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Abstract: Melanoma is considered to be the most serious and aggressive type of skin cancer, and
metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer
learning-based biomarker discovery model that could aid in the diagnosis and prognosis of this
disease. After applying it to the ensemble machine learning model, results revealed that the genes
found were consistent with those found using other methodologies previously applied to the same
TCGA (The Cancer Genome Atlas) data set. Further novel biomarkers were also found. Our ensemble
model achieved an AUC of 0.9861, an accuracy of 91.05, and an F1 score of 90.60 using an independent
validation data set. This study was able to identify potential genes for diagnostic classification (C7
and GRIK5) and diagnostic and prognostic biomarkers (S100A7, S100A7, KRT14, KRT17, KRT6B,
KRTDAP, SERPINB4, TSHR, PVRL4, WFDC5, IL20RB) in melanoma. The results show the utility of a
transfer learning approach for biomarker discovery in melanoma.

Keywords: melanoma; biomarker; transfer learning; ensemble model; bias; machine learning

1. Introduction

Melanoma is a cancer arising from pigment-containing cells called melanocytes. It
is considered to be the most serious and aggressive type of skin cancer [1,2]. Its etiology
is influenced by both genetics and environmental factors [3–5]. Prior to its diagnosis,
melanoma has often spread to a distant location [6]. Therefore, the majority of deaths
related to this disease is caused by its metastases.

Metastases appear to be the most significant factor influencing melanoma patients’
prognosis. Therefore, the advancement of new therapeutic strategies to extend patients’
overall survival will benefit from research into the mechanisms of melanoma metastasis.
Since the advent of new therapies and interventions, such as immune checkpoint inhibitors
and targeted therapies for metastatic melanoma, mortality rates for melanoma have de-
creased by 6.4% per year in the United States from 2013 to 2017 [7,8]. To support these new
treatments, novel molecular biomarkers that can be used for diagnosis, prognosis, and treat-
ment selection are needed. These biomarkers may further reveal molecular mechanisms of
melanoma metastasis that could aid in informing and improving patients’ overall survival.

Gene expression profiling has been a powerful tool for identifying biomarker molecules
involved in melanoma metastasis [9,10]. To leverage this, machine learning techniques
have been considered in cancer prognostic development as genomic data have become
more accessible. Nevertheless, cancer prognosis remains extremely challenging due to the
high dimensionality of the data and the small number of patient samples. Several machine
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learning techniques have already been used as a disease classifier in melanoma but are
primarily focused on images [11–16] and single predictive modeling approaches [17–19];
genomic signatures which may be more informative and accurate have not been considered.
Compared to other related investigations [1,2,20,21], this study proposes a transfer learning
approach as a biomarker discovery technique, and ensembles various classifiers that oper-
ate on different identified genomic signature subsets by soft voting. In addition, the level
of expression of the weighted genomic biomarkers was investigated, in terms of survival of
the patients, for a better understanding of melanoma metastasis and for the identification
of potential therapeutic targets. Finally, preliminary data assessments allowed us to make
predictions regarding bias and model performance, for a better identification of the subsets
of patients that the ensemble model could be applied to.

2. Materials and Methods
2.1. Transfer Learning for Biomarker Discovery

Machine learning algorithms that were developed to store the information acquired
and applied to a different but related problem are referred to as transfer learning [22].
A large number of data and computing resources may be required to train a model, but
transfer learning can possibly address this issue. As a result, using transfer learning for
data sets with high dimensionality and potentially complex interactions could be beneficial.

Biomarker discovery seeks to identify a subset of measured variables (i.e., genomic
or clinical characteristics) that can be used to reliably predict a disease phenotype [23].
One of the popular approaches in transfer learning is feature extraction, which in this
case, involves extracting genomic features possibly responsible for melanoma progression.
Rule-based transfer learning for biomarker discovery was shown to have an improvement
in its classification performance; however, it also has noticeable poor performance on
structure learning [23]. On the other hand, random forest appears to be effective at finding
interesting features in high-dimensional phenotype data with small key effects and low
heritability [24]. This may be due to the way it accounts for potential gene–gene interactions
when calculating significance scores for specific attributes (Figure 1).
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2.2. Protein–Protein Interaction Network

The complex interactions of all molecules describe biological processes best and deter-
mine various cellular functions and responses. Mapping is a crucial step in trying to unravel
their unique molecular relationships in specific biological contexts and eventually targeting
therapy for treatment of diseases, such as cancer [25–27]. In mapping, protein–protein
interaction (PPI) networks are typically represented as graphs, with nodes representing
proteins, and edges connecting pairs of interacting proteins that are undirected and pre-
sumably weighted [28]. In contrast to traditional feature selection techniques, biomarker
discovery using transfer learning could inform us of significant genomic features through
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computational methods. However, it is also important to identify the nuances of biomark-
ers’ roles and their interactions with other genes. Therefore, identified genomic signatures
as potential biomarkers were mapped into the whole network, and the PPI network was
then acquired. The PPI information used in this study was downloaded from STRINGDB
(https://string-db.org/api/tsv/network, accessed on 15 March 2021), a database contain-
ing protein interactions that include physical and functional associations [29]. To identify
which genes hold the most information, betweenness centrality was used, then the genes
were ranked according to the following equation:

g(v) = ∑
s 6=v 6=t

σst(v)
σst

(1)

where v is the node gene retrieved from STRINGDB, σst is the total number of shortest
paths from node gene s to node gene t, and σst(v) is the number of those paths that pass
through v.

2.3. Clinical and Genomic Data

RNA-seq and clinical data for skin cutaneous melanoma (SKCM) were retrieved from
The Cancer Genome Atlas (TCGA) using the TCGAbiolinks R package [30,31]. The data
set contains 365 metastatic and 103 primary tumor samples. Then, the normalized read
counts (per million reads mapped) of RNA-seq underwent log2 transformation (i.e., all
values less than 1 were assigned to 1 before transformation). Thereafter, we carried out
normalization of the data since the level of expression of genes varied in different scales. To
reduce low variance features, 0.95 was set as variance threshold, which led to the decrease
in genomic features from 19,947 to 19,815 counts for training the machine learning model.
The data were randomly stratified into training (70%) and validation sets (30%), 286 and
123 patients, respectively.

In this study, the underlying bias within the data set was assessed to ensure that
the end users of the models are aware of the potential shortcomings when applied in the
clinical setting (once validated).

2.3.1. Machine Learning Models

Machine learning techniques have been used in a wide variety of medical applications.
However, they are commonly used on imaging data, such as ultrasound, X-rays, and slide
specimens [32–34]. Similarly, in melanoma [35,36], computer vision is naturally used since
the disease is first suspected visually through skin lesions. However, according to one
study [6], by the time melanoma is discovered, it has already metastasized. This study
attempts to develop a meta-classification model that can determine late stage (metastasis)
from early stage (primary tumor) melanoma using genomic data.

The biomarkers from both random forest (in Sections 2.1 and 2.2), through feature
importance scores, and PPI network, through betweenness centrality scores, were rank
selected and applied to (i) logistic regression, (ii) support vector machines, (iii) Gaussian
Naïve Bayes, and (iv) random forest. In classification models, such as those used for identi-
fying the melanoma stage, the Area Under the Receiver Operating Characteristic Curve
(AUC) provides the probability that a randomly selected melanoma patient with metastatic
stage will have a higher predicted probability of being metastatic than a randomly selected
melanoma patient with a primary tumor stage.

DeLong’s method [37] was used to compare the performance of two models and ac-
counted for the uncertainty caused by the finite training set randomness and the evaluation
on a common validation set. To calculate the z-score when comparing models A and B in
terms of AUC, the following equation was used:

z ,
θ̂(A) − θ̂(B)√

V[θ̂(A) − θ̂(A)]
=

θ̂(A) − θ̂(B)√
V[θ̂(A)]+V[θ̂(B)]−2C[θ̂(A), θ̂(B)]

(2)

https://string-db.org/api/tsv/network
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where θ̂(A), θ̂(B) are AUC scores of models A and B, respectively, V is the variance, and C is
the covariance function. Under the null hypothesis [38], z can be well approximated by the
standard normal distribution. Therefore, if the value of z deviates significantly from zero
(e.g., z > 1.96), then it is rational to consider that θ̂(A) > θ̂(B) at the significance level p < 0.05;
namely, if z deviates significantly from zero, we can infer that model A has a statistically
different AUC from model B at p < 0.05.

Rather than committing completely to a single best classifier, two or more models
that appear to complement each other (e.g., models that perform exceptionally well in
different regions of the Receiver Operating Characteristic (ROC) space) could be combined.
Therefore, the models will be selected based on significant AUC scores and are ensembled
via soft voting.

In soft voting [39], the predicted class labels based on the predicted probabilities p for
each classifier are given by the following equation:

ŷ = argmaxi

m

∑
j=1

wi pij (3)

where i ∈ {0, 1} are class labels and wi is the weight that can be assigned to the j-th classifier.
In this study, weights were uniform across the classifier models.

2.3.2. Survival Analysis

In addition to disease diagnosis, we aimed to determine the disease prognosis, which
deals with the probability of patient survival and time period. Since there were no machine
learning techniques used in this methodology, the entire data set was used without data
splitting.

A commonly used tool [40] for modeling and visualizing patient survival is the Kaplan-
Meier analysis [41]. Within the context of melanoma, the Kaplan-Meier curve describes
the survival rate or the number of melanoma patients surviving at each time point from
diagnosis as given by the following survival function:

Ŝ(t) = ∏
ti<t

(
ni − di

ni

)
(4)

where t is the elapsed time after diagnosis, d is the number of death events at time t, and n
is the number of melanoma patients at risk at time t.

Davidson-Pilon Lifelines KaplanMeierFitter (KMF) [42] Python module was used to
estimate the survival function in Equation (4) and the survival curves were plotted. The
KMF module required two inputs, event E and duration T, for which the patient was
observed for event E. We used the ‘vital_status’ field from TCGA as event E, in order
that a value of one (1) indicates death was observed while a value of zero (0) indicates
right-censoring (loss to follow-up). For input T, we created another field, ‘days_to_event,’
which is a combination of the ‘days_to_death’ and ‘days_to_last_follow_up’ fields of the
TCGA data set, in order that the empty values in the ‘days_to_death’ field are filled with
‘days_to_last_follow_up.’

Two Kaplan-Meier curves can be plotted on the same graph to determine whether a
certain variable (e.g., age, gender) produces statistically different survival rates. In this
study, we aimed to determine whether certain genes (i.e., variable of interest) affect the
prognosis of melanoma patients; namely, whether a patient with high expression of a
certain gene would yield poor survivability or whether a patient with low expression of a
certain gene would yield better survivability. After normalizing the data using the standard
scaling per gene, we used the statistical mean as the threshold for high and low gene
expressions. Log-rank test with α = 0.99 indicates that if the p-value is less than 0.005 for a
certain gene, then the two Kaplan-Meier curves are statistically different, and, therefore,
the gene is a potential driver of prognosis.
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3. Results

The main objective of this study was to identify expression signatures that can separate
primary and metastatic SKCM based on RNA-seq expression data. After categorical
features, such as race, gender, ethnicity, and vital status were converted by One Hot
Encoding, the category Black and African American in the race data field was dropped
since it has only one record and cannot be represented in both the training and validation
data sets. Then, each of the models was fine-tuned via grid-search scorings using accuracy
and F1 scores.

In selecting biomarkers, each of the trees in random forest was built over a random
extraction of patient observations from the TCGA data set and a random extraction of
the genomic features. Since not every tree observes all of the characteristics or all of the
findings, the trees are de-correlated and, therefore, less vulnerable to overfitting. Each
tree estimator has a series of true or false questions based on the level of expression of
each of the genes and divides the observations based on their respective similarities and
differences. Therefore, the ranking of importance of each gene was derived from how pure
they are. The measure of impurity used in this study is the Gini impurity. For a deeper
understanding, features selected at the top of the trees are usually more important than
features selected at the end nodes of the trees, since top splits generally result in larger
knowledge gains.

Random forest was first trained with 19,815 genes and was fine-tuned using a grid-
search method to find the optimal hyperparameters. The random forest model used
for biomarker discovery has the following hyperparameters: Maximum features of 60%,
minimum samples of each leaf equal to 8, and the number of estimators equal to 30. Then,
the feature importance of the model was analyzed. Table 1 shows the Top 30 genes of 139
that were found to be significant (i.e., weighted).

Table 1. The 30 genes exhibiting the highest scores through random forest for biomarker discovery
analysis.

Rank Gene Code Gene Name Score

1 C7 Complement C7 0.1591
2 KRT17 Keratin 17 0.1029
3 CLEC2A Keratinocyte-Associated C-Type Lectin 0.0912
4 S100A7A S100 Calcium-Binding Protein A7A 0.0646
5 KRTDAP Keratinocyte Differentiation-Associated Protein 0.0604
6 WFDC5 WAP Four-Disulfide Core Domain 5 0.0418
7 KRT6B Keratin 6B 0.0389
8 S100A7 S100 Calcium-Binding Protein A7 (Psoriasin 1) 0.0242
9 KRT14 Keratin 14 0.0196

10 PVRL4 Nectin Cell Adhesion Molecule 4 0.0176
11 SERPINB4 Squamous Cell Carcinoma Antigen 2 0.0172
12 IL20RB Interleukin 20 Receptor Subunit β 0.0114
13 AFAP1-AS1 AFAP1 Antisense RNA 1 0.0109
14 FKBP1B FKBP Prolyl Isomerase 1B 0.0103
15 ZSWIM7 Zinc Finger SWIM-Type Containing 7 0.0094
16 PRG2 Proteoglycan 2, Pro Eosinophil Major Basic Protein 0.0091
17 PAX1 Paired Box Protein Pax-1 0.0087
18 DMBT1 Deleted In Malignant Brain Tumors 1 0.0086
19 ZNF653 Zinc Finger Protein 65 0.0085
20 GRIK5 Glutamate Ionotropic Receptor Kainate-Type Subunit 5 0.0081
21 MMP3 Matrix Metalloproteinase 3 0.0080
22 ZNF593 Zinc Finger Protein 593 0.0075
23 VDAC1 Outer Mitochondrial Membrane Protein Porin 1 0.0073
24 ADAMTSL3 ADAMTS-Like 3 0.0072
25 RGS4 Regulator Of G Protein Signaling 4 0.0071
26 MRPL44 Mitochondrial Ribosomal Protein L44 0.0070
27 LYSMD2 LysM Domain Containing 2 0.0068
28 TDRKH Tudor And KH Domain Containing 0.0059
29 CSPG4 Melanoma-Associated Chondroitin Sulfate Proteoglycan 0.0057
30 PLA2G2F Phospholipase A2 Group IIF 0.0056

The expression of the Top 10 genes obtained from random forest as potential biomark-
ers was further examined (Figure 2). C7 is upregulated in metastatic sample compared
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to primary tumor, while KRT17, CLEC2A, S1007A, KRTDAP, WFDC5, KRT6B, S100A7,
KRT14, and PVRL4 are downregulated (or upregulated in primary tumor compared to
metastatic sample). The rest of the genes showing significant (p < 0.05, Welch’s t-test, see
Supplementary Materials File S10) upregulated expression in primary tumor or metastatic
sample type are shown in Table 2.
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Table 2. Upregulated genes according to sample type from among the 139 feature selected genes.

Primary Tumor Metastatic

KRT17, CLEC2A, S100A7A, KRTDAP,

WFDC5, KRT6B, S100A7, KRT14, PVRL4, SERPINB4,
IL20RB, PAX1, MMP3, PLA2G2F, FCER1A, PSMD9,
PRKRIP1, HMG20B, RAX, SSNA1, MRRF, PITHD1,

COQ4, XKRX,
FAM109B, C1orf159, MIEN1, RNF135, AKR1B15,

SPSB3, SWI5, ATP12A, LCE1F,
ALAD, FAAH, RDH12, RPS28, VDAC1,

G6PC3, FAM98C, ZNF593, MRPL44, TBC1D13,
ZSWIM7, PRG2, CICP27, CIB2, FKBP1B, ZNF653

C7, DOCK11, SCN4A, CLIC5,
PDK4, SNAP23, PABPC4L,

SMARCAL1, SAMD8, CCPG1,
MRPL23, SLC9A8, TSPAN14,

RARRES2, SLC40A1, GSR,
IGF1R, DDX3X, PSTPIP2,

CASK, SMTNL2, ADAMTSL3,
ARHGAP22, RGS4, GTF2H2C, TAF5L,

LYSMD2, TDRKH

As can be seen from the extracted genomic features, there are genes of related func-
tionality, such as KRT17, KRTDAP, KRT6B, and KRT14. Random forest showed the genes
that have a potential for classifying melanoma based on a specific gene expression. We hy-
pothesized that it is important to identify genetic interactions, in order to derive the genes
that hold the most information and leverage it to further improve the performance of the
model. In developing a model, this can be viewed as optimizing the bias variance trade-off,
wherein high bias can miss possible relevant genes (underfitting) and high variance may
include multicollinear genomic features (overfitting) in the model.

Of the 139 genomic features identified by random forest, 22 genes were found to be
highly connected with other genes on the list. Among these 22 information-heavy genes,
C7, S100A7, SERPINB4, GRIK5, KRT14, PAX1, and KRT6B figured prominently in feature
selection (Table 1), while genes, such as PC, RPN2, TSHR, GSR, RPS28, and GNG2 which
were not as prominent have risen to the top (Table 3).
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Table 3. Betweenness centrality rank of genes from protein–protein interaction network.

Rank Gene Code Gene Name Score

1 PC Pyruvate Carboxylase, Mitochondrial 0.0886
2 RPN2 Ribophorin II 0.0636
3 TSHR Thyroid Stimulating Hormone Receptor 0.0490
4 GSR Glutathione Reductase, Mitochondrial 0.0396
5 RPS28 Ribosomal Protein S28 0.0370
6 GRIK5 Glutamate Ionotropic Receptor Kainate-Type Subunit 5 0.0185
7 GNG2 G Protein Subunit γ 2 0.0131
8 C7 Complement C7 0.0130
9 S100A7 S100 Calcium-Binding Protein A7 (Psoriasin 1) 0.0104
10 SERPINB4 Squamous Cell Carcinoma Antigen 2 0.0078
11 IGF1R Insulin-Like Growth Factor 1 Receptor 0.0062
12 KRT14 Keratin 14 0.0061
13 NKX6-1 NK6 Homeobox 1 0.0052
14 MRRF Ribosome-Recycling Factor, Mitochondrial 0.0051
15 RPE65 Retinoid Isomerohydrolase RPE65 0.0045
16 LMX1B LIM Homeobox Transcription Factor 1 β 0.0032
17 PAX1 Paired Box Protein Pax-1 0.0032
18 PTF1A Pancreas-Associated Transcription Factor 1a 0.0032
19 PTS 6-Pyruvoyltetrahydropterin Synthase 0.0026
20 KRT6B Keratin 6B 0.0016
21 CASK Calcium/Calmodulin Dependent Serine Protein Kinase 0.0013
22 FBXW10 F-Box and WD Repeat Domain Containing 10 0.0006

3.1. Model Performance

During the model tuning, F1 and accuracy scores were used as metrics to improve
the performance since there is an imbalanced class in the data set. AUC score was used
as the final metric since it is commonly used to depict the trade-off relationship between
clinical sensitivity and specificity for each potential cut-off for a test or a set of tests in a
graphical format. Moreover, AUC provides insight into the value of using the model in
diagnosing melanoma patients. Furthermore, it determines how well the model correctly
classifies a metastatic melanoma patient given the yield probability that the patient indeed
has metastatic melanoma.

The model performance was compared for the top genes, progressively selected (Top
10, Top 20, Top 30, Top 40, Top 50 as in [1]), using logistic regression, support vector
machines (linear, polynomial, radial basis, and sigmoid kernel), Gaussian Naïve Bayes, and
random forest models. These models were trained using a 5-fold cross validation.

Overfitting occurs as performance in the training set improves but performance on
the validation or test data set worsens; therefore, the determination of the best number of
genes for a specific algorithm is conducted via the performance gap between the training
and validation set. Unfortunately, support vector machines with polynomial kernel do not
perform well with the 139 genes identified [see Supplementary Materials, Files S3 and S4].
Table 4 shows the six best models and their validation scores that achieved high AUC scores.
Based on the results, only the Top 30 of 139 identified genes were found to be important in
diagnosing melanoma.

Table 4. Model performance (validation data set) using biomarkers discovered through random forest.

Model Name Genes F1 Accuracy AUC

RF-RF Random Forest Top 20 92.85 93.01 0.9789
RF-SVM-R SVM (Radial Basis Kernel) Top 10 86.60 87.76 0.9249

RF-LR Logistic Regression Top 10 87.59 88.81 0.9234
RF-NB Naïve Bayes Top 20 80.04 82.52 0.8252

RF-SVM-L SVM (Linear Kernel) Top 10 80.80 83.91 0.8205
RF-SVM-Sig SVM (Sigmoid Kernel Top 30 79.02 80.06 0.8054
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Similarly, in the PPI mapped genes that were ranked using betweenness centrality, the
genes were progressively selected (Top 10, Top 20) and the performance was compared.
Table 5 shows that logistic regression, support vector machines, and Gaussian Naïve Bayes
achieved high validation AUC scores [See Supplementary Materials, Files S5 and S6]. To
further investigate the performance of the models in terms of their AUC scores, De Long’s
test [37] was conducted. It was found that RF-LR Top 10, RF-RF Top 20, and RF-PPI-SVM-Sig
Top 10 models were significantly better (p < 0.05) [See Supplementary Materials, File S7].
The rank of random forest selected features might still miss some relevant genes and the
rank using betweenness centrality might also increase the variance estimates across the sam-
ples. This can be further supported by the analysis on bias-variance decomposition among
these models, found in Table S2, showing that RF-LR Top 10, RF-RF Top 20, and RF-PPI-
SVM-Sig Top 10 models’ expected loss were minimized as bias and variance were optimized.
Finally, the three significant models were combined as an ensemble model through soft
voting. The resulting ensemble model still has high and acceptable validation scores
(F1 = 90.60, Accuracy = 91.05, AUC Score = 0.9861, see Supplementary Materials, Table S2),
after ensuring that the bias and variance were minimized. The unique gene signatures that
were used in the ensemble model are listed in Table 6.

Table 5. Model performance (validation data set) using biomarkers discovered through random
forest and mapped by protein–protein interaction network.

Model Name Genes F1 Accuracy AUC

RF-PPI-SVM-L SVM (Linear Kernel) Top 20 83.15 85.36 0.9659
RF-PPI-NB Naïve Bayes Top 20 86.43 87.80 0.9054

RF-PPI-SVM-Sig SVM (Sigmoid Kernel) Top 10 73.17 79.67 0.9049
RF-PPI-LR Logistic Regression Top 10 83.15 85.37 0.8808

Table 6. The 26 genes in the ensemble meta-classifier with soft voting.

Gene Code Gene Name Location

S100A7 S100 Calcium-Binding Protein A7 (Psoriasin 1) chr1
S100A7A S100 Calcium-Binding Protein A7A chr1
PVRL4 Nectin Cell Adhesion Molecule 4 chr1

FKBP1B FKBP Prolyl Isomerase 1B chr2
IL20RB Interleukin 20 Receptor Subunit β chr3

AFAP1-AS1 AFAP1 Antisense RNA 1 chr4
C7 Complement C7 chr5

GSR Glutathione Reductase, Mitochondrial chr8
DMBT1 Deleted In Malignant Brain Tumors 1 chr10
PRG2 Proteoglycan 2, Pro Eosinophil Major Basic Protein chr11

PC Pyruvate Carboxylase, Mitochondrial chr11
CLEC2A Keratinocyte-Associated C-Type Lectin chr12
KRT6B Keratin 6B chr12
GNG2 G Protein Subunit γ 2 chr14
TSHR Thyroid Stimulating Hormone Receptor chr14
KRT14 Keratin 14 chr17
KRT17 Keratin 17 chr17

ZSWIM7 Zinc Finger SWIM-Type Containing 7 chr17
GRIK5 Glutamate Ionotropic Receptor Kainate-Type Subunit 5 chr19

KRTDAP Keratinocyte Differentiation-Associated Protein chr19
RPS28 Ribosomal Protein S28 chr19

ZNF653 Zinc Finger Protein 653 chr19
SERPINB4 Squamous Cell Carcinoma Antigen 2 chr18

PAX1 Paired Box Protein Pax-1 chr20
RPN2 Ribophorin II chr20

WFDC5 WAP Four-Disulfide Core Domain 5 chr20
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3.2. Kaplan-Meier Survival Analysis

We performed the Kaplan-Meier survival analysis on the 139 significant genes (Table 2)
selected by random forest. Log-rank test identified 26 of the 139 genes that displayed a sig-
nificant difference (p-value < 0.05) in terms of survival between high and low gene expressor.

Our analysis shows that high expression of KRT17, S100A7A, KRTDAP, WFDC5,
KRT6B, S100A7, KRT14, PVRL4, SERPINB4, IL20RB, VDAC1, PLA2G2F, DLST, PSMD9,
AMY1A, ENTHD1, TBC1D13, ATP12A, CIB2, LCE1F, or RDH12 is associated with worse
survival (Figure 3).
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On the other hand, high expression of LYSMD2, PSTPIP2, SNAP23, TSHR, or CCPG1
is associated with better survival (Figure 4). Herein, 11 of these 26 prognostic genes, KRT17,
S100A7A, KRTDAP, WFDC5, KRT6B, S100A7, KRT14, PVRL4, SERPINB4, IL20RB and TSHR,
are common with the 26 genes identified by the ensemble classifier (Table 6).
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3.3. Implicit Bias

The evaluation of data is a critical step in the development of machine learning models,
especially when they are used in clinical decision support for medical diagnosis. Initial
exploratory analyses show that training the model with the TCGA data for melanoma has
implicit bias on race, gender, age groups, and Body Mass Index (BMI). There were more
metastatic samples analyzed compared to primary tumor; patients were concentrated in
the 40–79 age group; the female to male ratio was 0.58 (Figure S2); in terms of race, white
patients were dominantly present in the data set (Figure S3); and for BMI, underweight
patients were not represented (Figure S4). We hypothesized that our machine learning
model will only perform well on populations that are well represented demographically.

We calculated the performance accuracy on sample type, age groups, gender, BMI,
and race using the ensemble model. Results shown in Table 7 confirmed our hypothesis for
sample type and age group, but not for gender and race where the model still performs quite
well despite the unevenness of the data. For the 0–19 age group, the perfect performance of
the model is likely an overfit due to the very small number of samples.

Table 7. Performance accuracy of the models to examine implicit bias in training data set.

Variable N Ensemble

Sample Type

Primary Tumor 68 51.47%
Metastatic 218 99.54%

Age

0–19 3 100.00%
20–39 29 89.66%
40–59 109 90.83%
60–79 124 87.09%
80+ 21 71.19%

Gender

Male 181 88.95%
Female 105 86.66%

BMI

Normal 92 88.04%
Overweight 107 90.65%

Obese 86 84.88%

Race

White 271 88.19%
Asian 10 80.00%
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4. Discussion

Feature selection in machine learning applied to gene expression data is a powerful
method that can identify biomarkers to classify disease states (primary vs. metastatic
melanoma as in this study). Once the list of potential biomarkers is narrowed down and
ranked for their respective contributions (139 weighted genes ranked), additional ma-
chine learning methods, such as logistic regression, support vector machine, and Gaussian
Naïve Bayes can further indicate which rank cut-off is important based on model perfor-
mance (as in this case, Top 30), providing a more manageable set of molecular markers for
further study.

Furthermore, PPI analysis of the original 139 genes in the random forest learning set,
showed that lower ranked genes can figure prominently, indicating that interactions may be
important. Of the Top 10 genes in betweenness centrality score, only C7 and S100A7 were
also in the random forest Top 10 (see Table 1), yet the performance of models incorporating
the Top 10 PPI-selected genes was still very high (0.935–0.9552, Table 5) even though PC,
RPN2, TSHR, GSR, RPS28, and GNG2 genes were not in the RF Top 30.

Comparison of the performance of several models distinguished the best three models,
which when ensembled, in order not to miss other relevant genes, performed very well
(AUC = 0.9861, Supplementary Materials, Table S2). There are 26 genes in the ensemble
meta-classifier, including genes involved in skin cell differentiation (CLEC2A, KRT6B,
KRT14, KRT17, KRTDAP), immunity (S100A7, S100A7A, IL20RB, C7, PRG2, SERPINB4,
WFDC5, FKBP1B), cell adhesion (PVRL4), energy/metabolism (PC, TSHR), cancer metasta-
sis (AFAP1-AS1) and suppression (DMBT1), cellular redox (GSR), cell signaling (GNG2),
cell division (ZSWIM7), protein synthesis and modification (RPS28, RPN2), and transcrip-
tional regulation (ZNF653, PAX1). Moreover, the majority of these genes have been linked to
other cancers; therefore, the methods we employed found genes involved in metastatic pro-
gression which could be common among cancers. Interestingly, the Glutamate Ionotropic
Receptor Kainate Type Subunit 5 (GRIK5) identified here for the first time as a classifier for
primary vs. metastatic melanoma, is mainly known for its role in neural development and
neuropsychiatric disorders [43–45].

Examining the profiles of the 139 genes in patient tissue, we found that some of
these genes are highly expressed in metastatic tissue compared to primary tumor, such
as C7, DOCK11, SCN4A, etc. However, more genes in this set were expressed highly in
primary tumors (Table 2). Genes, such as members of the keratin family (KRT17, KRTDAP,
KRT6B, KRT14, KRTAP13-2) are expressed more in primary tumor, possibly indicating the
differentiated status of less advanced cancers, or this could be a disruption in their normal
expression by melanoma processes. (Unfortunately, we could not compare expression with
normal skin tissue since none of these samples were included in the data set).

When expression of these genes was correlated with patient survival, we found genes
whose high expression correlate with worse (Figure 3) or better (Figure 4) survival. Some of
the genes that were highly expressed in primary tumors (such as the keratin genes) turned
out to be predictive, but, oddly, of poor outcome. We can only surmise that possibly the
early stage of melanoma increases the expression of these genes, but this disruption may
be detrimental to the patient eventually. Only five genes were found to be predictive of
good outcome when highly expressed in melanoma: LYSMD2, PSPIP2, SNAP23, TSHR,
and CCPG1. Of these, only TSHR was identified by the ensemble classifier. Thyroid
Stimulating Hormone Receptor (TSHR) controls thyroid cell metabolism, and defective
TSHR causes hyperthyroidism. The expression of this hormone receptor has been observed
in melanoma [46]; its downregulation has been associated with thyroid cancer metastasis
and is prognostic for poor survival [47], in agreement with our findings.

Moreover, TSHR has been identified for therapeutic intervention or as a theranostic
indicator for thyroid, ovarian, and hepatic malignancies [48], demonstrating the utility of
our methods in the identification of potential therapeutic targets for oncology. Very little is
known about LYSMD2 and PSPIP2, but Synaptosome-Associated Protein 23 (SNAP23) is a
vesicular transport protein that is highly expressed in lymph nodes and the spleen (https:

https://www.ncbi.nlm.nih.gov/gene/8773
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//www.ncbi.nlm.nih.gov/gene/8773) pointing to a possible involvement in immunity.
Cell Cycle Progression 1 (CCPG1) is involved in endoplasmic reticulum homeostasis [49]
and may be a tumor suppressor gene [2].

Assessing the data for potential bias is a recommended exercise and should be con-
tinuously conducted during artificial intelligence implementation, in order to correct for
under or over representation of specific populations in machine learning, and to help
interpret model performance. The ultimate goal is to be able to roll out a fairer algorithm,
which, if used in health, would not result in further inequities as is machine learning’s
wont. The analysis predetermines the segments of the patient population that our models
would likely work in. According to our assessments, the TCGA SKCM data set is biased
on sample type (metastatic > primary tumor), age (40–79-year-olds are best represented),
gender (male > female), and race (mostly white, few Asians, and no other race categories).
We expected our final model to perform best in the most represented groups, which it did
in terms of sample type and age. Surprisingly, the model still performed robustly with
respect to gender and race. Moreover, it must provide tolerance down to a gender ratio of
0.58 (female to male). However, it is very interesting that even with an extreme race ratio of
0.04 (Asian to white), the model still works albeit with somewhat lowered performance.
We dropped the single black patient for this analysis; thus, we cannot generalize this model
to the black population. The lack of data may be a reflection of the relatively low incidence
of melanoma in the black population. For BMI, the segments are fairly represented, with
no underweight patients. Consequently, the model performed well in all BMI segments,
but, again, it may not be extendable to underweight patients.

4.1. Implicit Bias

Our models were able to identify notable genes, specifically ones also flagged by
survival analysis. Some of these genes have been identified in previous studies involving
machine learning on the same data set [20,21]. Moreover, these genes are good candidates
for validation ahead of their potential applications in the clinical setting.

4.2. Potential Diagnostic Classifiers

C7. C7 is a member of the soluble Membrane Attack Complex (sMAC), along with
C5b, C6, C8, and C9, which is generated upon activation of the complement system [50]. In
a study performed by Bhalla et al. (2019) that used several feature selection methods on
genomic data, C7 figured prominently in melanoma carcinogenesis and was also found
to be upregulated in metastatic tumors [21]. Opposing observations were seen among
ovarian and Non-Small Cell Lung Cancer (NSCLC) tissues as C7 was found to be further
downregulated as the tumor stage increased. More importantly, low C7 levels were also
identified to be a significant prognostic factor for NSCLC patients [51]. The inclusion of
C7 as a diagnostic classifier to distinguish between primary and metastatic melanoma is
promising and warrants further investigation.

GRIK5. GRIK5 encodes for the kainate-preferring glutamate receptor subunit KA2,
which is ubiquitously expressed in the mammalian brain [52]. In the SKCM data set, the
expression of GRIK5 does not seem to be significantly different between primary and
metastatic melanoma. However, in preliminary studies on zebrafish, decreased expression
of GRIK5 was found to lead to vascular pathologies in the eye and brain. Moreover, they
have been shown to be associated with patterning and vasculature integrity [53]. Given
the earlier observations, the potential role of GRIK5 in angiogenic processes necessary for
metastasis warrants further investigation.

Potential Diagnostic and Prognostic Biomarkers

S100A7/S100A7A. In this study, S100A7 was shown to be upregulated in primary
melanoma. Analysis of publicly available gene expression profiles showed that S100A7
was highly expressed in primary cutaneous melanoma, but was significantly decreased

https://www.ncbi.nlm.nih.gov/gene/8773
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in normal skin tissue and metastatic melanoma. A follow-up analysis of PPI identified
S100A7 as a hub gene in primary cutaneous melanoma [54].

At the transcriptomic level, a study performed by Riker et al. (2008) showed that
S100A7 expression was highly expressed in primary cutaneous melanoma vs. normal skin
tissue but was seen to significantly decrease in metastatic melanoma [10]. A similar study
showed that several S100 family genes, including S100A7, were highly expressed in pri-
mary melanoma, but were seen to significantly decrease in metastatic melanoma [55]. More
importantly, higher levels of S100A7 were detected in the urine of cutaneous melanoma
patients compared to a control group. In addition, this trend was not seen in a hetero-
geneous group of patients with other cancer types [56]. The significant levels of S100A7
expression in primary cutaneous melanoma and the ease in detection in urine samples
make it a promising diagnostic classifier.

KRT14, KRT17, KRT6B, KRTDAP. These genes are involved in keratinization. In-
creased expression of KRT6B, KRT14, and KRT17 was associated with poor survival in
melanoma [57]. On the other hand, KRTDAP was found to have higher expression in
primary tumor compared to metastatic tumor [10]. The role of KRTDAP is mainly in
keratinocyte differentiation; therefore, this may indicate that metastatic melanoma tissue is
less differentiated compared to primary lesions.

SERPINB4. The squamous cell carcinoma antigen 2, encoded by the genes SERPINB3
and SERPINB4, has been shown to be involved in inflammatory conditions of the skin and
respiratory diseases, such as chronic obstructive pulmonary disease and tuberculosis [58].
It has been used as a diagnostic marker for advanced squamous cell carcinoma in the head
and neck [59]. Moreover, it has been found to induce Epithelial-Mesenchymal Transition
(EMT) in mammalian epithelial cells, insinuating its role in tumor metastasis [60].

TSHR. TSHR has been documented to be expressed in all melanocytic lesions, with
higher levels found in malignant and pre-malignant lesions. Its ligand, the thyroid stimu-
lating hormone, was found to induce melanoma proliferation. Circulating levels of TSH
increase in thyroid failure conditions providing an environment where melanoma can
proliferate [61]. In the clinical setting, it was found that patients with cutaneous malignant
melanoma were at a higher risk for other cancers, especially thyroid carcinoma [62].

PVRL4. PVRL4, also known as NECTIN4, was identified as a potent inducer of
anchorage-independent growth in epithelial cell culture [63]. In cancer, an increased
expression of PVRL4 was found to be associated with high-grade serous ovarian carcinoma
but did not seem to be involved in survival [64].

WFDC5. WFDC5 is highly expressed in human epidermis [65], which is known to
secrete protease inhibitors involved in inflammatory processes [66]. It was found to be
upregulated in head and neck squamous cell carcinoma expression data from the GEO
database [54]. Using microarray data, WFDC5 figured in the Top 40 of a candidate 200-
gene signature, which is able to distinguish between melanoma and normal epithelial
cells/benign nevus [67].

IL20RB. IL20RA and IL20RB are subunits of the Interleukin 20 Receptor Type I (IL20RI)
found in the epidermis [68,69]. IL20RB was found to be associated with inflammatory
processes in psoriasis [70] and vitiligo [71]. IL20RB expression levels have already been
documented in several cancers. Cui et al. (2019) showed that it is highly expressed in
Papillary Renal Cell Carcinoma (PRCC) tissue and was linked to poor prognosis among
patients. In the same study, its repression limited the proliferation and migration of
PRCC cells; therefore, highlighting its potential role in the EMT mechanisms leading to
metastasis [72]. This finding can be corroborated by the function of one of the IL20R1,
IL20RA + IL20RB)/IL20R2 heterodimer ligands, IL20, which is a pro-inflammatory cytokine
found to enhance wound healing, migration, and invasion in bladder cancer cell lines [73].
This evidence points to the potential role of IL20RB in inflammatory processes in melanoma,
which warrants further investigation.
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S2: Distribution of gender. Figure S3: Distribution of race. Figure S4: Distribution of BMI. Figure
S5–S34: Biomarker discovery—random forest estimators. Figure S35–S40: Box plots of Top 139 gene
expressions. Table S1: Bias variance decomposition of the models. Table S2: Model performance
(validation data set) of ensemble model with soft voting. Files: File S1 feature selection (biomarker
discovery) results from random forest, File S2 feature selection (biomarker discovery) results from
random forest mapped to PPI using betweenness centrality, File S3 model evaluation scores for
training data set [based on Top 139 genes of RF], File S4 model evaluation scores for validation data
set [based on Top 139 genes of RF], File S5 model evaluation scores for training data set [based on
Top 20 genes of RF-PPI], File S6 model evaluation scores for validation data set [based on Top 20
genes of RF-PPI], File S7 model comparison results using De Long’s test for AUC, File S8 implicit bias
on training data set [SKCM], File S9 bias variance decomposition, File S10 Welch’s t-test results for
139 genes.
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