Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = metastatic glioma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 10095 KiB  
Article
Enhanced Brain Tumor Classification Using MobileNetV2: A Comprehensive Preprocessing and Fine-Tuning Approach
by Md Atiqur Rahman, Mohammad Badrul Alam Miah, Md. Abir Hossain and A. S. M. Sanwar Hosen
BioMedInformatics 2025, 5(2), 30; https://doi.org/10.3390/biomedinformatics5020030 - 5 Jun 2025
Viewed by 1928
Abstract
Background: Brain tumors are among the most difficult diseases to deal with in modern medicine due to the uncontrolled cell proliferation, which causes grave damage to the nervous system. Brain tumors can be broadly classified into two categories: primary tumors, which originate within [...] Read more.
Background: Brain tumors are among the most difficult diseases to deal with in modern medicine due to the uncontrolled cell proliferation, which causes grave damage to the nervous system. Brain tumors can be broadly classified into two categories: primary tumors, which originate within the brain, and secondary tumors, which are metastatic in nature. Effective glioma, meningioma, and pituitary tumor diagnosis and treatment requires the precise differentiation of these tumors as well as non-tumors for improved clinical outcomes. Methods: Here, we present a new method to classify brain tumors based on the MobileNetV2 architecture with advanced preprocessing for high accuracy. We accessed an MRI image dataset from Kaggle that contained 1311 images in the test set. We split the data into 80% training and 20% testing. All images underwent extensive preprocessing, including grayscale conversion, noise removal, and contrast-limited-adaptive-histogram equalization (CLAHE). All images were resized to 224 × 224 pixels. Using transfer learning, the baseline frozen layers were kept intact while the top layers were trained with a learning rate of 0.0001, which was tuned to the model’s requirements using early stopping to avoid overfitting. Results: With the outlined methodology, we obtained an astounding accuracy of 99.16%, including strong performance in the no-tumor category, where recall rates were approaching 100% and false positive rates were minimized. Conclusions: These findings strongly indicate that the application of lightweight convolutional neural networks in diagnostic imaging can considerably expedite accurate brain tumor identification by radiologists. Full article
(This article belongs to the Section Applied Biomedical Data Science)
Show Figures

Figure 1

46 pages, 8583 KiB  
Systematic Review
The Adverse Effects and Use of Bevacizumab in Patients with Glioblastoma: A Systematic Review and Meta-Analysis
by Alejandro Bruna-Mejías, Vicente Silva-Bravo, Laura Moyano Valarezo, María Fernanda Delgado-Retamal, Diego Nazar-Izquierdo, Isidora Aguilar-Aguirre, Pablo Nova-Baeza, Mathias Orellana-Donoso, Alejandra Suazo-Santibáñez, Héctor Gutiérrez-Espinoza, Juan Sanchis Gimeno, Carlos Bastidas-Caldes and Juan José Valenzuela Fuenzalida
Pharmaceuticals 2025, 18(6), 795; https://doi.org/10.3390/ph18060795 - 25 May 2025
Cited by 1 | Viewed by 1294
Abstract
Background: A glioblastoma (GBM) is a type of tumor originating from the glial brain cells, the astrocytes, and thus belongs to the astrocytoma group. Bevacizumab (BV) is a treatment for GBM. BV is the active ingredient in the drugs Avastin®, [...] Read more.
Background: A glioblastoma (GBM) is a type of tumor originating from the glial brain cells, the astrocytes, and thus belongs to the astrocytoma group. Bevacizumab (BV) is a treatment for GBM. BV is the active ingredient in the drugs Avastin®, Alymsys®, Mvasi® and ZiraBev®. It is currently approved as second-line treatment for GBM recurrence in combination with radiotherapy, and as first-line treatment for other cancers, including advanced colorectal cancer, metastatic breast cancer and advanced non-small-cell lung cancer. The objective of this systematic review was to analyze the scientific evidence from the science-based literature on the therapeutic effect and adverse effects of the drug BV in patients with GBM or GBM multiforme. Methods: We systematically searched electronic databases for the literature search, including the MEDLINE (via PubMed), SCOPUS, Google Scholar, the Cumulative Index to Nursing and Allied Health Literature and Web of Science databases, covering records from their earliest data to December 2024. Randomized or controlled clinical trials that were published in English or Spanish were included. The following keywords were used in different combinations: “Bevacizumab therapy”, “Bevacizumab pharmaceutical”, “Glioblastoma”, “Glioma” and “multiform glioblastoma”. Results: The use of Bevacizumab has been extensively studied in the scientific literature, with beneficial effects in symptom control. However, the adverse effects of BV vary across different types of carcinomas, which is why it has already been established that these adverse effects must be taken into consideration. In our meta-analysis of adverse effects, we found 14 adverse effects and estimated their prevalence, with an average of 19% (CI: 4 to 44%). The most significant vascular adverse effect was thromboembolism, which led to a greater number of complications for patients with GBM. Finally, the most common adverse effects were nausea, vomiting, fatigue and hypertension. Conclusions: While the beneficial properties of this pharmacological therapy have been observed, its adverse effect profile requires constant evaluation, as it includes vascular, blood and symptomatic adverse effects, which must be analyzed on a case-by-case basis and with great attention, especially in the case of more serious complications such as thromboembolic events. Full article
Show Figures

Graphical abstract

43 pages, 8209 KiB  
Review
Game Changers: Blockbuster Small-Molecule Drugs Approved by the FDA in 2024
by Zhonglei Wang, Xin Sun, Mingyu Sun, Chao Wang and Liyan Yang
Pharmaceuticals 2025, 18(5), 729; https://doi.org/10.3390/ph18050729 - 15 May 2025
Viewed by 3081
Abstract
This article profiles 27 innovative advancements in small-molecule drugs approved by the U.S. Food and Drug Administration (FDA) in 2024. These drugs target various therapeutic areas including non-small cell lung cancer, advanced or metastatic breast cancer, glioma, relapsed or refractory acute leukemia, urinary [...] Read more.
This article profiles 27 innovative advancements in small-molecule drugs approved by the U.S. Food and Drug Administration (FDA) in 2024. These drugs target various therapeutic areas including non-small cell lung cancer, advanced or metastatic breast cancer, glioma, relapsed or refractory acute leukemia, urinary tract infection, Staphylococcus aureus bloodstream infections, nonalcoholic steatohepatitis, primary biliary cholangitis, Duchenne muscular dystrophy, hypertension, anemia due to chronic kidney disease, extravascular hemolysis, primary axillary hyperhidrosis, chronic obstructive pulmonary disease, severe alopecia areata, WHIM syndrome, Niemann–Pick disease type C, schizophrenia, supraventricular tachycardia, congenital adrenal hyperplasia, and cystic fibrosis. Among these approved small-molecule drugs, those with unique mechanisms of action and designated as breakthrough therapies by the FDA represent a significant proportion, highlighting ongoing innovation. Notably, eight of these drugs (including Rezdiffra®, Voydeya®, Iqirvo®, Voranigo®, Livdelzi®, Miplyffa®, Revuforj®, and Crenessity®) are classified as “first-in-class” and have received breakthrough therapy designation. These agents not only exhibit distinct mechanisms of action but also offer substantial improvements in efficacy for patients compared to prior therapeutic options. This article offers a comprehensive analysis of the mechanisms of action, clinical trials, drug design, and synthetic methodologies related to representative drugs, aiming to provide crucial insights for future pharmaceutical development. Full article
(This article belongs to the Special Issue Small-Molecule Inhibitors for Novel Therapeutics)
Show Figures

Scheme 1

26 pages, 5853 KiB  
Article
Kinin B1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments
by Carolina Batista, João Victor Roza Cruz, Michele Siqueira, João Bosco Pesquero, Joice Stipursky and Fabio de Almeida Mendes
Pharmaceuticals 2025, 18(4), 591; https://doi.org/10.3390/ph18040591 - 18 Apr 2025
Viewed by 764
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical [...] Read more.
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

26 pages, 1171 KiB  
Review
Matrix Metalloproteinases in Glioma: Drivers of Invasion and Therapeutic Targets
by Ella E. Aitchison, Alexandra M. Dimesa and Alireza Shoari
BioTech 2025, 14(2), 28; https://doi.org/10.3390/biotech14020028 - 15 Apr 2025
Cited by 1 | Viewed by 1498
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a [...] Read more.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a complex interplay involving tumor proliferation, angiogenesis, and immune modulation, thereby influencing tumor progression and patient prognosis. This review provides a comprehensive analysis of the roles of various MMPs in different types of gliomas, from highly malignant gliomas to metastatic lesions. Emphasis is placed on how the dysregulation of MMPs impacts tumor behavior, the association between specific MMPs and the tumor grade, and their potential as biomarkers for diagnosis and prognosis. Additionally, the current therapeutic approaches targeting MMP activity are discussed, exploring both their challenges and future potential. By synthesizing recent findings, this paper aims to clarify the broad significance of MMPs in gliomas and propose avenues for translational research that could enhance treatment strategies and clinical outcomes. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

20 pages, 2628 KiB  
Review
Confocal Laser Endomicroscopy: Enhancing Intraoperative Decision Making in Neurosurgery
by Francesco Carbone, Nicola Pio Fochi, Giuseppe Di Perna, Arthur Wagner, Jürgen Schlegel, Elena Ranieri, Uwe Spetzger, Daniele Armocida, Fabio Cofano, Diego Garbossa, Augusto Leone and Antonio Colamaria
Diagnostics 2025, 15(4), 499; https://doi.org/10.3390/diagnostics15040499 - 19 Feb 2025
Viewed by 1174
Abstract
Brain tumors, both primary and metastatic, represent a significant global health burden due to their high incidence, mortality, and the severe neurological deficits they frequently cause. Gliomas, especially high-grade gliomas (HGGs), rank among the most aggressive and lethal neoplasms, with only modest gains [...] Read more.
Brain tumors, both primary and metastatic, represent a significant global health burden due to their high incidence, mortality, and the severe neurological deficits they frequently cause. Gliomas, especially high-grade gliomas (HGGs), rank among the most aggressive and lethal neoplasms, with only modest gains in long-term survival despite extensive molecular research and established standard therapies. In neurosurgical practice, maximizing the extent of safe resection is a principal strategy for improving clinical outcomes. Yet, the infiltrative nature of gliomas often complicates the accurate delineation of tumor margins. Confocal laser endomicroscopy (CLE), originally introduced in gastroenterology, has recently gained prominence in neuro-oncology by enabling real-time, high-resolution cellular imaging during surgery. This technique allows for intraoperative tumor characterization and reduces dependence on time-consuming frozen-section analyses. Recent technological advances, including device miniaturization and second-generation CLE systems, have substantially improved image quality and diagnostic utility. Furthermore, integration with deep learning algorithms and telepathology platforms fosters automated image interpretation and remote expert consultations, thereby accelerating surgical decision making and enhancing diagnostic consistency. Future work should address remaining challenges, such as mitigating motion artifacts, refining training protocols, and broadening the range of applicable fluorescent probes, to solidify CLE’s role as a critical intraoperative adjunct in neurosurgical oncology. Full article
(This article belongs to the Special Issue Confocal Microscopy: Clinical Impacts and Innovation, 2nd Edition)
Show Figures

Figure 1

25 pages, 4907 KiB  
Article
Co-Inhibition of tGLI1 and GP130 Using FDA-Approved Ketoconazole and Bazedoxifene Is Synergistic Against the Growth and Metastasis of HER2-Enriched and Triple-Negative Breast Cancers
by Sara Manore, Chuling Zhuang, Mariana K. Najjar, Grace L. Wong, Shivani Bindal, Kounosuke Watabe, Jiayuh Lin and Hui-Wen Lo
Cells 2024, 13(24), 2087; https://doi.org/10.3390/cells13242087 - 17 Dec 2024
Viewed by 1350
Abstract
Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be [...] Read more.
Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be frequently co-expressed in HER2-enriched breast cancer and triple-negative breast cancer (TNBC), undergo protein-protein interactions for gene regulation and activation, and functionally cooperate to promote breast CSCs. STAT3 can be activated by activated interleukin-6 receptor/glycoprotein-130 (IL-6R/GP130). Co-targeting of tGLI1 and IL-6R/GP130 has not been investigated in breast cancer or any tumor type. Here, we report that tGLI1 and GP130 are co-overexpressed in the majority of HER2-enriched breast cancers and TNBCs at 53.8% and 44.4%, respectively. tGLI1+IL-6/IL-6R/GP130 signaling is frequently co-enriched and co-activated in HER2-enriched breast cancer and TNBC when compared to luminal subtypes. tGLI1+GP130 co-overexpression strongly promotes CSCs of HER2-enriched breast cancer and TNBC. FDA-approved tGLI1 inhibitor Ketoconazole and GP130 inhibitor Bazedoxifene synergize against breast cancer proliferation and CSC phenotypes in vitro and reduce TNBC tumor growth and metastatic burden in vivo. Our study demonstrates, for the first time, that co-targeting tGLI1 and IL-6R/GP130/STAT3 signaling pathways is synergistic against HER2-enriched breast cancer and TNBC, warranting future clinical investigations. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

24 pages, 5133 KiB  
Review
Advancements in Microfluidic Platforms for Glioblastoma Research
by Rachana Raman, Vijendra Prabhu, Praveen Kumar and Naresh Kumar Mani
Chemistry 2024, 6(5), 1039-1062; https://doi.org/10.3390/chemistry6050060 - 15 Sep 2024
Viewed by 2387
Abstract
Glioblastoma (GBM) is a malignant cancer affecting the brain. As per the WHO classifications, it is a grade IV glioma and is characterized by heterogenous histopathology, high recurrence rates, and a high median age of diagnosis. Most individuals diagnosed with GBM are aged [...] Read more.
Glioblastoma (GBM) is a malignant cancer affecting the brain. As per the WHO classifications, it is a grade IV glioma and is characterized by heterogenous histopathology, high recurrence rates, and a high median age of diagnosis. Most individuals diagnosed with GBM are aged between 50 and 64 years, and the prognosis is often poor. Untreated GBM patients have a median survival of 3 months, while treatments with Temozolomide (TMZ) and radiotherapy can improve the survival to 10–14 months. Tumor recurrence is common, owing to the inefficiency of surgical resection in removing microscopic tumor formations in the brain. A crucial component of GBM-related research is understanding the tumor microenvironment (TME) and its characteristics. The various cellular interactions in the TME contribute to the higher occurrence of malignancy, resistance to treatments, and difficulty in tumor resection and preventative care. Incomplete pictures of the TME have been obtained in 2D cultures, which fail to incorporate the ECM and other crucial components. Identifying the hallmarks of the TME and developing ex vivo and in vitro models can help study patient-specific symptoms, assess challenges, and develop courses of treatment in a timely manner which is more efficient than the current methods. Microfluidic models, which incorporate 3D cultures and co-culture models with various channel patterns, are capable of stimulating tumor conditions accurately and provide better responses to therapeutics as would be seen in the patient. This facilitates a more refined understanding of the potential treatment delivery systems, resistance mechanisms, and metastatic pathways. This review collates information on the application of such microfluidics-based systems to analyze the GBM TME and highlights the use of such systems in improving patient care and treatment options. Full article
Show Figures

Figure 1

18 pages, 5306 KiB  
Article
Does 5-ALA Fluorescence Microscopy Improve Complete Resectability in Cerebral/Cerebellar Metastatic Surgery? A Retrospective Data Analysis from a Cranial Center
by Hraq Mourad Sarkis, Samer Zawy Alsofy, Ralf Stroop, Marc Lewitz, Stephanie Schipmann, Markus Unnewehr, Werner Paulus, Makoto Nakamura and Christian Ewelt
Cancers 2024, 16(12), 2242; https://doi.org/10.3390/cancers16122242 - 17 Jun 2024
Cited by 1 | Viewed by 1606
Abstract
(1) Background: In this study, the intraoperative fluorescence behavior of brain metastases after the administration of 5-aminolevulinic acid (5-ALA) was analyzed. The aim was to investigate whether the resection of brain metastases using 5-ALA fluorescence also leads to a more complete resections and [...] Read more.
(1) Background: In this study, the intraoperative fluorescence behavior of brain metastases after the administration of 5-aminolevulinic acid (5-ALA) was analyzed. The aim was to investigate whether the resection of brain metastases using 5-ALA fluorescence also leads to a more complete resections and thus to a prolongation of survival; (2) Methods: The following variables have been considered: age, sex, number of metastases, localization, involvement of eloquent area, correlation between fluorescence and primary tumor/subtype, resection, and survival time. The influence on the degree of resection was determined with a control MRI within the first three postoperative days; (3) Results: Brain metastases fluoresced in 57.5% of cases. The highest fluorescence rates of 73.3% were found in breast carcinoma metastases and the histologic subtype adenocarcinoma (68.1%). No correlation between fluorescence behavior and localization, primary tumor, or histological subtype was found. Complete resection was detected in 82.5%, of which 56.1% were fluorescence positive. There was a trend towards improved resectability (increase of 12.1%) and a significantly longer survival time (p = 0.009) in the fluorescence-positive group; (4) Conclusions: 5-ALA-assisted extirpation leads to a more complete resection and longer survival and can therefore represent a low-risk addition to modern surgery for brain metastases. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

12 pages, 1434 KiB  
Article
Disease Control and Toxicity Outcomes after Stereotactic Ablative Radiation Therapy for Recurrent and/or Metastatic Cancers in Young-Adult and Pediatric Patients
by Rituraj Upadhyay, Brett Klamer, Jennifer Matsui, Vikram B. Chakravarthy, Thomas Scharschmidt, Nicholas Yeager, Bhuvana A. Setty, Timothy P. Cripe, Ryan D. Roberts, Jennifer H. Aldrink, Raj Singh, Raju R. Raval, Joshua D. Palmer and Sujith Baliga
Cancers 2024, 16(11), 2090; https://doi.org/10.3390/cancers16112090 - 30 May 2024
Cited by 3 | Viewed by 1488
Abstract
Background: Pediatric patients with metastatic and/or recurrent solid tumors have poor survival outcomes despite standard-of-care systemic therapy. Stereotactic ablative radiation therapy (SABR) may improve tumor control. We report the outcomes with the use of SABR in our pediatric solid tumor population. Methods: This [...] Read more.
Background: Pediatric patients with metastatic and/or recurrent solid tumors have poor survival outcomes despite standard-of-care systemic therapy. Stereotactic ablative radiation therapy (SABR) may improve tumor control. We report the outcomes with the use of SABR in our pediatric solid tumor population. Methods: This was a single-institutional study in patients < 30 years treated with SABR. The primary endpoint was local control (LC), while the secondary endpoints were progression-free survival (PFS), overall survival (OS), and toxicity. The survival analysis was performed using Kaplan–Meier estimates in R v4.2.3. Results: In total, 48 patients receiving 135 SABR courses were included. The median age was 15.6 years (interquartile range, IQR 14–23 y) and the median follow-up was 18.1 months (IQR: 7.7–29.1). The median SABR dose was 30 Gy (IQR 25–35 Gy). The most common primary histologies were Ewing sarcoma (25%), rhabdomyosarcoma (17%), osteosarcoma (13%), and central nervous system (CNS) gliomas (13%). Furthermore, 57% of patients had oligometastatic disease (≤5 lesions) at the time of SABR. The one-year LC, PFS, and OS rates were 94%, 22%, and 70%, respectively. No grade 4 or higher toxicities were observed, while the rates of any grade 1, 2, and 3 toxicities were 11.8%, 3.7%, and 4.4%, respectively. Patients with oligometastatic disease, lung, or brain metastases and those who underwent surgery for a metastatic site had a significantly longer PFS. LC at 1-year was significantly higher for patients with a sarcoma histology (95.7% vs. 86.5%, p = 0.01) and for those who received a biological equivalent dose (BED10) > 48 Gy (100% vs. 91.2%, p = 0.001). Conclusions: SABR is well tolerated in pediatric patients with 1-year local failure and OS rates of <10% and 70%, respectively. Future studies evaluating SABR in combination with systemic therapy are needed to address progression outside of the irradiated field. Full article
Show Figures

Figure 1

13 pages, 4966 KiB  
Systematic Review
H3K27-Altered Diffuse Glioma of the Spinal Cord in Adult Patients: A Qualitative Systematic Review and Peculiarity of Radiological Findings
by Anna Maria Auricchio, Giovanni Pennisi, Grazia Menna, Alessandro Olivi, Marco Gessi, Gerrit H. Gielen, Simona Gaudino, Nicola Montano and Fabio Papacci
J. Clin. Med. 2024, 13(10), 2972; https://doi.org/10.3390/jcm13102972 - 18 May 2024
Cited by 2 | Viewed by 2032
Abstract
Background: Primary spinal cord diffuse gliomas (SpDG) are rare tumors that may harbor, like diffuse intrinsic pontine gliomas (DIPG), H3K27M mutations. According to the WHO (2021), SpDGs are included in diffuse midline H3K27-altered gliomas, which occur more frequently in adults and show [...] Read more.
Background: Primary spinal cord diffuse gliomas (SpDG) are rare tumors that may harbor, like diffuse intrinsic pontine gliomas (DIPG), H3K27M mutations. According to the WHO (2021), SpDGs are included in diffuse midline H3K27-altered gliomas, which occur more frequently in adults and show unusual clinical presentation, neuroradiological features, and clinical behavior, which differ from H3 G34-mutant diffuse hemispheric glioma. Currently, homogeneous adult-only case series of SpDG, with complete data and adequate follow-up, are still lacking. Methods: We conducted a qualitative systematic review, focusing exclusively on adult and young adult patients, encompassing all studies reporting cases of primitive, non-metastatic SpDG with H3K27 mutation. We analyzed the type of treatment administered, survival, follow-up duration, and outcomes. Results: We identified 30 eligible articles published between 1990 and 2023, which collectively reported on 62 adult and young adult patients with primitive SpDG. Postoperative outcomes were assessed based on the duration of follow-up, with outcomes categorized as either survival or mortality. Patients who underwent surgery were followed up for a mean duration of 17.37 months, while those who underwent biopsy had a mean follow-up period of 14.65 months. Among patients who were still alive, the mean follow-up duration was 18.77 months. The radiological presentation of SpDG varies widely, indicating its lack of uniformity. Conclusion: Therefore, we presented a descriptive scenario where SpDG was initially suspected to be a meningioma, but was later revealed to be a malignant SpDG with H3K27M mutation. Full article
(This article belongs to the Special Issue Targeted Diagnosis and Treatment in Lumbar and Spine Surgeries)
Show Figures

Figure 1

14 pages, 3265 KiB  
Article
Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases
by Jelena Ostojic, Dusko Kozic, Milana Panjkovic, Biljana Georgievski-Brkic, Dusan Dragicevic, Aleksandra Lovrenski and Jasmina Boban
Medicina 2024, 60(4), 662; https://doi.org/10.3390/medicina60040662 - 19 Apr 2024
Viewed by 4013
Abstract
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an [...] Read more.
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the “NAA-like peak”, was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 13405 KiB  
Article
MRI-Based Assessment of Brain Tumor Hypoxia: Correlation with Histology
by Fatemeh Arzanforoosh, Maaike Van der Velden, Avery J. L. Berman, Sebastian R. Van der Voort, Eelke M. Bos, Joost W. Schouten, Arnaud J. P. E. Vincent, Johan M. Kros, Marion Smits and Esther A. H. Warnert
Cancers 2024, 16(1), 138; https://doi.org/10.3390/cancers16010138 - 27 Dec 2023
Cited by 9 | Viewed by 2362
Abstract
Cerebral hypoxia significantly impacts the progression of brain tumors and their resistance to radiotherapy. This study employed streamlined quantitative blood-oxygen-level-dependent (sqBOLD) MRI to assess the oxygen extraction fraction (OEF)—a measure of how much oxygen is being extracted from vessels, with higher OEF values [...] Read more.
Cerebral hypoxia significantly impacts the progression of brain tumors and their resistance to radiotherapy. This study employed streamlined quantitative blood-oxygen-level-dependent (sqBOLD) MRI to assess the oxygen extraction fraction (OEF)—a measure of how much oxygen is being extracted from vessels, with higher OEF values indicating hypoxia. Simultaneously, we utilized vessel size imaging (VSI) to evaluate microvascular dimensions and blood volume. A cohort of ten patients, divided between those with glioma and those with brain metastases, underwent a 3 Tesla MRI scan. We generated OEF, cerebral blood volume (CBV), and vessel size maps, which guided 3–4 targeted biopsies per patient. Subsequent histological analyses of these biopsies used hypoxia-inducible factor 1-alpha (HIF-1α) for hypoxia and CD31 for microvasculature assessment, followed by a correlation analysis between MRI and histological data. The results showed that while the sqBOLD model was generally applicable to brain tumors, it demonstrated discrepancies in some metastatic tumors, highlighting the need for model adjustments in these cases. The OEF, CBV, and vessel size maps provided insights into the tumor’s hypoxic condition, showing intertumoral and intratumoral heterogeneity. A significant relationship between MRI-derived measurements and histological data was only evident in the vessel size measurements (r = 0.68, p < 0.001). Full article
(This article belongs to the Special Issue Advances in Neuro-Oncological Imaging)
Show Figures

Figure 1

15 pages, 2328 KiB  
Article
Microgravity as an Anti-Metastatic Agent in an In Vitro Glioma Model
by Maurizio Sabbatini, Valentina Bonetto, Valeria Magnelli, Candida Lorusso, Francesco Dondero and Maria Angela Masini
Biophysica 2023, 3(4), 636-650; https://doi.org/10.3390/biophysica3040043 - 25 Nov 2023
Cited by 4 | Viewed by 1949
Abstract
Gravity is a primary physical force that has a profound influence on the stability of the cell cytoskeleton. In our research, we investigated the influence of microgravity on altering the cytoskeletal pathways of glioblastoma cells. The highly infiltrative behavior of glioblastoma is supported [...] Read more.
Gravity is a primary physical force that has a profound influence on the stability of the cell cytoskeleton. In our research, we investigated the influence of microgravity on altering the cytoskeletal pathways of glioblastoma cells. The highly infiltrative behavior of glioblastoma is supported by cytoskeletal dynamics and surface proteins that allow glioblastoma cells to avoid stable connections with the tissue environment and other cells. Glioblastoma cell line C6 was exposed to a microgravity environment for 24, 48, and 72 h by 3D-RPM, a laboratory instrument recognized to reproduce the effect of microgravity in cell cultures. The immunofluorescence for GFAP, vinculin, and Connexin-43 was investigated as signals related to cytoskeleton dynamics. The polymerization of GFAP and the expression of focal contact structured by vinculin were found to be altered, especially after 48 and 72 h of microgravity. Connexin-43, involved in several intracellular pathways that critically promote cell motility and invasion of glioma cells, was found to be largely reduced following microgravity exposure. In conclusion, microgravity, by reducing the expression of Connexin-43, alters the architecture of specific cytoskeletal elements such as GFAP and increases the focal contact, which can induce a reduction in glioma cell mobility, thereby inhibiting their aggressive metastatic behavior. Full article
(This article belongs to the Special Issue State-of-the-Art Biophysics in Italy)
Show Figures

Figure 1

20 pages, 5456 KiB  
Article
The Redox-Active Manganese(III) Porphyrin, MnTnBuOE-2-PyP5+, Impairs the Migration and Invasion of Non-Small Cell Lung Cancer Cells, Either Alone or Combined with Cisplatin
by Rita B. Soares, Rita Manguinhas, João G. Costa, Nuno Saraiva, Nuno Gil, Rafael Rosell, Sérgio P. Camões, Ines Batinic-Haberle, Ivan Spasojevic, Matilde Castro, Joana P. Miranda, Paula Guedes de Pinho, Ana S. Fernandes and Nuno G. Oliveira
Cancers 2023, 15(15), 3814; https://doi.org/10.3390/cancers15153814 - 27 Jul 2023
Cited by 10 | Viewed by 2485
Abstract
Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head [...] Read more.
Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC. Full article
(This article belongs to the Special Issue Advanced in Targeted Therapies in Cancer)
Show Figures

Figure 1

Back to TopTop