Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = metal-semiconductor heterojunctions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2806 KiB  
Article
Ni-MOF/g-C3N4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction
by Muhammad Sabir, Mahmoud Sayed, Iram Riaz, Guogen Qiu, Muhammad Tahir, Khuloud A. Alibrahim and Wang Wang
Materials 2025, 18(14), 3419; https://doi.org/10.3390/ma18143419 - 21 Jul 2025
Viewed by 498
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) [...] Read more.
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) to achieve enhanced charge separation. The establishment of an S-scheme charge transfer configuration at the interface of the Ni-MOF/g-C3N4 heterostructure plays a pivotal role in enabling efficient charge carrier separation, and hence, high CO2 photoreduction efficiency with a CO evolution rate of 1014.6 µmol g−1 h−1 and selectivity of 95% under simulated solar illumination. CO evolution represents an approximately 3.7-fold enhancement compared to pristine Ni-MOF. Density functional theory (DFT) calculations, supported by in situ irradiated X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experimental results, confirmed the establishment of a well-defined and strongly bonded interface, which improves the charge transfer and separation following the S-scheme mechanism. This study sheds light on MOF-based S-scheme heterojunctions as fruitful and selective alternatives for practical CO2 photoreduction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

30 pages, 5199 KiB  
Review
Modification Strategies of g-C3N4-Based Materials for Enhanced Photoelectrocatalytic Degradation of Pollutants: A Review
by Yijie Zhang, Peng Lian, Xinyu Hao, Li Zhang, Lihua Yang, Li Jiang, Kaiyou Zhang, Lei Liao and Aimiao Qin
Inorganics 2025, 13(7), 225; https://doi.org/10.3390/inorganics13070225 - 3 Jul 2025
Viewed by 484
Abstract
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy [...] Read more.
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy to modify. The structure formation of g-C3N4-based materials makes a series of photocatalytic synthesis reactions possible and improves photocatalytic reaction activity. In this paper, the development history, structures, and performance of g-C3N4 are briefly introduced, and the modification strategies of g-C3N4 are summarized to improve its photocatalytic and photoelectric catalytic properties via doping, heterojunction construction, etc. The light absorption and utilization of the catalysts are also analyzed in terms of light source conditions, and the application of g-C3N4 and its modified materials in photocatalysis and photocatalytic degradation is reviewed. Full article
Show Figures

Graphical abstract

22 pages, 2718 KiB  
Review
Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution
by Quanmei Zhou, Yuchen Wei, Yifan Liao, Jiayi Meng, Yamei Huang, Xinglin Wang, Huihui Zhang and Weilin Dai
Molecules 2025, 30(13), 2755; https://doi.org/10.3390/molecules30132755 - 26 Jun 2025
Viewed by 512
Abstract
The development of metal–organic framework (MOF)-based composites for photocatalytic hydrogen evolution has garnered significant attention due to their tunable structures, high surface area, and abundant active sites. Recent advancements focus on enhancing light absorption, charge separation, and catalytic efficiency through strategies such as [...] Read more.
The development of metal–organic framework (MOF)-based composites for photocatalytic hydrogen evolution has garnered significant attention due to their tunable structures, high surface area, and abundant active sites. Recent advancements focus on enhancing light absorption, charge separation, and catalytic efficiency through strategies such as ligand functionalization, metal doping, heterojunction formation, and plasmonic coupling effects. For instance, modifications with Ir (III) complexes and Pt nanoparticles have significantly improved hydrogen evolution rates, while sandwich-structured MOF composites demonstrate optimized charge separation through tailored micro-environments and proton reduction efficiency. Additionally, integrating MOFs with semiconductors (e.g., CdS, g-C3N4) or plasmonic metals (e.g., Au) enhances visible-light responsiveness and stability. This review highlights key design principles, performance metrics, and mechanistic insights, providing a roadmap for future research in MOF-based photocatalysts for sustainable hydrogen production. Challenges such as long-term stability and scalable synthesis are also discussed to guide further innovations in this field. Full article
Show Figures

Graphical abstract

27 pages, 3987 KiB  
Review
Recent Advances in TiO2-Based Photocatalysts for Efficient Water Splitting to Hydrogen
by Muhammad Nisar, Niqab Khan, Muhammad I. Qadir and Zeban Shah
Nanomaterials 2025, 15(13), 984; https://doi.org/10.3390/nano15130984 - 25 Jun 2025
Viewed by 689
Abstract
Titanium dioxide (TiO2) has been widely used as a potential candidate for the production of green hydrogen using the artificial photosynthesis approach. However, the wide bandgap (∼3.3 eV) of anatase TiO2 makes it difficult to absorb a large fraction of [...] Read more.
Titanium dioxide (TiO2) has been widely used as a potential candidate for the production of green hydrogen using the artificial photosynthesis approach. However, the wide bandgap (∼3.3 eV) of anatase TiO2 makes it difficult to absorb a large fraction of the solar radiation reaching the Earth, thus providing a low photocatalytic activity. Anatase TiO2 absorbs only 4% of solar radiation, which can be improved by engineering its bandgap to enhance absorption in the visible region. In the literature, many strategies have been adopted to improve the photocatalytic activity of TiO2, such as metal and non-metal doping and heterojunctions. These techniques have shown incredible enhancement in visible light absorption and improved photocatalytic activity due to their ability to lower the bandgap of pure TiO2 semiconductors. This review highlights different techniques like doping, heterojunctions, acidic modification, creating oxygen vacancies, and temperature- and pressure-dependence, which have improved the photochemical response of TiO2 by improving charge-transfer efficiencies. Additionally, the charge-transfer mechanism and enhancement in the photochemical response of TiO2 is discussed in each portion separately. Full article
(This article belongs to the Special Issue Advanced Nanotechnology in Fuel Cells)
Show Figures

Graphical abstract

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Cited by 1 | Viewed by 853
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

12 pages, 3031 KiB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in BaZn2As2
by Guoqiang Zhao, Gangxu Gu, Shuai Yang, Yi Peng, Xiang Li, Kenji M. Kojima, Chaojing Lin, Xiancheng Wang, Timothy Ziman, Yasutomo J. Uemura, Bo Gu, Gang Su, Sadamichi Maekawa, Yongqing Li and Changqing Jin
Crystals 2025, 15(6), 582; https://doi.org/10.3390/cryst15060582 - 19 Jun 2025
Viewed by 641
Abstract
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic [...] Read more.
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic semiconductor BaZn2As2 (BZA) to its doped compounds has not been extensively explored, especially in relation to the significant intermediate compound Ba(Zn,Mn)2As2 (BZMA). This study aims to address this gap by performing susceptibility and magnetization measurements, in addition to electronic transport analyses, on these compounds in their single crystal form. Key findings include the following: (1) carriers can significantly modulate the magnetism, transitioning from a non-magnetic BZA to a weak magnetic BZMA, and subsequently to a hard ferromagnet (Ba,K)(Zn,Mn)2As2 with potassium (K) doping to BZMA; (2) two distinct sets of metal-insulator transitions were identified, which can be elucidated by the involvement of carriers and the emergence of various magnetic states, respectively; and (3) BZMA exhibits colossal negative magnetoresistance, and by lanthanum (La) doping, a potential n-type (Ba,La)(Zn,Mn)2As2 single crystal was synthesized, demonstrating promising prospects for p-n junction applications. This study enhances our understanding of the magnetic interactions and evolutions among these compounds, particularly in the low-doping regime, thereby providing a comprehensive physical framework that complements previous findings related to the high-doping region. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

41 pages, 1254 KiB  
Review
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
by Amra Bratovčić and Vesna Tomašić
Processes 2025, 13(6), 1813; https://doi.org/10.3390/pr13061813 - 7 Jun 2025
Viewed by 2111
Abstract
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or [...] Read more.
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However, the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues, researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper, we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight, and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light, which can significantly boost H2 production. Advanced hybrid materials, such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts, and the creation of heterojunctions, are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions, Z-type heterojunctions, p–n heterojunctions from nanostructures, and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements, designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review, state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail, with a focus on photocatalytic nanostructures, heterojunctions and hybrid composites. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4502 KiB  
Article
Crystal Facet Engineering of 2D SnSe2 Photocatalysts for Efficient Degradation of Malachite Green Organic Dyes
by Liying Wen, Fangfang Cheng, Xinyu Zhao, Lin Han, Dongye Zhao and Shifeng Wang
Nanomaterials 2025, 15(11), 850; https://doi.org/10.3390/nano15110850 - 2 Jun 2025
Viewed by 482
Abstract
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor [...] Read more.
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor materials. While their narrow bandgap and unique structure confer exceptional optoelectronic properties, prior research has predominantly emphasized heterojunction systems. We synthesized SnSe2 with well-defined hexagonal plate-like structures via a one-step hydrothermal method by precisely controlling precursor ratios (Sn:Se = 1:2) and reaction temperatures (120–240 °C). Systematic investigations revealed that hydrothermal temperature modulates the van der Waals forces between crystal planes, enabling selective exposure of (001) and (011) facets, as confirmed by XRD, SEM, and XPS analyses, thereby influencing the exposure of specific crystal facets. Experiments demonstrated that pure SnSe2 synthesized at 150 °C achieved complete degradation of MG (40 mg/L) within 60 min under visible light irradiation, exhibiting a reaction rate constant (k) of 0.099 min⁻¹. By regulating the exposure ratio of the active (001)/(011) facets, we demonstrate that crystal facet engineering directly optimizes carrier separation efficiency, thereby substantially enhancing the catalytic performance of standalone SnSe2. This work proposes a novel strategy for designing noble-metal-free, high-efficiency standalone photocatalysts, providing crystal facet-dependent mechanistic insights for the targeted degradation of industrial dyes. Full article
Show Figures

Graphical abstract

21 pages, 9966 KiB  
Article
Optimization of Zinc and Aluminum Hydroxyquinolines for Applications as Semiconductors in Molecular Electronics
by María Elena Sánchez Vergara, Francisco Iñaki Díaz Morales, Bertha Molina, Edgar Alvarez-Zauco, Lourdes Bazán-Díaz and Roberto Salcedo
Molecules 2025, 30(9), 1896; https://doi.org/10.3390/molecules30091896 - 24 Apr 2025
Viewed by 471
Abstract
This work explores the dispersed heterojunction of tris-(8-hydroxyquinoline) aluminum (AlQ3) and 8-hydroxyquinoline zinc (ZnQ2) with tetracyanoquinodimethane (TCNQ) and 2,6-diaminoanthraquinone (DAAq). Thin films of these organic semiconductors were deposited and analyzed, with their structures calculated with the B3PW91/6-31G** method. The [...] Read more.
This work explores the dispersed heterojunction of tris-(8-hydroxyquinoline) aluminum (AlQ3) and 8-hydroxyquinoline zinc (ZnQ2) with tetracyanoquinodimethane (TCNQ) and 2,6-diaminoanthraquinone (DAAq). Thin films of these organic semiconductors were deposited and analyzed, with their structures calculated with the B3PW91/6-31G** method. The optimized structure for AlQ3-TCNQ, AlQ3-DAAq, is achieved by means of three hydrogen bonds, whereas for ZnQ2-DAAq, two hydrogen interactions are predicted. These structures were recalculated including the GD3 dispersion term. A stable ordering was also achieved for AlQ3-TCNQ-GD3, AlQ3-DAAq-GD3, and ZnQ2-DAAq-GD3 with four and two hydrogen contacts for the former and the two latter, respectively. Infrared (IR) and UV-visible spectroscopy confirmed these theoretical predictions, in addition to obtaining the optical band gap for the films. The optical band gap values ranged between 1.62 and 2.97 eV (theoretical) and between 2.46 and 2.87 eV (experimental). Additional optical parameters and electrical behavior were obtained, which indicates the potential of the films to be used as organic semiconductors. All three films showed transmittance above 76%, which also broadens the range of applications in electrodes, transparent transistors, or photovoltaic cells. Devices fabricated using these materials displayed ohmic electrical behavior, with peak current values between 2 × 10−3 and 6 × 10−3 A. Full article
(This article belongs to the Special Issue Recent Advancements in Semiconductor Materials)
Show Figures

Figure 1

17 pages, 2896 KiB  
Article
Individual ZnO–Ag Hybrid Nanorods for Synergistic Fluorescence Enhancement Towards Highly Sensitive and Miniaturized Biodetection
by Marion Ryan C. Sytu and Jong-in Hahm
Nanomaterials 2025, 15(8), 617; https://doi.org/10.3390/nano15080617 - 17 Apr 2025
Viewed by 605
Abstract
Hybrid nanostructures can be engineered to exhibit superior functionality beyond the level attainable from each of the constituent nanomaterials by synergistically integrating their unique properties. In this work, we designed individual hybrid nanorods (NRs) of ZnO–Ag in different heterojunction configurations where each hybrid [...] Read more.
Hybrid nanostructures can be engineered to exhibit superior functionality beyond the level attainable from each of the constituent nanomaterials by synergistically integrating their unique properties. In this work, we designed individual hybrid nanorods (NRs) of ZnO–Ag in different heterojunction configurations where each hybrid NR consists of a single ZnO NR forming a junction with a single Ag NR. We subsequently employed the ZnO–Ag hybrid NRs in the fluorescence detection of the model chemical and biological analytes, rhodamine 6G (R6G), and tumor necrosis factor-α (TNF-α), that undergo simple as well as more complex immunoreaction steps on the hybrid NRs. We determine how parameters such as the analyte concentration, ZnO–Ag heterojunction configuration, and NR length can influence the fluorescence signals, enhancement factors (EFs), as well as changes in EFs (%EFs) at different positions on the hybrid NRs. We provide much needed insights into the fluorescence enhancement capability of single hybrid NR systems using a signal source located external to the NRs. Moreover, we identify key consideration factors that are critical to the design and optimization of a hybrid NR platform for achieving high signal enhancements. We show that higher EFs are consistently observed from the junction relative to other positions in a given hybrid NR, from the end–end relative to other heterojunction configurations, and from longer than shorter ZnO NRs. Our research efforts demonstrate that the synergistic interplay of the two component NRs of ZnO and Ag escalates the fluorescence detection capability of the ZnO–Ag hybrid NR. A superior enhancement level surpassing those attainable by each component NR alone can be obtained from the hybrid NR. Hence, our work further substantiates the potential utility of individual semiconductor-metal hybrid NRs for highly miniaturized and ultra-trace level detection, especially by leveraging the critical consideration factors to achieve a higher detection capability. Full article
Show Figures

Figure 1

17 pages, 15080 KiB  
Article
Development of Defect-Rich WO3-x/TiO2 Heterojunction Toward Dual-Functional Enhancement: Boosting SERS and Photocatalytic Performance
by Xunfei He, Yinyan Gong, Lengyuan Niu and Can Li
Nanomaterials 2025, 15(7), 521; https://doi.org/10.3390/nano15070521 - 30 Mar 2025
Viewed by 616
Abstract
Semiconductors have emerged as promising candidates for surface-enhanced Raman scattering (SERS) applications due to their inexpensiveness and good chemical stability. Nevertheless, their low enhancement ability compared to noble metals makes it desirable to explore strategies for improving SERS performance. Since charge transfer (CT) [...] Read more.
Semiconductors have emerged as promising candidates for surface-enhanced Raman scattering (SERS) applications due to their inexpensiveness and good chemical stability. Nevertheless, their low enhancement ability compared to noble metals makes it desirable to explore strategies for improving SERS performance. Since charge transfer (CT) between semiconductors and analytes plays a crucial role on the chemical enhancement mechanism of SERS, heterojunction engineering, a powerful method to boost optoelectronic performance via tailoring interfacial charge transfer, provides a promising approach. Here, we prepared defect-rich WO3-x/TiO2 nanocomposites via a facile solvothermal method to achieve dual-functional enhancement in SERS and photocatalytic activity. Due to suppressed recombination of charge carriers in WO3-x/TiO2 heterojunction with type II band alignment, more photogenerated carriers are available for CT, consequently increasing molecular polarizability. The SERS intensity of WO3-x/TiO2 is at least three times that of its component semiconductors, with a detection limit of 10−10 M for methyl orange (MO). Meanwhile, the suppressed recombination of charge carriers also results in higher degradation efficiency of WO3-x/TiO2 heterojunction (93%) than WO3-x (47%) and TiO2 (54%) under visible-light irradiation for 120 min. This work provides insightful information on the development of dual-functional semiconductor systems through band structure engineering for ultrasensitive sensing and efficient remediation of environmental pollutants. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 8676 KiB  
Review
Zinc Indium Sulfide Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review
by Lang Yao, Shice Zeng, Shuxiang Yang, Honghua Zhang, Yue Ma, Guangying Zhou and Jianzhang Fang
Catalysts 2025, 15(3), 271; https://doi.org/10.3390/catal15030271 - 13 Mar 2025
Cited by 1 | Viewed by 1038
Abstract
Photocatalytic water splitting for hydrogen production is seen as a promising solution to energy problems due to its eco-friendly and sustainable properties, which have attracted considerable interest. Despite progress, the efficiency and selectivity of solar-driven photocatalytic hydrogen generation are still below optimal levels, [...] Read more.
Photocatalytic water splitting for hydrogen production is seen as a promising solution to energy problems due to its eco-friendly and sustainable properties, which have attracted considerable interest. Despite progress, the efficiency and selectivity of solar-driven photocatalytic hydrogen generation are still below optimal levels, making it a major challenge to effectively harness solar energy for hydrogen production through photocatalytic water splitting. Advancing high-performance semiconductor photocatalysts is seen as key to tackling this issue. Zinc indium sulfide (ZnIn2S4) has gained attention in recent years as a promising semiconductor material for photocatalytic hydrogen production, thanks to its advantageous properties. Studies in photocatalysis are shifting toward the continuous development and modification of materials, with the goal of enhancing efficiency and extending their applications in environmental and energy fields. With proper development, the material may eventually be suitable for large-scale commercial use. Recent studies have aimed at boosting the photocatalytic hydrogen evolution (PHE) efficiency of ZnIn2S4-based photocatalysts through a range of experimental techniques, including surface modifications, forming semiconductor heterojunctions, doping with metals and nonmetals, defect engineering, and particle size analysis. The purpose of this review is to explain the design strategies for ZnIn2S4-based photocatalysts through these approaches and to provide a thorough summary of the latest developments in their role as catalysts for hydrogen production. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic Water Splitting)
Show Figures

Figure 1

36 pages, 15839 KiB  
Review
Review of the Versatility and Application Potentials of g-C3N4-Based S-Scheme Heterojunctions in Photocatalytic Antibiotic Degradation
by Bin Huang, Kaidi Xu, Yu Zhao, Bohao Li, Siyuan Jiang, Yaxin Liu, Shengnan Huang, Qingyuan Yang, Tianxiang Gao, Simeng Xie, Huangqin Chen and Yuesheng Li
Molecules 2025, 30(6), 1240; https://doi.org/10.3390/molecules30061240 - 10 Mar 2025
Cited by 3 | Viewed by 1314
Abstract
The S-Scheme heterojunction design offers a promising pathway to enhance the photocatalytic activity of semiconductors for antibiotic degradation in aquatic environments. Graphitic carbon nitride (g-C3N4) stands out due to its robust visible light absorption, exceptional charge separation efficiency, and [...] Read more.
The S-Scheme heterojunction design offers a promising pathway to enhance the photocatalytic activity of semiconductors for antibiotic degradation in aquatic environments. Graphitic carbon nitride (g-C3N4) stands out due to its robust visible light absorption, exceptional charge separation efficiency, and abundant active sites, rendering it an ideal candidate for sustainable and energy-efficient photocatalysis. This review delves into the potential of g-C3N4-based S-Scheme heterojunctions in antibiotic degradation, with a particular emphasis on the photocatalytic principles, inherent advantages, and application prospects. We discuss various semiconductor materials, including metal oxides, multicomponent metal oxides, magnetic oxides, multicomponent magnetic oxides, metal sulfides, and multicomponent metal sulfides, which can be paired with g-C3N4 to fabricate S-Scheme heterojunctions. Furthermore, we explore common preparation techniques for synthesizing g-C3N4-based S-Scheme heterojunction composites, such as the hydrothermal method, solvothermal method, calcination method, self-assembly method, in situ growth, etc. Additionally, we summarize the applications of these g-C3N4-based S-Scheme heterojunctions in the degradation of antibiotics, focusing specifically on quinolones and tetracyclines. By providing insights into the development of these heterojunctions, we actively contribute to the ongoing exploration of innovative technologies in the field of photocatalytic antibiotic degradation. Our findings underscore the vast potential of g-C3N4-based S-Scheme heterojunctions in addressing the challenge of antibiotic contamination in water sources. Full article
Show Figures

Figure 1

16 pages, 3734 KiB  
Article
Ultra-Sensitive Gas Sensor Based on CDs@ZnO
by Shuo Xiao, Zheng Jiao and Xuechun Yang
Sensors 2025, 25(3), 905; https://doi.org/10.3390/s25030905 - 2 Feb 2025
Cited by 2 | Viewed by 1535
Abstract
Ethylene glycol (EG) is a colorless and odorless organic compound, which is an important industrial raw material but harmful to the environment and human health. Thus, it is necessary to develop high-performance sensing materials to monitor EG gas. Herein, sea urchin-shaped ZnO was [...] Read more.
Ethylene glycol (EG) is a colorless and odorless organic compound, which is an important industrial raw material but harmful to the environment and human health. Thus, it is necessary to develop high-performance sensing materials to monitor EG gas. Herein, sea urchin-shaped ZnO was successfully synthesized by a hydrothermal method. Subsequently, a series of carbon dot (CD)-modified ZnO nanocomposites were successfully prepared using a simple mechanical grinding method. The prepared CDs@ZnO-1 sensor exhibits an excellent response to EG gas, with a response value of 1356.89 to 100 ppm EG at the optimal operating temperature (220 °C). After five cycles of detection, the sensor can still maintain a stable response. The enhanced sensing performance of EG can be attributed to rich oxygen vacancies that are generated on the surface of CDs@ZnO, and the heterojunction formed between p-type CDs and n-type ZnO. This study provides inspiration for the development of high-response semiconductor metal oxide sensors. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

17 pages, 4420 KiB  
Article
Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation
by Yuning Liang, Baohui Wang, Tao Cheng, Mingchun Bi, Weimeng Chi, Yuxi Liu, Wenjing Zhang and Yuxuan Liu
Catalysts 2025, 15(1), 69; https://doi.org/10.3390/catal15010069 - 13 Jan 2025
Cited by 1 | Viewed by 1174
Abstract
A novel dual Z-scheme heterojunction photocatalyst was constructed by introducing the narrow-bandgap semiconductor CuInS2 (CIS) into the dual metal-organic framework (MOF) system of UiO-66(Zr) and NH2-MIL-101(Fe). This structure effectively overcomes the limitations of conventional photocatalysts in terms of light absorption [...] Read more.
A novel dual Z-scheme heterojunction photocatalyst was constructed by introducing the narrow-bandgap semiconductor CuInS2 (CIS) into the dual metal-organic framework (MOF) system of UiO-66(Zr) and NH2-MIL-101(Fe). This structure effectively overcomes the limitations of conventional photocatalysts in terms of light absorption range and the separation efficiency of photogenerated charge carriers. The prepared ternary catalyst, (UiO-66(Zr))-(NH2-MIL-101(Fe))/CuInS2, exhibited excellent photocatalytic performance under visible light irradiation, achieving a hydrogen production rate of 888 μmol g−1 h−1 and a methylene blue (MB) degradation efficiency of up to 95.03%. The significant enhancement in performance is attributed to the material’s porous structure, extended light absorption range, and optimized electron transfer pathways. Additionally, the construction of the dual Z-scheme heterojunction further promotes the separation and migration of photogenerated charge carriers, suppressing electron–hole recombination. This study demonstrates the great potential of dual Z-scheme heterojunctions in improving photocatalytic efficiency and provides an important theoretical foundation and design strategy for the development of efficient photocatalysts. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

Back to TopTop