neoplasms, particularly diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL), these mechanisms are frequently disrupted. Recurrent mutations in key epigenetic regulators such as EZH2, KMT2D, CREBBP, and TET2 lead to altered chromatin states, repression of tumor suppressor genes, and enhanced oncogenic signaling. Dysregulation of specific microRNAs (e.g., miR-155, miR-21) further contributes to pathogenesis and therapeutic resistance. In DLBCL, hypermethylation of SMAD1 and CREBBP mutations are associated with immune evasion and chemoresistance. In FL, EZH2 gain-of-function and KMT2D loss-of-function mutations alter germinal center B cell programming, while in CLL, DNA hypomethylation patterns reflect the cell of origin and correlate with clinical outcome. Targeted therapies such as the EZH2 inhibitor tazemetostat have demonstrated efficacy in EZH2-mutant FL, while HDAC and BET inhibitors show variable responses across B cell malignancies. The limitations of current epigenetic therapies reflect the complexity of targeting epigenetic dysregulation rather than therapeutic futility. These challenges nonetheless highlight the relevance of epigenetic alterations as biomarkers and therapeutic targets, with potential to improve the management of mature B cell neoplasms. Full article
(This article belongs to the Special Issue Leukemia and Lymphoma: A Focus on Molecular Genetics Research)
Show Figures

Figure 1

13 pages, 10589 KiB  
Article
Functional Role of miR-138-5p and miR-200b-3p in Testicular Germ Cell Tumors: Molecular Insights into Seminoma and Teratoma Pathogenesis
by Fatemeh Hooshiar, Hossein Azizi, Mahla Masoudi and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(16), 8107; https://doi.org/10.3390/ijms26168107 - 21 Aug 2025
Abstract
This study aims to investigate the molecular mechanisms underlying germ cell tumors (GCTs), focusing specifically on seminomas and teratomas. By analyzing gene expression profiles and miRNA interactions, the goal is to identify key regulatory miRNAs and signaling pathways that differentiate these tumor types [...] Read more.
This study aims to investigate the molecular mechanisms underlying germ cell tumors (GCTs), focusing specifically on seminomas and teratomas. By analyzing gene expression profiles and miRNA interactions, the goal is to identify key regulatory miRNAs and signaling pathways that differentiate these tumor types and could serve as important regulators for therapy development. Raw data for seminomas and teratomas were extracted from the GEO database, and gene hubs were identified using STRING and Gephi. Signaling pathways and functional annotations were analyzed using miRPathDB, while miRNA–gene interactions were explored via miRWalk. Hub miRNAs were filtered and confirmed using miRDB. This study highlights significant changes in gene expression diversity between tumor and normal gonadal tissues, providing insights into the molecular dynamics of seminomas and teratomas. Distinctions between seminomas and teratomas were identified, shifting the focus toward miRNAs to discover more precise and novel therapeutic approaches. The hub genes of seminomas and teratomas were identified separately. MiRNAs targeting these hub genes were also determined and confirmed. These miRNAs collectively influence essential oncogenic pathways—confirming hsa-miR-138-5p as a regulator of pathways such as Hippo signaling, transcriptional misregulation in cancer, and microRNA cancer signaling in seminomas, and hsa-miR-200b-3p as a regulator of p53 signaling, T cell receptor signaling, and pathways including PI3K/AKT, MAPK/ERK, and Wnt/β-catenin in teratomas—confirming their potential as promising candidates for subtype-specific therapeutic intervention. MiRNAs identified through bioinformatics analyses, and their predicted regulatory roles in key oncogenic pathways, represent potential therapeutic targets or regulators of biological processes. However, further experimental validation is needed to confirm these findings. Full article
Show Figures

Figure 1

25 pages, 3433 KiB  
Article
Exploring miRNA Research in Colorectal Cancer: Insights from a Bibliometric Analysis
by Emanuele Piccinno, Michelangelo Aloisio, Viviana Scalavino, Francesco Russo, Gianluigi Giannelli, Davide Guido and Grazia Serino
Pharmaceutics 2025, 17(8), 1084; https://doi.org/10.3390/pharmaceutics17081084 - 21 Aug 2025
Abstract
Background/Objectives: Despite advances in diagnosis and treatment, colorectal cancer (CRC) remains one of the most prevalent and challenging malignancies worldwide. The dysregulation of microRNAs (miRNAs) has emerged as a critical factor in CRC onset, progression, and therapeutic resistance. This study aims to [...] Read more.
Background/Objectives: Despite advances in diagnosis and treatment, colorectal cancer (CRC) remains one of the most prevalent and challenging malignancies worldwide. The dysregulation of microRNAs (miRNAs) has emerged as a critical factor in CRC onset, progression, and therapeutic resistance. This study aims to provide an overview of global research trends on miRNAs in CRC, (i) identifying the most studied miRNAs, (ii) exploring under-investigated areas, and (iii) highlighting emerging themes and potential future directions. Methods: To assess the evolution of the global miRNA–CRC research trends, we conducted a bibliometric analysis of 828 CRC–miRNA-focused articles published between 2008 and 2024, sourced from the Scopus database. Bibliometric mapping was performed using the R/Bibliometrix package and by leveraging a customized Python-based pipeline, which is useful for extracting and validating miRNA identifiers (miRNA IDs) based on the miRBase database. This miRNA ID-related approach enabled us to systematically identify the most frequently studied miRNAs over time while highlighting underexplored miRNA. Results: The analysis revealed a substantial and accelerating publication growth rate, delineating three major phases in CRC–miRNA research. China emerged as the leading contributor in terms of the publication volume. miR-21, miR-34a, and miR-195-5p were among the most frequently studied miRNAs, underscoring their relevance to CRC biology and therapy. Keyword and citation analyses identified key thematic areas, such as cell proliferation, epithelial–mesenchymal transition, and chemoresistance, especially to oxaliplatin and 5-fluorouracil. Emerging research frontiers included ferroptosis, ceRNA networks, and exosome-mediated miRNA transport. An analysis of the collaborations indicated strong intra-national collaborations, with room for expanding international research networks. Conclusions: This study provides an in-depth bibliometric landscape of the CRC-related miRNA research by highlighting influential studies and journals while identifying gaps and underexplored topics. These insights offer valuable guidance for future translational and clinical research on this topic. Full article
Show Figures

Figure 1

18 pages, 5092 KiB  
Article
bra-miR9569 Targets the BrAHA6 Gene to Negatively Regulate H+-ATPases, Affecting Pollen Fertility in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Siyu Xiong, Xiaochun Wei, Wenjing Zhang, Yanyan Zhao, Shuangjuan Yang, Henan Su, Baoming Tian, Fang Wei, Xiaowei Zhang and Yuxiang Yuan
Plants 2025, 14(16), 2604; https://doi.org/10.3390/plants14162604 - 21 Aug 2025
Abstract
Ogura cytoplasmic male sterility (CMS) in Chinese cabbage (Brassica rapa) is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated [...] Read more.
Ogura cytoplasmic male sterility (CMS) in Chinese cabbage (Brassica rapa) is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated analysis of miRNA, transcriptome, and degradome sequencing data aligned to the Chinese cabbage reference genome to elucidate the molecular function of bra-miR9569 in Ogura CMS pollen fertility and explore its associated pathways. Subsequently, a bra-miR9569 overexpression vector was constructed and transformed into Arabidopsis thaliana. Phenotypic characterization of transgenic Arabidopsis lines, combined with anther viability assessment and quantification of ATP content and reactive oxygen species (ROS) levels in Chinese cabbage, was performed to analyze the effects of bra-miR9569. Our findings demonstrate that mutation of the mitochondrial gene orf138 in Ogura CMS lines leads to upregulation of bra-miR9569. This microRNA negatively regulates the expression of the ATP-related gene AHA6, resulting in reduced H+-ATPase activity. The consequent energy deficiency triggers cellular content degradation, ultimately causing failure of pollen wall formation and pollen abortion. Full article
Show Figures

Figure 1

19 pages, 2983 KiB  
Article
Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform
by Zhongxu Li and Keyvan Asefpour Vakilian
Sensors 2025, 25(16), 5189; https://doi.org/10.3390/s25165189 - 21 Aug 2025
Viewed by 131
Abstract
The early determination of the type and severity of stresses caused by nutrient deficiency is necessary for taking timely measures and preventing a remarkable yield reduction. This study is an effort to investigate the performance of a machine learning-based model that identifies the [...] Read more.
The early determination of the type and severity of stresses caused by nutrient deficiency is necessary for taking timely measures and preventing a remarkable yield reduction. This study is an effort to investigate the performance of a machine learning-based model that identifies the type and severity of nitrogen, phosphorus, potassium, and sulfur in rice plants by using the plant microRNA data as model inputs. The concentration of 14 microRNA compounds in plants exposed to nutrient deficiency was measured using an electrochemical biosensor based on the peak currents produced during the probe–target microRNA hybridization. Subsequently, several machine learning models were utilized to predict the type and severity of stress. According to the results, the biosensor used in this work exerted promising analytical performance, including linear range (10−19 to 10−11 M), limit of detection (3 × 10−21 M), and reproducibility during microRNA measurement in total RNA extracted from rice plant samples. Among the microRNAs studied, miRNA167, miRNA162, miRNA169, and miRNA395 exerted the largest contribution in predicting the nutrient deficiency levels based on feature selection methods. Using these four microRNAs as model inputs, the random forest with hyperparameters optimized by the genetic algorithm was capable of detecting the type of nutrient deficiency with an average accuracy, precision, and recall of 0.86, 0.94, and 0.87, respectively, seven days after the application of the nutrient treatment. Within this period, the optimized machine was able to detect the level of deficiency with average MSE and R2 of 0.010 and 0.92, respectively. Combining the findings of this study and the results we reported earlier on determining the occurrence of salinity, drought, and heat in rice plants using microRNA biosensors can be useful to develop smart biosensing platforms for efficient plant health monitoring systems. Full article
Show Figures

Figure 1

17 pages, 1424 KiB  
Article
MiRNA-186 as a Biomarker of Disease Exacerbation in Rheumatoid Arthritis: Insights from Clinical Data and Molecular Marker Analysis
by Marek Cieśla, Dorota Darmochwał-Kolarz, Hubert Kubis and Bogdan Kolarz
Int. J. Mol. Sci. 2025, 26(16), 8039; https://doi.org/10.3390/ijms26168039 - 20 Aug 2025
Viewed by 113
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by inflammation of the synovial tissue, leading to joint destruction, pain, stiffness, and progressive impairment of motor functions. Despite significant advances in diagnosis and treatment, RA remains a major clinical and social challenge, [...] Read more.
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by inflammation of the synovial tissue, leading to joint destruction, pain, stiffness, and progressive impairment of motor functions. Despite significant advances in diagnosis and treatment, RA remains a major clinical and social challenge, negatively impacting patients’ quality of life. The aim of this study was to assess the relationship between the expression of selected microRNAs (miRNAs) and the activity of the disease. A total of 46 RA patients and 20 healthy controls (HCs) were enrolled in the study. A quantitative real-time polymerase chain reaction was used to evaluate the expression of miRNAs in whole blood. MiRNA-186 exhibited decreased concentrations in RA patients compared to HCs (p = 0.03). Patients with an active form of the disease (DAS28 > 3.2) exhibited lower expression of miRNA-186 than HCs (p = 0.04). Additionally, ACPA-negative patients also demonstrated reduced miRNA-186 expression compared to controls. AUC analysis confirmed that the combination of miRNA-186, the erythrocyte sedimentation rate (ESR), and Visual Analog Scale—Patient Global Assessment (VAS PGA) may be effective in identifying RA exacerbation. The combination of classical laboratory markers, clinical data, and molecular markers enhances the ability to assess RA exacerbation. MiRNA-186 may be considered a potential marker of disease activity in RA. Full article
Show Figures

Figure 1

15 pages, 3459 KiB  
Article
Long Non-Coding RNA 74687 Regulates Meiotic Progression and Gonadal Development in Rainbow Trout (Oncorhynchus mykiss) via the miR-15a-5p–ccne1 Regulatory Axis
by Tianqing Huang, Baorui Cao, Enhui Liu, Wei Gu, Yunchao Sun, Kaibo Ge, Gaochao Wang, Datian Li, Peng Fan, Ruiyan Xing and Gefeng Xu
Int. J. Mol. Sci. 2025, 26(16), 8036; https://doi.org/10.3390/ijms26168036 - 20 Aug 2025
Viewed by 132
Abstract
High-throughput transcriptomic analyses have identified numerous candidate miRNA–mRNA and long non-coding RNA (lncRNA) regulatory networks in teleosts, but most remain without systematic functional validation or mechanistic definition. Here, by interrogating miRNA–lncRNA networks in rainbow trout (Oncorhynchus mykiss) gonads, we define their [...] Read more.
High-throughput transcriptomic analyses have identified numerous candidate miRNA–mRNA and long non-coding RNA (lncRNA) regulatory networks in teleosts, but most remain without systematic functional validation or mechanistic definition. Here, by interrogating miRNA–lncRNA networks in rainbow trout (Oncorhynchus mykiss) gonads, we define their roles in meiotic progression and gonadal development. From preliminary screening, we identified lncRNA74687 as a central node and characterised its function. Subcellular localisation showed predominant nuclear enrichment of lncRNA74687 in gonadal cells. Dual-luciferase assays confirmed miR-15a-5p targeting of Cyclin E (CCNE1) and lncRNA74687. Functional studies showed that concurrent overexpression of lncRNA74687 and inhibition of miR-15a-5p synergistically increased the CCNE1 protein to maximal levels. 5-ethynyl-2′-deoxyuridine (EdU) assays showed that knockdown of lncRNA74687 and CCNE1 in rainbow trout gonadal (RTG-2) cells reduced proliferation by 36.4% and 41.2%, respectively (p < 0.05). Immunofluorescence indicated that lncRNA74687 increased Synaptonemal Complex Protein 1 (SYCP1) signalling 6.93-fold in gonadal cells via CCNE1. In vivo, lncRNA74687 knockdown increased miR-15a-5p expression 6.34-fold relative to the wild-type controls (p < 0.01). Transcriptomic profiling revealed broad downregulation of meiosis-related genes in lncRNA74687-deficient gonads, with the strongest reduction in mstrg1 expression, indicating a key role of lncRNA74687 in germ-cell meiotic progression. Together, these data show that lncRNA74687 enhances CCNE1 mRNA and the CCNE1 protein in rainbow trout by competitively binding miR-15a-5p. This lncRNA74687–miR-15a-5p–CCNE1 axis regulates gonadal cell proliferation and meiotic gene expression during gonadal development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 706 KiB  
Review
The Roles of Non-Coding RNAs in the Pathogenesis of Uterine Fibroids
by Drake Boos, Tsai-Der Chuang and Omid Khorram
Cells 2025, 14(16), 1290; https://doi.org/10.3390/cells14161290 - 20 Aug 2025
Viewed by 197
Abstract
Uterine fibroids are benign smooth muscle tumors that affect ~70% of women, with Black women being affected at a disproportionate rate. The growth of these tumors is driven by estrogen and progesterone. Driver mutations in genes such as MED12, HMGA2, and FH also [...] Read more.
Uterine fibroids are benign smooth muscle tumors that affect ~70% of women, with Black women being affected at a disproportionate rate. The growth of these tumors is driven by estrogen and progesterone. Driver mutations in genes such as MED12, HMGA2, and FH also play roles in the development and growth of fibroids. Despite their high prevalence, the pathogenesis of fibroids remains largely unknown, leading to a lack of effective therapeutic options. Non-coding RNAs (ncRNAs), including miRNAs (e.g., miR-21, miR-29, miR-200), lncRNAs (e.g., H19, MIAT, XIST), and circRNAs, are important regulatory RNAs that are becoming increasingly implicated in the aberrant expression of protein-coding genes functionally associated with ECM production, cell proliferation, apoptosis, and inflammation in fibroids. Race/ethnicity, MED12 mutations, and ovarian steroids influence the expression of ncRNA expression, further implicating their relevance to fibroid pathogenesis. Therapeutic targeting of these dysregulated ncRNAs in fibroids could enable more precise and individualized non-hormonal-based treatment for this common gynecologic tumor. Full article
Show Figures

Figure 1

20 pages, 2701 KiB  
Systematic Review
The Role of miRNAs as Predictors of Acute Lymphoblastic Leukemia Chemotherapy Toxicity in Children: A Systematic Review
by Małgorzata M. Mitura-Lesiuk, Maciej Dubaj, Karol Bigosiński and Mateusz Raniewicz
J. Clin. Med. 2025, 14(16), 5869; https://doi.org/10.3390/jcm14165869 - 20 Aug 2025
Viewed by 191
Abstract
Background/Objectives: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, accounting for 80% of leukemias in this group and about 25% of all cancers. The 5-year survival rate is now over 90%. Achieving such a good outcome is made possible by [...] Read more.
Background/Objectives: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, accounting for 80% of leukemias in this group and about 25% of all cancers. The 5-year survival rate is now over 90%. Achieving such a good outcome is made possible by the introduction of intensive, high-dose chemotherapy. However, it is associated with numerous complications, affecting up to 80% of patients. Among the most common of these are infections and intestinal, hepatic, hematological or neurological complications. For their effective treatment and prevention, it is necessary to develop predictors. High hopes in this aspect are placed on miRNAs. The aim of the following paper is to present the role of miRNAs as predictors of chemotherapy complications in children with ALL. Methods: A systematic review of the available literature in the PubMed, Scopus, Embase and Google Scholar scientific databases was conducted. Fourteen publications were included in the analysis. Results: Changes in miRNA expression and single-nucleotide polymorphisms in miRNAs are associated with complications of ALL therapy. Among the most notable are miR-1206 (in mucositis and myelotoxicity), miR-2053 (in neurotoxicity and mucositis), miR-938 and miR-3117 (in gastrointestinal toxicity and neurotoxicity), miR-1307 (in gastrointestinal toxicity and mucositis) and miR-323b (in gastrointestinal toxicity and myelotoxicity). In addition, miR-155, miR-3117 and miR-4268 may be potential therapeutic targets in complications of ALL therapy. Conclusions: miRNAs are good potential predictors of ALL chemotherapy toxicity and may be therapeutic targets in these complications. Full article
Show Figures

Figure 1

12 pages, 1439 KiB  
Article
Humanized Monoclonal Antibody Against Citrullinated Histone H3 Attenuates Myocardial Injury and Prevents Heart Failure in Rodent Models
by Matthew Weber, Yuchen Chen, Xinyu Zhou, Heejae Chun, Di Wu, Ki Ho Park, Chuanxi Cai, Yongqing Li, Jianjie Ma and Zequan Yang
Biomolecules 2025, 15(8), 1196; https://doi.org/10.3390/biom15081196 - 20 Aug 2025
Viewed by 218
Abstract
Background: Excessive formation of neutrophil extracellular traps (NETs) leads to NETosis, accompanied by the release of citrullinated histone H3 (CitH3), a key mediator of septic inflammation. However, the role of CitH3 in sterile inflammation, such as acute myocardial infarction (MI) and post-MI heart [...] Read more.
Background: Excessive formation of neutrophil extracellular traps (NETs) leads to NETosis, accompanied by the release of citrullinated histone H3 (CitH3), a key mediator of septic inflammation. However, the role of CitH3 in sterile inflammation, such as acute myocardial infarction (MI) and post-MI heart failure, remains incompletely understood. Methods and Results: We investigated the role of CitH3, a byproduct of NETosis, in myocardial ischemia/reperfusion (I/R) injury using a murine MI model. C57BL/6J mice were subjected to left coronary artery (LCA) occlusion followed by reperfusion and treated with either a humanized anti-CitH3 monoclonal antibody (hCitH3-mAb) or control human IgG. In mice undergoing 40 min of LCA occlusion and 24 h of reperfusion, hCitH3-mAb administered 10 min before reperfusion significantly reduced infarct size by 36% compared to control (p < 0.05). Plasma levels of CitH3, IL-1β, and interferon-β were significantly elevated following MI but were attenuated by hCitH3-mAb. In addition, plasma and cardiac tissue from treated mice showed significantly lower levels of citrate synthase, a marker of mitochondrial injury, suggesting that hCitH3-mAb preserved mitochondrial integrity after MI. In mice undergoing 50 min of LCA occlusion and 21 days of reperfusion, longitudinal echocardiography revealed preservation of left ventricular ejection fraction (LVEF) in hCitH3-mAb-treated mice, with significant improvement observed on days 7, 14, and 21 post-MI (p < 0.05 vs. control). hCitH3-mAb also mitigated myocardial fibrosis and preserved tissue architecture. Conclusions: These findings demonstrated CitH3 as a critical mediator of myocardial injury and adverse remodeling following acute MI. Neutralization of CitH3 via hCitH3-mAb attenuates I/R injury and preserves cardiac function by mitigating inflammation and protecting mitochondrial integrity. Targeting CitH3 represents a promising therapeutic strategy to prevent heart failure following MI. Full article
Show Figures

Figure 1

16 pages, 1354 KiB  
Article
Dynamic Interplay Between miR-124-3p and EGF in the Regulation of Overgrowth via RNA Signaling
by Keziban Korkmaz Bayram, Arslan Bayram, Zeynep Yilmaz Sukranli, Ecmel Mehmetbeyoglu Duman, Fatma Aybuga, Esra Tufan Benli, Serpil Taheri, Yusuf Ozkul and Minoo Rassoulzadegan
Biomolecules 2025, 15(8), 1186; https://doi.org/10.3390/biom15081186 - 18 Aug 2025
Viewed by 218
Abstract
Background: Epigenetic mechanisms and RNA signalling profoundly impact body growth during the early stages of embryonic development. RNA molecules, like microRNAs, play a vital role in early embryonic development, laying the groundwork for future growth and function. miR-124-3p microinjected into mouse fertilised eggs [...] Read more.
Background: Epigenetic mechanisms and RNA signalling profoundly impact body growth during the early stages of embryonic development. RNA molecules, like microRNAs, play a vital role in early embryonic development, laying the groundwork for future growth and function. miR-124-3p microinjected into mouse fertilised eggs (miR-124-3p*) exhibited a significantly overgrowth phenotype. Behavioural test results showed that miR-124-3p mice were more physically active, as indicated by total distance and movement velocity. However, the molecular mechanism leading to these phenotypic changes mediated by miR-124-3p remains a mystery. This study aimed to investigate the role of epidermal growth factor (EGF) in developing an overgrowth phenotype in miR-124-3p* mice. Results: In this research, we preferred to work with neurospheres (NSs) due to the challenges of handling a single embryo, as NSs exhibit similar features, especially regarding cell growth, differentiation, and capacity for self-renewal. We examined the mRNA expression levels of Sox8, Sox9, Sox10, Doublecortin (Dcx), and Neurod1 genes, which are linked to a tiny phenotype in knockout mice, in total embryos at E7.5 and hippocampal cells isolated from E19.5-day fetus and neurospheres aged 12 and 21 days, which were derived from these hippocampal cells through primary cell culture. These genes are significantly overexpressed in miR-124-3p* NSs, but not in the E7.5 total embryos or the hippocampus of the E19.5 fetus. Conclusions: These findings suggest a possible link between miR-124-3p microinjection and EGF activation, which may be associated with early neurogenesis and neuronal differentiation in embryos. This molecular shift might contribute to the development of mice exhibiting increased physical activity and enlarged body size, although these observations remain correlative and require further validation. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

Back to TopTop