Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (837)

Search Parameters:
Keywords = meteorological monitoring difference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14469 KiB  
Article
The Downscaled GOME-2 SIF Based on Machine Learning Enhances the Correlation with Ecosystem Productivity
by Chenyu Hu, Pinhua Xie, Zhaokun Hu, Ang Li and Haoxuan Feng
Remote Sens. 2025, 17(15), 2642; https://doi.org/10.3390/rs17152642 - 30 Jul 2025
Viewed by 32
Abstract
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, [...] Read more.
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, we used a consistent dataset combined with vegetation physiological and meteorological parameters to evaluate four different regression methods in this study. The XGBoost model demonstrated the best performance during cross-validation (R2 = 0.84, RMSE = 0.137 mW/m2/nm/sr) and was, therefore, selected to downscale GOME-2 SIF data. The resulting high-resolution SIF product (HRSIF) has a temporal resolution of 8 days and a spatial resolution of 0.05° × 0.05°. The downscaled product shows high fidelity to the original coarse SIF data when aggregated (correlation = 0.76). The reliability of the product was ensured through cross-validation with ground-based and satellite observations. Moreover, the finer spatial resolution of HRSIF better matches the footprint of eddy covariance flux towers, leading to a significant improvement in the correlation with tower-based gross primary productivity (GPP). Specifically, in the mixed forest vegetation type with the best performance, the R2 increased from 0.66 to 0.85, representing an increase of 28%. This higher-precision product will support more effective ecosystem monitoring and research. Full article
Show Figures

Figure 1

16 pages, 4557 KiB  
Article
A Dual-Wavelength Lidar Boundary Layer Height Detection Fusion Method and Case Analysis
by Zhiyuan Fang, Shu Li, Hao Yang and Zhiqiang Kuang
Photonics 2025, 12(8), 741; https://doi.org/10.3390/photonics12080741 - 22 Jul 2025
Viewed by 213
Abstract
Accurate detection of the atmospheric boundary layer (ABL) is important for weather forecasting, urban air quality monitoring, and agricultural and ecological protection. In this study, we propose a new method for enhancing ABL height detection accuracy by integrating multi-channel polarized lidar signals at [...] Read more.
Accurate detection of the atmospheric boundary layer (ABL) is important for weather forecasting, urban air quality monitoring, and agricultural and ecological protection. In this study, we propose a new method for enhancing ABL height detection accuracy by integrating multi-channel polarized lidar signals at 355 nm and 532 nm wavelengths. Radiosonde observations and ERA5 reanalysis are used to validate the lidar-derived results. By calculating the gradients of signals of different wavelengths and weighted fusion, the position of the top of the boundary layer is identified, and corresponding weights are assigned to signals of different wavelengths according to the signal-to-noise ratio of the signals to obtain a more accurate atmospheric boundary layer height. This method can effectively mitigate the influence of noise and provides more stable and accurate ABL height estimates, particularly under complex aerosol conditions. Three case studies of ABL height detection over the Beijing region demonstrate the effectiveness and reliability of the proposed method. The fused ABLHs were found to be consistent with the sounding data and ERA5. This research offers a robust approach to enhancing ABL height detection and provides valuable data support for meteorological studies, pollution monitoring, and environmental protection. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

15 pages, 4848 KiB  
Communication
Practical Performance Assessment of Water Vapor Monitoring Using BDS PPP-B2b Service
by Linghao Zhou, Enhong Zhang, Hong Liang, Zuquan Hu, Meifang Qu, Xinxin Li and Yunchang Cao
Appl. Sci. 2025, 15(14), 8033; https://doi.org/10.3390/app15148033 - 18 Jul 2025
Viewed by 196
Abstract
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service [...] Read more.
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service is illustrated through a continuously operated water vapor monitoring system in Wuhan, China, with a 25-day experiment in 2025. Original observations from the Global Positioning System (GPS) and BDS are collected and processed in the near real-time (NRT) mode using ephemeris from the PPP-B2b service. Precipitable water vapor PWV monitored with B2b ephemeris are evaluated with radiosonde and ERA5 reanalysis, respectively. Taking PWV from radiosonde observations as the reference, RMS of PWV based on B2b ephemeris varies from 3.71 to 4.66 mm for different satellite combinations. While those values are with a range from 3.95 to 4.55 mm when compared with ERA5 reanalysis. These values are similar to those processed with the real-time ephemeris from the China Academy of Science (CAS). In general, this study demonstrates that the practical accuracy of water vapor monitored based on the BDS PPP-B2b service can meet the basic demand for operational meteorology for the first time. This will provide a scientific reference for its wide promotion to meteorological applications in the near future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 5011 KiB  
Article
New Insights into Meteorological and Hydrological Drought Modeling: A Comparative Analysis of Parametric and Non-Parametric Distributions
by Ahmad Abu Arra and Eyüp Şişman
Atmosphere 2025, 16(7), 846; https://doi.org/10.3390/atmos16070846 - 11 Jul 2025
Viewed by 213
Abstract
Accurate drought monitoring depends on selecting an appropriate cumulative distribution function (CDF) to model the original data, resulting in the standardized drought indices. In the numerous research studies, while rigorous validation was not made by scrutinizing the model assumptions and uncertainties in identifying [...] Read more.
Accurate drought monitoring depends on selecting an appropriate cumulative distribution function (CDF) to model the original data, resulting in the standardized drought indices. In the numerous research studies, while rigorous validation was not made by scrutinizing the model assumptions and uncertainties in identifying theoretical drought CDF models, such oversights lead to biased representations of drought evaluation and characteristics. This research compares the parametric theoretical and empirical CDFs for a comprehensive evaluation of standardized Drought Indices. Additionally, it examines the advantages, disadvantages, and limitations of both empirical and theoretical distribution functions in drought assessment. Three drought indices, Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Standardized Precipitation Evapotranspiration Index (SPEI), cover meteorological and hydrological droughts. The assessment spans diverse applications, covering different climates and regions: Durham, United Kingdom (SPEI, 1868–2021); Konya, Türkiye (SPI, 1964–2022); and Lüleburgaz, Türkiye (SDI, 1957–2015). The findings reveal that theoretical and empirical CDFs demonstrated notable discrepancies, particularly in long-term hydrological drought assessments, where underestimations reached up to 50%, posing risks of misinformed conclusions that may impact critical drought-related decisions and policymaking. Root Mean Squared Error (RMSE) for SPI3 between empirical and best-fitted CDF was 0.087, and between empirical and Gamma it was 0.152. For SDI, it ranged between 0.09 and 0.143. The Mean Absolute Error (MAE) for SPEI was approximately 0.05 for all timescales. Additionally, it concludes that empirical CDFs provide more reliable and conservative drought assessments and are free from the constraints of model assumptions. Both approaches gave approximately the same drought duration with different intensities regarding drought characteristics. Due to the complex process of drought events and different definitions of drought events, each drought event must be studied separately, considering its effects on different sectors. Full article
(This article belongs to the Special Issue Drought Monitoring, Prediction and Impacts (2nd Edition))
Show Figures

Figure 1

24 pages, 1147 KiB  
Article
Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions
by David Romero and Eric J. Alfaro
Meteorology 2025, 4(3), 18; https://doi.org/10.3390/meteorology4030018 - 8 Jul 2025
Viewed by 693
Abstract
The Standardized Precipitation Index (SPI) is widely used to determine drought severity worldwide. However, inconsistencies exist regarding its application in warm, humid tropical climatic zones. Originally developed for temperate regions with a continental climate, the index may not adequately reflect drought conditions in [...] Read more.
The Standardized Precipitation Index (SPI) is widely used to determine drought severity worldwide. However, inconsistencies exist regarding its application in warm, humid tropical climatic zones. Originally developed for temperate regions with a continental climate, the index may not adequately reflect drought conditions in tropical environments where rainfall regimes differ substantially. This study identifies the following two principal reasons why the traditional calculation method fails to characterize drought severity in tropical domains: first, the marked humidity contrast between the consistently humid rainy season and the rest of the year, and second, the diverse drought types in tropical regions, which include both long-term and short-term events. Using data from meteorological stations in Mexico’s humid tropics and comparing them with temperate regions, the study demonstrates significant discrepancies between SPI-based drought classifications and actual precipitation patterns. Our analysis shows that the abundant precipitation during the rainy season causes biases in longer time scales integrated into multivariate drought indices. Considerations are established for adapting the SPI for decision makers who monitor drought in humid tropics, with specific recommendations on time scale limits to avoid biases. This work contributes to more accurate drought monitoring in tropical regions by addressing the unique climatic characteristics of these environments. Full article
Show Figures

Figure 1

17 pages, 935 KiB  
Article
Personal Exposure Assessment of Respirable Particulate Matter Among University Students Across Microenvironments During the Winter Season Using Portable Monitoring Devices
by Muhammad Jahanzaib, Sana Iqbal, Sehrish Shoukat and Duckshin Park
Toxics 2025, 13(7), 571; https://doi.org/10.3390/toxics13070571 - 7 Jul 2025
Viewed by 417
Abstract
Respirable particulate matter (RPM) is a major indoor environment concern posing direct health risks. Localized data on RPM exposure remains scarce across different microenvironments in occupational and educational settings. Students in educational settings are increasingly vulnerable to RPM, specifically in the winter season [...] Read more.
Respirable particulate matter (RPM) is a major indoor environment concern posing direct health risks. Localized data on RPM exposure remains scarce across different microenvironments in occupational and educational settings. Students in educational settings are increasingly vulnerable to RPM, specifically in the winter season when more activities are carried out indoors and meteorological conditions elevate the PM levels. This study was conducted to assess the personal exposure of university students to RPM within their frequently visited microenvironments (MEs). Forty volunteers were selected, and their exposure to RPM was measured by specifically monitoring their particle mass count (PMC) and particle number count (PNC) in commonly identified MEs. Calibrated air pumps with nylon cyclones and a Dylos DC 1100 Pro were used for this purpose. We found that the mean RPM concentration for personal exposure was 251 µg/m3, significantly exceeding the prescribed National Environmental Quality Standards (NEQS) limit of 35 µg/m3. We also observed a significant correlation between the PNC and PMC in the microenvironments. The assessment of personal exposure to RMP in this study highlights the urgent need for mitigation strategies in educational settings to reduce the personal exposure of students to RMP to reduce their health-related risks. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

24 pages, 3524 KiB  
Article
Cross-Regional Pavement Temperature Prediction Using Transfer Learning and Random Forest
by Jiang Yuan, Huailei Cheng, Lijun Sun, Yadong Cao, Ruikang Yang, Tian Jin and Mingchen Li
Appl. Sci. 2025, 15(13), 7436; https://doi.org/10.3390/app15137436 - 2 Jul 2025
Viewed by 274
Abstract
Significant regional environmental differences result in varied patterns of pavement temperature changes. To enhance the cross-regional adaptability of temperature prediction models, transfer learning (TL) was introduced into the random forest (RF) model to improve its generalization capability. Firstly, meteorological data on air temperature, [...] Read more.
Significant regional environmental differences result in varied patterns of pavement temperature changes. To enhance the cross-regional adaptability of temperature prediction models, transfer learning (TL) was introduced into the random forest (RF) model to improve its generalization capability. Firstly, meteorological data on air temperature, solar radiation, relative humidity, and wind speed were collected from different regions. Pavement temperatures at various depths were also monitored over a long period. Secondly, prediction models were constructed using the RF method. The prediction performance of the models was evaluated. Thirdly, the RF model was optimized using TL with a feature enhancement strategy. Finally, the optimized model was validated using data from other regions not included in the initial training set. The results indicated that although the RF model achieved good prediction accuracy within individual regions, its performance declined when applied across different regions. After optimization through TL with feature enhancement, the model’s prediction accuracy in target regions was significantly improved. Specifically, the mean squared error was reduced from 44.91 to 14.88, the mean absolute error from 4.91 to 2.78, and the coefficient of determination increased from 0.75 to 0.92. Further validation revealed that the determination coefficient exceeded 0.94 and the mean absolute error remained below 2.3 °C at all depths. In summary, the transfer learning approach based on the random forest model demonstrates strong adaptability to different regions. It effectively addresses the issue of reduced prediction accuracy caused by regional differences and provides a reliable method for accurate pavement temperature prediction across multiple regions. Full article
Show Figures

Figure 1

32 pages, 1517 KiB  
Article
A Proposed Deep Learning Framework for Air Quality Forecasts, Combining Localized Particle Concentration Measurements and Meteorological Data
by Maria X. Psaropa, Sotirios Kontogiannis, Christos J. Lolis, Nikolaos Hatzianastassiou and Christos Pikridas
Appl. Sci. 2025, 15(13), 7432; https://doi.org/10.3390/app15137432 - 2 Jul 2025
Viewed by 312
Abstract
Air pollution in urban areas has increased significantly over the past few years due to industrialization and population increase. Therefore, accurate predictions are needed to minimize their impact. This paper presents a neural network-based examination for forecasting Air Quality Index (AQI) values, employing [...] Read more.
Air pollution in urban areas has increased significantly over the past few years due to industrialization and population increase. Therefore, accurate predictions are needed to minimize their impact. This paper presents a neural network-based examination for forecasting Air Quality Index (AQI) values, employing two different models: a variable-depth neural network (NN) called slideNN, and a Gated Recurrent Unit (GRU) model. Both models used past particulate matter measurements alongside local meteorological data as inputs. The slideNN variable-depth architecture consists of a set of independent neural network models, referred to as strands. Similarly, the GRU model comprises a set of independent GRU models with varying numbers of cells. Finally, both models were combined to provide a hybrid cloud-based model. This research examined the practical application of multi-strand neural networks and multi-cell recurrent neural networks in air quality forecasting, offering a hands-on case study and model evaluation for the city of Ioannina, Greece. Experimental results show that the GRU model consistently outperforms the slideNN model in terms of forecasting losses. In contrast, the hybrid GRU-NN model outperforms both GRU and slideNN, capturing additional localized information that can be exploited by combining particle concentration and microclimate monitoring services. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

14 pages, 7774 KiB  
Article
Temperature Differences Between Rooftop and Urban Canyon Sensors: Diurnal Dynamics, Drivers, and Implications
by Lorenzo Marinelli, Andrea Cecilia, Giampietro Casasanta, Alessandro Conidi, Igor Petenko and Stefania Argentini
Sensors 2025, 25(13), 4121; https://doi.org/10.3390/s25134121 - 2 Jul 2025
Viewed by 352
Abstract
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. [...] Read more.
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. According to the guidance by the World Meteorological Organization (WMO), rooftop observations are not encouraged for urban monitoring, due to potentially anomalous microclimatic conditions, whereas measurements within urban canyons are recommended. This is particularly relevant given the increasing number of rooftop sensors deployed through citizen science, raising questions about the representativeness of such data. This study aimed to address this knowledge gap by comparing temperatures within the UCL using two sensors: one located on a rooftop, and the other positioned within the canyon. The temperature difference between these two nearby locations followed a clear diurnal cycle, peaking at over 1 °C between 12:00 and 16:00 local time, with the canyon warmer than the rooftop. This daytime warming was primarily driven by solar radiation and, to a lesser extent, by wind speed, but only under clear-sky conditions. During the rest of the day, the temperature difference remained negligible. Full article
(This article belongs to the Special Issue Sensor-Based Systems for Environmental Monitoring and Assessment)
Show Figures

Figure 1

17 pages, 5319 KiB  
Article
Quantitative Detection of Floating Debris in Inland Reservoirs Using Sentinel-1 SAR Imagery: A Case Study of Daecheong Reservoir
by Sunmin Lee, Bongseok Jeong, Donghyeon Yoon, Jinhee Lee, Jeongho Lee, Joonghyeok Heo and Moung-Jin Lee
Water 2025, 17(13), 1941; https://doi.org/10.3390/w17131941 - 28 Jun 2025
Viewed by 368
Abstract
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and [...] Read more.
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and the timing of debris accumulation. To address this limitation, this study proposes an amplitude change detection (ACD) model based on time-series synthetic aperture radar (SAR) imagery, which is less affected by weather conditions. The model statistically distinguishes floating debris from open water based on their differing scattering characteristics. The ACD approach was applied to 18 pairs of Sentinel-1 SAR images acquired over Daecheong Reservoir from June to September 2024. A stringent type I error threshold (α < 1 × 10−8) was employed to ensure reliable detection. The results revealed a distinct cumulative effect, whereby the detected debris area increased immediately following rainfall events. A positive correlation was observed between 10-day cumulative precipitation and the debris-covered area. For instance, on 12 July, a floating debris area of 0.3828 km2 was detected, which subsequently expanded to 0.4504 km2 by 24 July. In contrast, on 22 August, when rainfall was negligible, no debris was detected (0 km2), indicating that precipitation was a key factor influencing the detection sensitivity. Comparative analysis with optical imagery further confirmed that floating debris tended to accumulate near artificial barriers and narrow channel regions. Overall, this study demonstrates that this spatial pattern suggests the potential to use detection results to estimate debris transport pathways and inform retrieval strategies. Full article
Show Figures

Figure 1

24 pages, 9809 KiB  
Article
Assessing Coastal Degradation Through Spatiotemporal Earth Observation Data Cubes Analytics and Multidimensional Visualization
by Ioannis Kavouras, Ioannis Rallis, Nikolaos Bakalos and Anastasios Doulamis
J. Mar. Sci. Eng. 2025, 13(7), 1239; https://doi.org/10.3390/jmse13071239 - 27 Jun 2025
Viewed by 222
Abstract
Coastal and maritime regions and their entities face accelerated degradation due to the combined effects of environmental stressors and anthropogenic activities. Coastal degradation can be identified, visualized and estimated through periodic monitoring over a region of interest using earth observation, climate, meteorological, seasonal, [...] Read more.
Coastal and maritime regions and their entities face accelerated degradation due to the combined effects of environmental stressors and anthropogenic activities. Coastal degradation can be identified, visualized and estimated through periodic monitoring over a region of interest using earth observation, climate, meteorological, seasonal, waves, sea level rising, and other ocean- and maritime-related datasets. Usually, these datasets are provided through different sources, in different structures or data types; in many cases, a complete dataset can be large in size and needs some kind of preprocessing (information filtering) before use in the intended application. Recently, the term data cube introduced in the scientific community and frameworks like Google Earth Engine and Open Data Cubes have emerged as a solution to earth observation data harmonization, federation, and exchange framework; however, these sources either completely lack the ability to process climate, meteorological, waves, sea lever rising, etc., data from open sources, like CORDEX and WCRP, or preprocessing is required. This study describes and utilizes the Ocean-DC framework for modular earth observation and other data types to resolve major big data challenges. Compared to the already existing approaches, the Ocean-DC framework harmonizes several types of data and generates ready-to-use data cubes products, which can be merged together to produce high-dimensionality visualization products. To prove the efficiency of the Ocean-DC framework, a case study at Crete Island, emphasizing the Port of Heraklion, demonstrates the practical utility by revealing degradation trends via time-series analysis of several related remote sensing indices calculated using the Ocean-DC framework. The results show a significant reduction in processing time (up to 89%) compared to traditional remote sensing approaches and optimized data storage management, proving its value as a scalable solution for environmental resilience, highlighting its potential use in early warning systems and decision support systems for sustainable coastal infrastructure management. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 8903 KiB  
Article
Comparative Analysis of Satellite-Based Rainfall Products for Drought Assessment in a Data-Poor Region
by Hansini Gayanthika, Dimuthu Lakshitha, Manthika Chathuranga, Gouri De Silva and Jeewanthi Sirisena
Hydrology 2025, 12(7), 166; https://doi.org/10.3390/hydrology12070166 - 27 Jun 2025
Viewed by 409
Abstract
Drought is one of the most impactful natural disasters, and it significantly impacts three main sectors of a country: the environment, society, and the economy. Therefore, drought assessment and monitoring are essential for reducing vulnerability and risk. However, insufficient and sparse long-term in [...] Read more.
Drought is one of the most impactful natural disasters, and it significantly impacts three main sectors of a country: the environment, society, and the economy. Therefore, drought assessment and monitoring are essential for reducing vulnerability and risk. However, insufficient and sparse long-term in situ rainfall data limit drought assessment in developing countries. Recently developed satellite-based rainfall products, available at different temporal and spatial resolutions, offer a valuable alternative in data-poor regions like Sri Lanka, where rain gauge networks are sparse and maintenance issues are prevalent. This study evaluates the accuracy of satellite-based rainfall estimates compared to in situ observations for drought assessment within the Mi Oya River Basin, Sri Lanka. We assessed the performance of various satellite-based rainfall products, including IMERG, GSMaP, CHIRPS, PERSIANN, and PERSIANN-CDR, by comparing them with ground-based observations over 20 years, from 2003 to 2022. Our methodology involved checking detection accuracy using the False Alarm Ratio (FAR), Probability of Detection (POD), and Critical Success Index (CSI), and assessing accuracy through metrics such as Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC), Percentage Bias (PBias), and Nash–Sutcliffe Efficiency (NSE). The two best-performing satellite-based rainfall products were used for meteorological and hydrological drought assessment. In the accuracy detection metrics, the results indicate that while products like IMERG and GSMaP generally provide reliable rainfall estimates, others like PERSIANN and PERSIANN-CDR tend to overestimate rainfall. For instance, IMERG shows a CSI range of 0.04–0.25 for moderate and heavy rainfall and 0.10–0.30 for light rainfall. On a monthly scale, IMERG and CHIRPS showed the highest performance, with CC (NSE) values of 0.81–0.94 (0.53–0.83) and 0.79–0.86 (0.54–0.74), respectively. However, GSMaP showed the lowest bias, with a range of −17.1–13.2%. Recorded drought periods over 1981–2022 (1998–2022) were reasonably well captured by CHIRPS (IMERG) products in the Mi Oya River Basin. Our results highlighted uncertainties and discrepancies in the capability of different rainfall products to assess drought conditions. This research provides valuable insights for optimizing the use of satellite rainfall products in hydrological modeling and disaster preparedness in the Mi Oya River Basin. Full article
Show Figures

Figure 1

35 pages, 9804 KiB  
Article
LAI-Derived Atmospheric Moisture Condensation Potential for Forest Health and Land Use Management
by Jung-Jun Lin and Ali Nadir Arslan
Remote Sens. 2025, 17(12), 2104; https://doi.org/10.3390/rs17122104 - 19 Jun 2025
Viewed by 389
Abstract
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, [...] Read more.
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, plays a vital role in both hydrological and ecological processes. The presence of AMC on leaf surfaces serves as an indicator of leaf water potential and overall ecosystem health. However, the large-scale assessment of AMC on leaf surfaces remains limited. To address this gap, we propose a leaf area index (LAI)-derived condensation potential (LCP) index to estimate potential dew yield, thereby supporting more effective land management and resource allocation. Based on psychrometric principles, we apply the nocturnal condensation potential index (NCPI), using dew point depression (ΔT = Ta − Td) and vapor pressure deficit derived from field meteorological data. Kriging interpolation is used to estimate the spatial and temporal variations in the AMC. For management applications, we develop a management suitability score (MSS) and prioritization (MSP) framework by integrating the NCPI and the LAI. The MSS values are classified into four MSP levels—High, Moderate–High, Moderate, and Low—using the Jenks natural breaks method, with thresholds of 0.15, 0.27, and 0.37. This classification reveals cases where favorable weather conditions coincide with low ecological potential (i.e., low MSS but high MSP), indicating areas that may require active management. Additionally, a pairwise correlation analysis shows that the MSS varies significantly across different LULC types but remains relatively stable across groundwater potential zones. This suggests that the MSS is more responsive to the vegetation and micrometeorological variability inherent in LULC, underscoring its unique value for informed land use management. Overall, this study demonstrates the added value of the LAI-derived AMC modeling for monitoring spatiotemporal micrometeorological and vegetation dynamics. The MSS and MSP framework provides a scalable, data-driven approach to adaptive land use prioritization, offering valuable insights into forest health improvement and ecological water management in the face of climate change. Full article
Show Figures

Figure 1

21 pages, 4469 KiB  
Article
Assessment of PM10 and PM2.5 Concentrations in Santo Domingo: A Comparative Study Between 2019 and 2022
by Carime Matos-Espinosa, Ramón Delanoy, Claudia Caballero-González, Anel Hernández-Garces, Ulises Jauregui-Haza, Solhanlle Bonilla-Duarte and José-Ramón Martínez-Batlle
Atmosphere 2025, 16(6), 734; https://doi.org/10.3390/atmos16060734 - 16 Jun 2025
Viewed by 580
Abstract
This study analyzes the spatial and temporal variability of PM10 and PM2.5 concentrations in Santo Domingo, Dominican Republic, based on short-term sampling campaigns conducted in 2019 and 2022. In 2019, PM10 levels averaged 38.14 µg/m3, while in 2022 [...] Read more.
This study analyzes the spatial and temporal variability of PM10 and PM2.5 concentrations in Santo Domingo, Dominican Republic, based on short-term sampling campaigns conducted in 2019 and 2022. In 2019, PM10 levels averaged 38.14 µg/m3, while in 2022 they rose significantly to 62.18 µg/m3. PM2.5 in 2022 averaged 30.37 µg/m3. These differences are likely influenced by meteorological variability, including increased transport of Saharan dust in mid-2022, and seasonal factors. Although local emission changes were not directly assessed, they may have also played a role in the observed trends. Statistical analyses revealed that aerosol optical depth (AOD), air pressure, and rainfall were significant predictors of PM10 in 2022, explaining up to 75% of the variance. Correlations and regression models confirmed a robust association between AOD and PM levels on a weekly timescale. These findings highlight the importance of integrating remote sensing and meteorological data to improve air quality monitoring and inform environmental policy in Caribbean urban areas. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 2562 KiB  
Article
Investigation of the Regularities of the Influence of Meteorological Factors on Avalanches in Eastern Kazakhstan
by Marzhan Rakhymberdina, Natalya Denissova, Yerkebulan Bekishev, Gulzhan Daumova, Milan Konečný, Zhanna Assylkhanova and Azamat Kapasov
Atmosphere 2025, 16(6), 723; https://doi.org/10.3390/atmos16060723 - 15 Jun 2025
Viewed by 416
Abstract
This paper studies the influence of meteorological factors on avalanche occurrence in East Kazakhstan using modern data analysis methods. A dataset of 111 avalanche events in nine avalanche-prone areas of the region, recorded between 2012 and 2023, was compiled. Primary data on avalanche [...] Read more.
This paper studies the influence of meteorological factors on avalanche occurrence in East Kazakhstan using modern data analysis methods. A dataset of 111 avalanche events in nine avalanche-prone areas of the region, recorded between 2012 and 2023, was compiled. Primary data on avalanche dates were obtained from the Department of Emergency Situations of East Kazakhstan Region (DES EKR), and meteorological data were sourced from the Kazhydromet website. Descriptive statistics, correlation analysis, principal component analysis (PCA), as well as K-means clustering and DBSCAN algorithms, were used for the analysis. During the analysis of meteorological conditions preceding avalanches at nine avalanche-prone areas in Eastern Kazakhstan, using PCA (Principal Component Analysis), the main weather factors affecting avalanche formation were determined. Clustering of 111 avalanches using the K-Means method allowed the identification of four scenario types: gradual snow accumulation without wind (33 cases), upper layer thawing due to warming (34), high snow cover (28), and storm impact (16). The DBSCAN method revealed two anomalous cases related to extreme snow depth. Correlation analysis revealed significant relationships between avalanches and meteorological parameters such as air temperature, snow cover depth, wind speed and direction, precipitation, and relative humidity. Correlation analysis revealed both negative and positive relationships between meteorological parameters. Principal component analysis identified the most significant variables affecting avalanche activity, with temperature, snow cover height, and wind making the greatest contributions. Cluster analysis demonstrated that avalanches could occur under different combinations of weather conditions within the same areas, confirming the complex nature of avalanche-forming processes. The results emphasize the need for an integrated approach to avalanche forecasting that accounts for the multi-parametric interactions of meteorological factors, and may contribute to the improvement of avalanche risk monitoring and mitigation systems in mountain regions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop