Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = metastasis model of B16F10 melanoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4759 KB  
Article
Anticancer Activity of Astaxanthin-Incorporated Chitosan Nanoparticles
by Eun Ju Hwang, Young-IL Jeong, Kyong-Je Lee, Young-Bob Yu, Seung-Ho Ohk and Sook-Young Lee
Molecules 2024, 29(2), 529; https://doi.org/10.3390/molecules29020529 - 21 Jan 2024
Cited by 10 | Viewed by 3518
Abstract
Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis [...] Read more.
Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis procedure. All formulations of ChitoAST nanoparticles showed small diameters (less than 400 nm) with monomodal distributions. Analysis with Fourier transform infrared (FT-IR) spectroscopy confirmed the specific peaks of AST and Chito. Furthermore, ChitoAST nanoparticles were formed through electrostatic interactions between Chito and AST. In addition, ChitoAST nanoparticles showed superior antioxidant activity, as good as AST itself; the half maximal radical scavenging concentrations (RC50) of AST and ChitoAST nanoparticles were 11.8 and 29.3 µg/mL, respectively. In vitro, AST and ChitoAST nanoparticles at 10 and 20 µg/mL properly inhibited the production of intracellular reactive oxygen species (ROSs), nitric oxide (NO), and inducible nitric oxide synthase (iNOS). ChitoAST nanoparticles had no significant cytotoxicity against RAW264.7 cells or B16F10 melanoma cells, whereas AST and ChitoAST nanoparticles inhibited the growth of cancer cells. Furthermore, AST itself and ChitoAST nanoparticles (20 µg/mL) efficiently inhibited the migration of cancer cells in a wound healing assay. An in vivo study using mice and a pulmonary metastasis model showed that ChitoAST nanoparticles were efficiently delivered to a lung with B16F10 cell metastasis; i.e., fluorescence intensity in the lung was significantly higher than in other organs. We suggest that ChitoAST nanoparticles are promising candidates for antioxidative and anticancer therapies of B16F10 cells. Full article
(This article belongs to the Special Issue Drug Delivery Systems Based on Polysaccharides: Second Edition)
Show Figures

Figure 1

14 pages, 4062 KB  
Article
Deficiency of Stabilin-1 in the Context of Hepatic Melanoma Metastasis
by Sebastian A. Wohlfeil, Ana Olsavszky, Anna Lena Irkens, Verena Häfele, Bianca Dietsch, Niklas Straub, Sergij Goerdt and Cyrill Géraud
Cancers 2024, 16(2), 441; https://doi.org/10.3390/cancers16020441 - 19 Jan 2024
Cited by 2 | Viewed by 2498
Abstract
Background: This study analyzed the role of Stabilin-1 on hepatic melanoma metastasis in preclinical mouse models. Methods: In Stabilin-1−/− mice (Stab1 KO), liver colonization of B16F10 luc2 and Wt31 melanoma was investigated. The numbers, morphology, and vascularization of hepatic metastases and the [...] Read more.
Background: This study analyzed the role of Stabilin-1 on hepatic melanoma metastasis in preclinical mouse models. Methods: In Stabilin-1−/− mice (Stab1 KO), liver colonization of B16F10 luc2 and Wt31 melanoma was investigated. The numbers, morphology, and vascularization of hepatic metastases and the hepatic microenvironment were analyzed by immunofluorescence. Results: While hepatic metastasis of B16F10 luc2 or Wt31 melanoma was unaltered between Stab1 KO and wildtype (Ctrl) mice, metastases of B16F10 luc2 tended to be smaller in Stab1 KO. The endothelial differentiation of both types of liver metastases was similar in Stab1 KO and Ctrl. No differences in initial tumor cell adhesion and retention to the liver vasculature were detected in the B16F10 luc2 model. Analysis of the immune microenvironment revealed a trend towards higher levels of CD45+Gr-1+ cells in Stab1 KO as compared to Ctrl in the B16F10 luc2 model. Interestingly, significantly higher levels of POSTN were found in the matrix of hepatic metastases of Wt31, while liver metastases of B16F10 luc2 showed a trend towards increased deposition of RELN. Conclusions: Hepatic melanoma metastases show resistance to Stabilin-1 targeting approaches. This suggests that anti-Stab1 therapies should be considered with respect to the tumor entity or target organs. Full article
(This article belongs to the Special Issue Study on the Complex Melanoma)
Show Figures

Figure 1

16 pages, 3259 KB  
Article
Canthin-6-One Inhibits Developmental and Tumour-Associated Angiogenesis in Zebrafish
by Mei Fong Ng, Juliana Da Silva Viana, Pei Jean Tan, Denver D. Britto, Sy Bing Choi, Sakurako Kobayashi, Norazwana Samat, Dedrick Soon Seng Song, Satoshi Ogawa, Ishwar S. Parhar, Jonathan W. Astin, Benjamin M. Hogan, Vyomesh Patel and Kazuhide S. Okuda
Pharmaceuticals 2024, 17(1), 108; https://doi.org/10.3390/ph17010108 - 12 Jan 2024
Cited by 3 | Viewed by 3306
Abstract
Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor [...] Read more.
Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2023)
Show Figures

Figure 1

18 pages, 1462 KB  
Article
Functional Analysis of Membrane-Associated Scaffolding Tight Junction (TJ) Proteins in Tumorigenic Characteristics of B16-F10 Mouse Melanoma Cells
by Eun-Ji Ko, Do-Ye Kim, Min-Hye Kim, Hyojin An, Jeongtae Kim, Jee-Yeong Jeong, Kyoung Seob Song and Hee-Jae Cha
Int. J. Mol. Sci. 2024, 25(2), 833; https://doi.org/10.3390/ijms25020833 - 9 Jan 2024
Cited by 4 | Viewed by 3855
Abstract
Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, [...] Read more.
Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, invasion, metastatic potential, and the expression patterns of related proteins, after the CRISPR–Cas9-mediated knockout (KO) of Tjp genes. The proliferation of Tjp1 and Tjp2 KO cells significantly increased in vitro. Other tumorigenic characteristics, including migration and invasion, were significantly enhanced in Tjp1 and Tjp2 KO cells. Zonula occludens (ZO)-associated protein Claudin-1 (CLDN-1), which is a major component of tight junctions and functions in controlling cell-to-cell adhesion, was decreased in Tjp KO cells. Additionally, Tjp KO significantly stimulated tumor growth and metastasis in an in vivo mouse model. We performed a transcriptome analysis using next-generation sequencing (NGS) to elucidate the key genes involved in the mechanisms of action of Tjp1 and Tjp2. Among the various genes affected by Tjp KO-, cell cycle-, cell migration-, angiogenesis-, and cell–cell adhesion-related genes were significantly altered. In particular, we found that the Ninjurin-1 (Ninj1) and Catenin alpha-1 (Ctnna1) genes, which are known to play fundamental roles in Tjps, were significantly downregulated in Tjp KO cells. In summary, tumorigenic characteristics, including cell proliferation, migration, invasion, tumor growth, and metastatic potential, were significantly increased in Tjp1 and Tjp2 KO cells, and the knockout of Tjp genes significantly affected the expression of related proteins. Full article
(This article belongs to the Special Issue The Role of Tight Junction Proteins in Health and Disease)
Show Figures

Figure 1

13 pages, 2038 KB  
Article
A New Synthetic Curcuminoid Displays Antitumor Activities in Metastasized Melanoma
by Leonard Kaps, Adrian Klefenz, Henry Traenckner, Paul Schneider, Ion Andronache, Rainer Schobert, Bernhard Biersack and Detlef Schuppan
Cells 2023, 12(22), 2619; https://doi.org/10.3390/cells12222619 - 13 Nov 2023
Cited by 10 | Viewed by 2323
Abstract
Aim: The semisynthetic derivatives MePip-SF5 and isogarcinol, which are aligned with the natural products curcumin and garcinol, were tested for their antitumor effects in a preclinical model of pulmonary melanoma metastasis. Methods and results: MePip-SF5 was almost five times more effective in inhibiting [...] Read more.
Aim: The semisynthetic derivatives MePip-SF5 and isogarcinol, which are aligned with the natural products curcumin and garcinol, were tested for their antitumor effects in a preclinical model of pulmonary melanoma metastasis. Methods and results: MePip-SF5 was almost five times more effective in inhibiting B16F10 melanoma cell proliferation than its original substance of curcumin (IC50 MePip-SF5 2.8 vs. 13.8 µM). Similarly, the melanoma cytotoxicity of isogarcinol was increased by 40% compared to garcinol (IC50 3.1 vs. 2.1 µM). The in vivo toxicity of both drugs was assessed in healthy C57BL/6 mice challenged with escalating doses. Isogarcinol induced toxicity above a dose of 15 mg/kg, while MePip-SF5 showed no in vivo toxicity up to 60 mg/kg. Both drugs were tested in murine pulmonary metastatic melanoma. C57BL/6 mice (n = 10) received 500,000 B16F10 melanoma cells intravenously. After intraperitoneal injection of MePip-SF5 (60 mg/kg) or isorgarcinol (15 mg/kg) at days 8, 11 and 14 and sacrifice at day 16, the MePip-SF5-treated mice showed a significantly (p < 0.05) lower pulmonary macroscopic and microscopic tumor load than the vehicle-treated controls, whereas isogarcinol was ineffective. The pulmonary RNA levels of the mitosis marker Bub1 and the inflammatory markers TNFα and Ccl3 were significantly (p < 0.05) reduced in the MePip-SF5-treated mice. Both drugs were well tolerated, as shown by an organ inspection and normal liver- and kidney-related serum parameters. Conclusions: The novel curcuminoid MePip-SF5 showed a convincing antimetastatic effect and a lack of systemic toxicity in a relevant preclinical model of metastasized melanoma. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

14 pages, 19679 KB  
Article
Investigating Effects of IR-780 in Animal Models of B16-F10 Melanoma: New Approach in Lung Metastasis
by Evelyn de Andrade Salomão, Valter Aragão do Nascimento, Caio Fernando Ramalho de Oliveira, Iandara Schettert Silva, Rita de Cássia Avellaneda Guimarães and Danielle Bogo
Molecules 2023, 28(19), 6942; https://doi.org/10.3390/molecules28196942 - 5 Oct 2023
Cited by 3 | Viewed by 2798
Abstract
IR-780 is a fluorescent marker, photostable and non-toxic, and is widely used in tumor targeting; however, studies on the impact of IR-780 in animal models of B16-F10 melanoma are scarce in the literature. Therefore, this study aims to analyze behavior of this marker [...] Read more.
IR-780 is a fluorescent marker, photostable and non-toxic, and is widely used in tumor targeting; however, studies on the impact of IR-780 in animal models of B16-F10 melanoma are scarce in the literature. Therefore, this study aims to analyze behavior of this marker in melanoma cells using in vitro and in vivo analyses with fluorescence microscopy to conduct an analysis of cell culture, and an in vivo imaging system for an analysis of cell culture, tumor targeting on animals, and organ examination. In vitro analysis showed that B16-F10 cells at a concentration of 2 × 105 cells.plate−1 allowed a better visualization using 20 μM of IR-780. Furthermore, the location of IR-780 accumulation was confirmed by its fluorescence microscopy. Through in vivo studies, fluorescence was not observed in subcutaneous nodules, and it was found that animals that received intraperitoneal injection of B16-F10 cells presented ascites and did not absorb IR-780. Additionally, animals exhibiting lung metastasis showed fluorescence in ex vivo lung images. Therefore, use of the IR-780 marker for evaluating the progression of tumor growth did not demonstrate efficiency; however, it was effective in diagnosing pulmonary metastatic tumors. Although this marker presented limitations, results of evaluating pulmonary involvement through ex vivo fluorescence imaging were determined based on intensity of fluorescence. Full article
Show Figures

Figure 1

17 pages, 3543 KB  
Article
TGF-β Type I Receptor Signaling in Melanoma Liver Metastases Increases Metastatic Outgrowth
by Dieuwke L. Marvin, Jelmer Dijkstra, Rabia M. Zulfiqar, Michiel Vermeulen, Peter ten Dijke and Laila Ritsma
Int. J. Mol. Sci. 2023, 24(10), 8676; https://doi.org/10.3390/ijms24108676 - 12 May 2023
Cited by 3 | Viewed by 3298
Abstract
Despite advances in treatment for metastatic melanoma patients, patients with liver metastasis have an unfavorable prognosis. A better understanding of the development of liver metastasis is needed. The multifunctional cytokine Transforming Growth Factor β (TGF-β) plays various roles in melanoma tumors and metastasis, [...] Read more.
Despite advances in treatment for metastatic melanoma patients, patients with liver metastasis have an unfavorable prognosis. A better understanding of the development of liver metastasis is needed. The multifunctional cytokine Transforming Growth Factor β (TGF-β) plays various roles in melanoma tumors and metastasis, affecting both tumor cells and cells from the surrounding tumor microenvironment. To study the role of TGF-β in melanoma liver metastasis, we created a model to activate or repress the TGF-β receptor pathway in vitro and in vivo in an inducible manner. For this, we engineered B16F10 melanoma cells to have inducible ectopic expression of a constitutively active (ca) or kinase-inactive (ki) TGF-β receptor I, also termed activin receptor-like kinase (ALK5). In vitro, stimulation with TGF-β signaling and ectopic caALK5 expression reduced B16F10 cell proliferation and migration. Contrasting results were found in vivo; sustained caALK5 expression in B16F10 cells in vivo increased the metastatic outgrowth in liver. Blocking microenvironmental TGF-β did not affect metastatic liver outgrowth of both control and caALK5 expressing B16F10 cells. Upon characterizing the tumor microenvironment of control and caALk5 expressing B16F10 tumors, we observed reduced (cytotoxic) T cell presence and infiltration, as well as an increase in bone marrow-derived macrophages in caALK5 expressing B16F10 tumors. This suggests that caALK5 expression in B16F10 cells induces changes in the tumor microenvironment. A comparison of newly synthesized secreted proteins upon caALK5 expression by B16F10 cells revealed increased secretion of matrix remodeling proteins. Our results show that TGF-β receptor activation in B16F10 melanoma cells can increase metastatic outgrowth in liver in vivo, possibly through remodeling of the tumor microenvironment leading to altered infiltration of immune cells. These results provide insights in the role of TGF-β signaling in B16F10 liver metastasis and could have implications regarding the use of TGF-β inhibitors for the treatment of melanoma patients with liver metastasis. Full article
Show Figures

Figure 1

19 pages, 3194 KB  
Article
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma
by Relton R. Oliveira, Emílio R. Cintra, Ailton A. Sousa-Junior, Larissa C. Moreira, Artur C. G. da Silva, Ana Luiza R. de Souza, Marize C. Valadares, Marcus S. Carrião, Andris F. Bakuzis and Eliana M. Lima
Pharmaceutics 2023, 15(3), 818; https://doi.org/10.3390/pharmaceutics15030818 - 2 Mar 2023
Cited by 29 | Viewed by 3602
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery [...] Read more.
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies. Full article
Show Figures

Figure 1

18 pages, 6899 KB  
Article
Integrin Targeting Enhances the Antimelanoma Effect of Annexin V in Mice
by Jingyi Zhu, Xiangning Li, Wenling Gao and Jian Jing
Int. J. Mol. Sci. 2023, 24(4), 3859; https://doi.org/10.3390/ijms24043859 - 15 Feb 2023
Cited by 4 | Viewed by 2808
Abstract
Malignant melanoma, an increasingly common form of skin cancer, is a major threat to public health, especially when the disease progresses past skin lesions to the stage of advanced metastasis. Targeted drug development is an effective strategy for the treatment of malignant melanoma. [...] Read more.
Malignant melanoma, an increasingly common form of skin cancer, is a major threat to public health, especially when the disease progresses past skin lesions to the stage of advanced metastasis. Targeted drug development is an effective strategy for the treatment of malignant melanoma. In this work, a new antimelanoma tumor peptide, the lebestatin–annexin V (designated LbtA5) fusion protein, was developed and synthesized by recombinant DNA techniques. As a control, annexin V (designated ANV) was also synthesized by the same method. The fusion protein combines annexin V, which specifically recognizes and binds phosphatidylserine, with the disintegrin lebestatin (lbt), a polypeptide that specifically recognizes and binds integrin α1β1. LbtA5 was successfully prepared with good stability and high purity while retaining the dual biological activity of ANV and lbt. MTT assays demonstrated that both ANV and LbtA5 could reduce the viability of melanoma B16F10 cells, but the activity of the fusion protein LbtA5 was superior to that of ANV. The tumor volume growth was slowed in a mouse xenograft model treated with ANV and LbtA5, and the inhibitory effect of high concentrations of LbtA5 was significantly better than that of the same dose of ANV and was comparable to that of DTIC, a drug used clinically for melanoma treatment. The hematoxylin and eosin (H&E) staining test showed that ANV and LbtA5 had antitumor effects, but LbtA5 showed a stronger ability to induce melanoma necrosis in mice. Immunohistochemical experiments further showed that ANV and LbtA5 may inhibit tumor growth by inhibiting angiogenesis in tumor tissue. Fluorescence labeling experiments showed that the fusion of ANV with lbt enhanced the targeting of LbtA5 to mouse melanoma tumor tissue, and the amount of target protein in tumor tissue was significantly increased. In conclusion, effective coupling of the integrin α1β1-specific recognition molecule lbt confers stronger biological antimelanoma effects of ANV, which may be achieved by the dual effects of effective inhibition of B16F10 melanoma cell viability and inhibition of tumor tissue angiogenesis. The present study describes a new potential strategy for the application of the promising recombinant fusion protein LbtA5 in the treatment of various cancers, including malignant melanoma. Full article
Show Figures

Figure 1

15 pages, 3592 KB  
Article
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma
by Margarita Espona-Fiedler, Pilar Manuel-Manresa, Cristina Benítez-García, Pere Fontova, Roberto Quesada, Vanessa Soto-Cerrato and Ricardo Pérez-Tomás
Pharmaceutics 2023, 15(1), 97; https://doi.org/10.3390/pharmaceutics15010097 - 28 Dec 2022
Cited by 9 | Viewed by 2725
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer [...] Read more.
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs’ effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs’ cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax. Full article
(This article belongs to the Special Issue Current and Future Cancer Chemoprevention Strategies, 2nd Edition)
Show Figures

Figure 1

18 pages, 3756 KB  
Article
KLK6/PAR1 Axis Promotes Tumor Growth and Metastasis by Regulating Cross-Talk between Tumor Cells and Macrophages
by Yo Sep Hwang, Hee Jun Cho, Eun Sun Park, Jeewon Lim, Hyang Ran Yoon, Jong-Tae Kim, Suk Ran Yoon, Haiyoung Jung, Yong-Kyung Choe, Yong-Hoon Kim, Chul-Ho Lee, Yong Tae Kwon, Bo Yeon Kim and Hee Gu Lee
Cells 2022, 11(24), 4101; https://doi.org/10.3390/cells11244101 - 16 Dec 2022
Cited by 14 | Viewed by 3838
Abstract
Kallikrein-related peptidase (KLK)6 is associated with inflammatory diseases and neoplastic progression. KLK6 is aberrantly expressed in several solid tumors and regulates cancer development, metastatic progression, and drug resistance. However, the function of KLK6 in the tumor microenvironment remains unclear. This study aimed to [...] Read more.
Kallikrein-related peptidase (KLK)6 is associated with inflammatory diseases and neoplastic progression. KLK6 is aberrantly expressed in several solid tumors and regulates cancer development, metastatic progression, and drug resistance. However, the function of KLK6 in the tumor microenvironment remains unclear. This study aimed to determine the role of KLK6 in the tumor microenvironment. Here, we uncovered the mechanism underlying KLK6-mediated cross-talk between cancer cells and macrophages. Compared with wild-type mice, KLK6−/− mice showed less tumor growth and metastasis in the B16F10 melanoma and Lewis lung carcinoma (LLC) xenograft model. Mechanistically, KLK6 promoted the secretion of tumor necrosis factor-alpha (TNF-α) from macrophages via the activation of protease-activated receptor-1 (PAR1) in an autocrine manner. TNF-α secreted from macrophages induced the release of the C-X-C motif chemokine ligand 1 (CXCL1) from melanoma and lung carcinoma cells in a paracrine manner. The introduction of recombinant KLK6 protein in KLK6−/− mice rescued the production of TNF-α and CXCL1, tumor growth, and metastasis. Inhibition of PAR1 activity suppressed these malignant phenotypes rescued by rKLK6 in vitro and in vivo. Our findings suggest that KLK6 functions as an important molecular link between macrophages and cancer cells during malignant progression, thereby providing opportunities for therapeutic intervention. Full article
(This article belongs to the Special Issue Tumor Immune Microenvironment for Effective Therapy)
Show Figures

Graphical abstract

17 pages, 1393 KB  
Article
Biomarker Discovery for Meta-Classification of Melanoma Metastatic Progression Using Transfer Learning
by Jose Marie Antonio Miñoza, Jonathan Adam Rico, Pia Regina Fatima Zamora, Manny Bacolod, Reinhard Laubenbacher, Gerard G. Dumancas and Romulo de Castro
Genes 2022, 13(12), 2303; https://doi.org/10.3390/genes13122303 - 7 Dec 2022
Cited by 12 | Viewed by 3782
Abstract
Melanoma is considered to be the most serious and aggressive type of skin cancer, and metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer learning-based biomarker discovery model that could aid in the diagnosis and prognosis [...] Read more.
Melanoma is considered to be the most serious and aggressive type of skin cancer, and metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer learning-based biomarker discovery model that could aid in the diagnosis and prognosis of this disease. After applying it to the ensemble machine learning model, results revealed that the genes found were consistent with those found using other methodologies previously applied to the same TCGA (The Cancer Genome Atlas) data set. Further novel biomarkers were also found. Our ensemble model achieved an AUC of 0.9861, an accuracy of 91.05, and an F1 score of 90.60 using an independent validation data set. This study was able to identify potential genes for diagnostic classification (C7 and GRIK5) and diagnostic and prognostic biomarkers (S100A7, S100A7, KRT14, KRT17, KRT6B, KRTDAP, SERPINB4, TSHR, PVRL4, WFDC5, IL20RB) in melanoma. The results show the utility of a transfer learning approach for biomarker discovery in melanoma. Full article
(This article belongs to the Special Issue Bioinformatics and Machine Learning in Disease Research)
Show Figures

Figure 1

20 pages, 4879 KB  
Article
BG34-200 Immunotherapy of Advanced Melanoma
by Veronique Roche, Victor Sandoval, Zachary Senders, Joshua Lyons, Claire Wolford and Mei Zhang
Cancers 2022, 14(23), 5911; https://doi.org/10.3390/cancers14235911 - 30 Nov 2022
Cited by 3 | Viewed by 2353
Abstract
High levels of myeloid-derived cells are characteristic of the tumor microenvironment (TME) of advanced melanoma. These cells interact with tumor cells to suppress the development of antitumor immune responses, regulate tumor metastasis, and drive cancer’s resistance to virtually all types of therapy. Therefore, [...] Read more.
High levels of myeloid-derived cells are characteristic of the tumor microenvironment (TME) of advanced melanoma. These cells interact with tumor cells to suppress the development of antitumor immune responses, regulate tumor metastasis, and drive cancer’s resistance to virtually all types of therapy. Therefore, methods to disrupt tumor-associated myeloid cell function are actively being sought to find a cure. Our team has recently developed a plant-derived carbohydrate molecule, BG34-200, that modulates tumor-associated myeloid cells by targeting the cell surface receptor CD11b. In this study, we found that BG34-200 IV administration could significantly inhibit tumor growth and improve survival in B16F10 mice with advanced melanoma. Our data supported a model that the entry of BG34-200 into circulating melanoma tumor-associated inflammatory monocytes (TAIMs) could trigger a sequential immune activation: the BG34-200+ TAIM subsets migrated to tumor and differentiated into monocyte-derived dendritic cells (mo-DCs); then, the BG34-200+ mo-DCs migrated to tumor draining lymph nodes, where they triggered the generation of tumor-antigen-specific T cells. Based upon these results, we combined BG34-200 treatment with adoptive transfer of TdLN-derived T cells to treat advanced melanoma, which significantly improved animal survival and helped tumor-free survivors be resistant to a second tumor-cell challenge. The scientific findings from this study will allow us to develop new technology and apply BG34-200-based immunotherapy to patients with advanced melanoma who have not responded to current standard of care therapies with and without immunotherapy. Full article
(This article belongs to the Collection Emerging Therapeutics in Advanced Melanoma)
Show Figures

Figure 1

9 pages, 2648 KB  
Article
Renieramycin T Inhibits Melanoma B16F10 Cell Metastasis and Invasion via Regulating Nrf2 and STAT3 Signaling Pathways
by Baohua Yu, Jing Liang, Xiufang Li, Li Liu, Jing Yao, Xiaochuan Chen and Ruijiao Chen
Molecules 2022, 27(16), 5337; https://doi.org/10.3390/molecules27165337 - 22 Aug 2022
Cited by 7 | Viewed by 2784
Abstract
As one of marine tetrahydroisoquinoline alkaloids, renieramycin T plays a significant role in inhibiting tumor metastasis and invasion. However, the effect of renieramycin T on inflammation-related tumor metastasis and invasion is still unknown, and its mechanisms remain unclear. Here we established an inflammation-related [...] Read more.
As one of marine tetrahydroisoquinoline alkaloids, renieramycin T plays a significant role in inhibiting tumor metastasis and invasion. However, the effect of renieramycin T on inflammation-related tumor metastasis and invasion is still unknown, and its mechanisms remain unclear. Here we established an inflammation-related tumor model by using the supernatant of RAW264.7 cells to simulate B16F10 mouse melanoma cells. The results indicate that renieramycin T suppressed RAW264.7 cell supernatant-reduced B16F10 cell adhesion to a fibronectin-coated substrate, migration, and invasion through the matrigel in a concentration-dependent manner. Moreover, Western blot results reveal that renieramycin T attenuated the phosphorylation of STAT3 and down-regulated the expression of Nrf2. Together, the above findings suggest a model of renieramycin T in suppressing B16F10 cancer cell migration and invasion. It may serve as a promising drug for the treatment of cancer metastasis. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

15 pages, 3549 KB  
Article
Non-Invasive Characterization of Experimental Bone Metastasis in Obesity Using Multiparametric MRI and PET/CT
by Gasper Gregoric, Anastasia Gaculenko, Lisa Nagel, Vanessa Popp, Simone Maschauer, Olaf Prante, Marc Saake, Georg Schett, Michael Uder, Stephan Ellmann, Aline Bozec and Tobias Bäuerle
Cancers 2022, 14(10), 2482; https://doi.org/10.3390/cancers14102482 - 18 May 2022
Cited by 1 | Viewed by 3045
Abstract
The growth of primary tumors and metastases is associated with excess body fat. In bone metastasis formation, the bone marrow microenvironment, and particularly adipocytes, play a pivotal role as growth mediators of disseminated tumor cells in the bone marrow. The aim of the [...] Read more.
The growth of primary tumors and metastases is associated with excess body fat. In bone metastasis formation, the bone marrow microenvironment, and particularly adipocytes, play a pivotal role as growth mediators of disseminated tumor cells in the bone marrow. The aim of the present study is to non-invasively characterize the pathophysiologic processes in experimental bone metastasis resulting from accelerated tumor progression within adipocyte-rich bone marrow using multimodal imaging from magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT). To achieve this, we have employed small animal models after the administration of MDA-MB 231 breast cancer and B16F10 melanoma cells into the bone of nude rats or C57BL/6 mice, respectively. After tumor cell inoculation, ultra-high field MRI and µPET/CT were used to assess functional and metabolic parameters in the bone marrow of control animals (normal diet, ND), following a high-fat diet (HFD), and/or treated with the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist bisphenol-A-diglycidylether (BADGE), respectively. In the bone marrow of nude rats, dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI), as well as [18F]fluorodeoxyglucose-PET/CT([18F]FDG-PET/CT), was performed 10, 20, and 30 days after tumor cell inoculation, followed by immunohistochemistry. DCE-MRI parameters associated with blood volume, such as area under the curve (AUC), were significantly increased in bone metastases in the HFD group 30 days after tumor cell inoculation as compared to controls (p < 0.05), while the DWI parameter apparent diffusion coefficient (ADC) was not significantly different between the groups. [18F]FDG-PET/CT showed an enhanced glucose metabolism due to increased standardized uptake value (SUV) at day 30 after tumor cell inoculation in animals that received HFD (p < 0.05). BADGE treatment resulted in the inversion of quantitative DCE-MRI and [18F]FDG-PET/CT data, namely a significant decrease in AUC and SUV in HFD-fed animals as compared to ND-fed controls (p < 0.05). Finally, immunohistochemistry and qPCR confirmed the HFD-induced stimulation in vascularization and glucose activity in murine bone metastases. In conclusion, multimodal and multiparametric MRI and [18F]FDG-PET/CT were able to derive quantitative parameters in bone metastases, revealing an increase in vascularization and glucose metabolism following HFD. Thus, non-invasive imaging may serve as a biomarker for assessing the pathophysiology of bone metastasis in obesity, opening novel options for therapy and treatment monitoring by MRI and [18F]FDG-PET/CT. Full article
(This article belongs to the Special Issue Recent Trends in PET/CT Tracer Development and Multimodal Imaging)
Show Figures

Figure 1

Back to TopTop