Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Lines and Culture Conditions
2.3. Cell-Adhesion Assay
2.4. Time-Lapse Microscopy
2.5. Immunofluorescence
2.6. Wound-Healing Assay
2.7. Gene-Expression Profiling
2.8. Western-Blot Analysis
2.9. Effects on Metastasis in Vivo
2.10. Tissue Processing and Hematoxylin-Eosin Staining
2.11. Statistical Analysis
3. Results
3.1. Changes in Cancer Cell Adhesion and Morphology after PG Treatment
3.2. PG Treatment Decreases Cellular Migration
3.3. Metastasis-Related Genes Were Modified by PG Treatment
3.4. Obatoclax Shows Antimetastatic Properties In Vivo
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell J. 2017, 168, 670–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of Deaths from Cancer Caused by Metastases? Cancer Med. 2019, 8, 5574–5576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, S.; Smith, C.; Wernberg, J. Epidemiology and Risk Factors of Melanoma. Surg. Clin. N. Am. 2020, 100, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Mihm, M.C. Melanoma. N. Engl. J. Med. 2006, 355, 51–65. [Google Scholar] [CrossRef]
- Surveillance Research Program (SEER). Cancer Stat Facts: Melanoma of the Skin. National Cancer Institute: Bethesda, MD, USA. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 6 August 2020).
- Tentori, L.; Lacal, P.M.; Graziani, G. Challenging Resistance Mechanisms to Therapies for Metastatic Melanoma. Trends Pharmacol. Sci. 2013, 34, 656–666. [Google Scholar] [CrossRef]
- Rager, T.; Eckburg, A.; Patel, M.; Qiu, R.; Gantiwala, S.; Dovalovsky, K.; Fan, K.; Lam, K.; Roesler, C.; Rastogi, A.; et al. Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers 2022, 14, 3779. [Google Scholar] [CrossRef]
- Berciano-Guerrero, M.A.; Guardamagna, M.; Perez-Ruiz, E.; Jurado, J.M.; Barragán, I.; Rueda-Dominguez, A. Treatment of Metastatic Melanoma at First Diagnosis: Review of the Literature. Life 2022, 12, 1302. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Fürstner, A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew. Chem. Int. Ed. Engl. 2003, 42, 3582–3603. [Google Scholar] [CrossRef]
- Pérez-Tomás, R.; Montaner, B.; Llagostera, E.; Soto-Cerrato, V. The Prodigiosins, Proapoptotic Drugs with Anticancer Properties. Biochem. Pharmacol. 2003, 66, 1447–1452. [Google Scholar] [CrossRef]
- Perez-Tomas, R.; Vinas, M. New Insights on the Antitumoral Properties of Prodiginines. Curr. Med. Chem. 2010, 17, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Branco, P.C.; Pontes, C.A.; Rezende-Teixeira, P.; Amengual-Rigo, P.; Alves-Fernandes, D.K.; Maria-Engler, S.S.; da Silva, A.B.; Pessoa, O.D.L.; Jimenez, P.C.; Mollasalehi, N.; et al. Survivin Modulation in the Antimelanoma Activity of Prodiginines. Eur. J. Pharmacol. 2020, 888, 173465. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Y.; Liu, J.; Wei, D. Antimetastatic Effect of Prodigiosin through Inhibition of Tumor Invasion. Biochem. Pharmacol. 2005, 69, 407–414. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.M.; Claxton, D.F.; Crump, M.; Faderl, S.; Kipps, T.; Keating, M.J.; Viallet, J.; Cheson, B.D. Phase I Study of Obatoclax Mesylate (GX15-070), a Small Molecule Pan-Bcl-2 Family Antagonist, in Patients with Advanced Chronic Lymphocytic Leukemia. Blood 2009, 113, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, F.; Lieber, J.; Dewerth, A.; Hoh, A.; Fuchs, J.; Armeanu-Ebinger, S. BH3 Mimetics Reduce Adhesion and Migration of Hepatoblastoma and Hepatocellular Carcinoma Cells. Exp. Cell Res. 2013, 319, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Lieber, J.; Ellerkamp, V.; Vogt, F.; Wenz, J.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. BH3-Mimetic Drugs Prevent Tumour Onset in an Orthotopic Mouse Model of Hepatoblastoma. Exp. Cell Res. 2014, 322, 217–225. [Google Scholar] [CrossRef]
- Espona-Fiedler, M.; Soto-Cerrato, V.; Hosseini, A.; Lizcano, J.M.; Guallar, V.; Quesada, R.; Gao, T.; Pérez-Tomás, R. Identification of Dual MTORC1 and MTORC2 Inhibitors in Melanoma Cells: Prodigiosin vs. Obatoclax. Biochem. Pharmacol. 2012, 83, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Mohindra, N.A.; Giles, F.J.; Platanias, L.C. Use of MTOR Inhibitors in the Treatment of Malignancies. Expert Opin. Pharmacother. 2014, 15, 979–990. [Google Scholar] [CrossRef]
- Hosseini, A.; Espona-Fiedler, M.; Soto-Cerrato, V.; Quesada, R.; Pérez-Tomás, R.; Guallar, V. Molecular Interactions of Prodiginines with the BH3 Domain of Anti-Apoptotic Bcl-2 Family Members. PLoS ONE 2013, 8, e57562. [Google Scholar] [CrossRef] [Green Version]
- Trudel, S.; Zhi, H.L.; Rauw, J.; Tiedemann, R.E.; Xiao, Y.W.; Stewart, A.K. Preclinical Studies of the Pan-Bcl Inhibitor Obatoclax (GX015-070) in Multiple Myeloma. Blood 2007, 109, 5430–5438. [Google Scholar] [CrossRef]
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; et al. An Inhibitor of Bcl-2 Family Proteins Induces Regression of Solid Tumours. Nature 2005, 435, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, G.; Niu, X.; Zhao, J.; Tan, W.; Wang, H.; Zhao, L.; Ge, Y. Combination of AZD2281 (Olaparib) and GX15-070 (Obatoclax) Results in Synergistic Antitumor Activities in Preclinical Models of Pancreatic Cancer. Cancer Lett. 2014, 348, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cruickshanks, N.; Hamed, H.A.; Bareford, M.D.; Poklepovic, A.; Fisher, P.B.; Grant, S.; Dent, P. Lapatinib and Obatoclax Kill Tumor Cells through Blockade of ERBB1/3/4 and through Inhibition of BCL-XL and MCL-1. Mol. Pharmacol. 2012, 81, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Vlková, K.; Réda, J.; Ondruŝová, L.; Krayem, M.; Ghanem, G.; Vachtenheim, J. GLI Inhibitor GANT61 Kills Melanoma Cells and Acts in Synergy with Obatoclax. Int. J. Oncol. 2016, 49, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Daïri, K.; Yao, Y.; Faley, M.; Tripathy, S.; Rioux, E.; Billot, X.; Rabouin, D.; Gonzalez, G.; Lavallée, J.F.; Attardo, G. A Scalable Process for the Synthesis of the Bcl Inhibitor Obatoclax. Org. Process Res. Dev. 2007, 11, 1051–1054. [Google Scholar] [CrossRef]
- Suarez-Arnedo, A.; Figueroa, F.T.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An Image J Plugin for the High Throughput Image Analysis of in Vitro Scratch Wound Healing Assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef]
- Jacquemet, G.; Hamidi, H.; Ivaska, J. Filopodia in Cell Adhesion, 3D Migration and Cancer Cell Invasion. Curr. Opin. Cell Biol. 2015, 36, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Riggi, N.; Aguet, M.; Stamenkovic, I. Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. Annu. Rev. Pathol.: Mech. Dis. 2018, 13, 117–140. [Google Scholar] [CrossRef]
- Steeg, P.S. Targeting Metastasis. Nat. Rev. Cancer 2016, 16, 201–218. [Google Scholar] [CrossRef]
- Goard, C.A.; Schimmer, A.D. An evidence-based review of obatoclax mesylate in the treatment of hematological malignancies. Core Evid. 2013, 8, 15–26. [Google Scholar] [CrossRef]
- Hamidi, H.; Ivaska, J. Every Step of the Way: Integrins in Cancer Progression and Metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjonen, A.; Kaukonen, R.; Ivaska, J. Filopodia and Adhesion in Cancer Cell Motility. Cell Adhes. Migr. 2011, 5, 421–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machesky, L.M. Lamellipodia and Filopodia in Metastasis and Invasion. FEBS Lett. 2008, 582, 2102–2111. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, M.; Yamakita, Y.; Kajiyama, H.; Senga, T.; Koya, Y.; Yamashita, M.; Nawa, A.; Kikkawa, F. Filopodia Play an Important Role in the Trans-Mesothelial Migration of Ovarian Cancer Cells. Exp. Cell Res. 2020, 392, 112011. [Google Scholar] [CrossRef]
- Naffa, R.; Padányi, R.; Ignácz, A.; Hegyi, Z.; Jezsó, B.; Tóth, S.; Varga, K.; Homolya, L.; Hegedűs, L.; Schlett, K.; et al. The Plasma Membrane Ca2+ Pump PMCA4b Regulates Melanoma Cell Migration through Remodeling of the Actin Cytoskeleton. Cancers 2021, 13, 1354. [Google Scholar] [CrossRef] [PubMed]
- Bousgouni, V.; Inge, O.; Robertson, D.; Jones, I.; Clatworthy, I.; Bakal, C. ARHGEF9 Regulates Melanoma Morphogenesis in Environments with Diverse Geometry and Elasticity by Promoting Filopodial-Driven Adhesion. iScience 2022, 25, 104795. [Google Scholar] [CrossRef]
- Shibue, T.; Brooks, M.W.; Weinberg, R.A. An Integrin-Linked Machinery of Cytoskeletal Regulation That Enables Experimental Tumor Initiation and Metastatic Colonization. Cancer Cell 2013, 24, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, H.; Ma, X.; Lin, C.; Lu, L.; Liu, D.; Ma, D.; Gao, X.; Qian, X.Y. Prodigiosin Inhibits Proliferation, Migration, and Invasion of Nasopharyngeal Cancer Cells. Cell. Physiol. Biochem. 2018, 48, 1556–1562. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.L. Focal Adhesion Kinase and Its Signaling Pathways in Cell Migration and Angiogenesis. Adv. Drug Deliv. Rev. 2011, 63, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.T.; Horwitz, A.R.; Schwartz, M.A. Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension. Nat. Rev. Mol. Cell Biol. 2010, 11, 633–643. [Google Scholar] [CrossRef]
- Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in Cancer: Mechanistic Findings and Clinical Applications. Nat. Rev. Cancer 2014, 14, 598–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Colomé, A.M.; Lee-Rivera, I.; Benavides-Hidalgo, R.; López, E. Paxillin: A Crossroad in Pathological Cell Migration. J. Hematol. Oncol. 2017, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell 2004, 117, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Shi, B.; Zhang, K. MiR-186 Suppresses the Progression of Cholangiocarcinoma Cells through Inhibition of Twist1. Oncol. Res. 2019, 27, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Lissoni, P.; Brivio, F.; Rovelli, F.; Fumagalli, G.; Malugani, F.; Vaghi, M.; Secondino, S.; Bucovec, R.; Gardani, S. Serum Concentrations of Interleukin-18 in Early and Advanced Cancer Patients: Enhanced Secretion in Metastatic Disease. J. Biol. Regul. Homeost. Agents 2000, 14, 275–277. [Google Scholar]
- Li, B.; Wang, F.; Ma, C.; Hao, T.; Geng, L.; Jiang, H. Predictive Value of IL-18 and IL-10 in the Prognosis of Patients with Colorectal Cancer. Oncol. Lett. 2019, 18, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Vanaclocha, F.; Fantuzzi, G.; Mendoza, L.; Fuentes, A.M.; Anasagasti, M.J.; Martin, J.; Carrascal, T.; Walsh, P.; Reznikov, L.L.; Kim, S.H.; et al. IL-18 Regulates IL-1β-Dependent Hepatic Melanoma Metastasis via Vascular Cell Adhesion Molecule-1. Proc. Natl. Acad. Sci. USA 2000, 97, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Carrascal, M.T.; Mendoza, L.; Valcárcel, M.; Salado, C.; Egilegor, E.; Tellería, N.; Vidal-Vanaclocha, F.; Dinarello, C.A. Interleukin-18 Binding Protein Reduces B16 Melanoma Hepatic Metastasis by Neutralizing Adhesiveness and Growth Factors of Sinusoidal Endothelium. Cancer Res. 2003, 63, 491–497. [Google Scholar]
- Jiang, D.; Ying, W.; Lu, Y.; Wan, J.; Zhai, Y.; Liu, W.; Zhu, Y.; Qiu, Z.; Qian, X.; He, F. Identification of Metastasis-Associated Proteins by Proteomic Analysis and Functional Exploration of Interleukin-18 in Metastasis. Proteomics 2003, 3, 724–737. [Google Scholar] [CrossRef]
- Roy, R.; Yang, J.; Moses, M.A. Matrix Metalloproteinases as Novel Biomarkers and Potential Therapeutic Targets in Human Cancer. J. Clin. Oncol. 2009, 27, 5287–5297. [Google Scholar] [CrossRef] [Green Version]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silini, A.; Ghilardi, C.; Ardinghi, C.; Bernasconi, S.; Oliva, P.; Carraro, F.; Naldini, A.; Bani, M.R.; Giavazzi, R. Protease-Activated Receptor-1 (PAR-1) Promotes the Motility of Human Melanomas and Is Associated to Their Metastatic Phenotype. Clin. Exp. Metastasis 2010, 27, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Boire, A.; Covic, L.; Agarwal, A.; Jacques, S.; Sherifi, S.; Kuliopulos, A. PAR1 Is a Matrix Metalloprotease-1 Receptor That Promotes Invasion and Tumorigenesis of Breast Cancer Cells. Cell 2005, 120, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, C.; Yan, X.; Lan, B.; Wang, J.; Wei, C.; Cao, X.; Wang, R.; Yao, J.; Zhou, T.; et al. A Novel Bioavailable BH3 Mimetic Efficiently Inhibits Colon Cancer via Cascade Effects of Mitochondria. Clin. Cancer Res. 2016, 22, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Lan, B.; Peng, B.; Wang, X.; Zhang, G.; Li, X.; Guo, F. Combination Therapy with BH3 Mimetic and Hyperthermia Tends to Be More Effective on Anti-Melanoma Treatment. Biochem. Biophys. Res. Commun. 2018, 503, 249–256. [Google Scholar] [CrossRef]
- Young, A.; Bu, W.; Jiang, W.; Ku, A.; Kapali, J.; Dhamne, S.; Qin, L.; Hilsenbeck, S.G.; Du, Y.C.N.; Li, Y. Targeting the Pro-Survival Protein BCL-2 to Prevent Breast Cancer. Cancer Prev. Res. 2022, 15, 3–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espona-Fiedler, M.; Manuel-Manresa, P.; Benítez-García, C.; Fontova, P.; Quesada, R.; Soto-Cerrato, V.; Pérez-Tomás, R. Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics 2023, 15, 97. https://doi.org/10.3390/pharmaceutics15010097
Espona-Fiedler M, Manuel-Manresa P, Benítez-García C, Fontova P, Quesada R, Soto-Cerrato V, Pérez-Tomás R. Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics. 2023; 15(1):97. https://doi.org/10.3390/pharmaceutics15010097
Chicago/Turabian StyleEspona-Fiedler, Margarita, Pilar Manuel-Manresa, Cristina Benítez-García, Pere Fontova, Roberto Quesada, Vanessa Soto-Cerrato, and Ricardo Pérez-Tomás. 2023. "Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma" Pharmaceutics 15, no. 1: 97. https://doi.org/10.3390/pharmaceutics15010097
APA StyleEspona-Fiedler, M., Manuel-Manresa, P., Benítez-García, C., Fontova, P., Quesada, R., Soto-Cerrato, V., & Pérez-Tomás, R. (2023). Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics, 15(1), 97. https://doi.org/10.3390/pharmaceutics15010097