Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = metal-ceramic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6022 KiB  
Review
Hydrogen Cryomagnetic a Common Solution for Metallic and Oxide Superconductors
by Bartlomiej Andrzej Glowacki
Materials 2025, 18(15), 3665; https://doi.org/10.3390/ma18153665 - 4 Aug 2025
Viewed by 116
Abstract
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could [...] Read more.
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could transform superconducting technologies, making them economically viable and environmentally sustainable for a variety of critical applications. The discussion aims to provide insights into the intersection of metallic and ceramic superconductors with the hydrogen economy and to chart a path towards scalable and impactful solutions in the energy sector. Full article
(This article belongs to the Special Issue Advanced Superconducting Materials and Technology)
Show Figures

Graphical abstract

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 280
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 - 31 Jul 2025
Viewed by 102
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 193
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Advances in the Tribological Performance of Graphene Oxide and Its Composites
by Mayur B. Wakchaure and Pradeep L. Menezes
Materials 2025, 18(15), 3587; https://doi.org/10.3390/ma18153587 - 30 Jul 2025
Viewed by 313
Abstract
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The [...] Read more.
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. Full article
(This article belongs to the Special Issue Tribology in Advanced Materials)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 762
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 503
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 514 KiB  
Article
Mechanical and Biological Complications Two Years After Full-Arch Implant-Supported Prosthetic Rehabilitation: A Retrospective Clinical Study
by Denisa Tabita Sabău, Petra Saitos, Rahela Tabita Moca, Raluca Iulia Juncar and Mihai Juncar
Clin. Pract. 2025, 15(7), 134; https://doi.org/10.3390/clinpract15070134 - 18 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. [...] Read more.
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. Data were collected on demographics, medical status, type and location of prostheses, implant type, abutments, method of fixation, and complications. Statistical analysis included Fisher’s exact test, the Mann–Whitney U test, and chi-squared tests, with a significance level set at p < 0.05. Results: Mechanical complications occurred in 41.4% of patients (29 out of 70), with framework fractures reported in eight cases (27.6%), ceramic chipping in six cases (20.7%), and resin discoloration in four cases (13.8%). The prostheses were fabricated using monolithic zirconia, metal–ceramic crowns, zirconia on titanium bars, and hybrid resin/PMMA on cobalt–chromium frameworks. Gingival inflammation was also noted in 41.4% of cases (n = 29), predominantly in posterior implant regions. Younger patients and those without systemic diseases showed a significantly higher incidence of mechanical complications. Conclusions: Two years post-treatment, mechanical and biological complications appear to be independent phenomena, not significantly associated with most prosthetic variables. Patient-specific factors, particularly age and general health status, may have greater predictive value than prosthetic design. Limitations of the study include its retrospective design and the lack of radiographic data to assess peri-implant bone changes. Full article
Show Figures

Figure 1

28 pages, 2556 KiB  
Article
Evaluation of the Potential of Metal–Organic Compounds ZIF-8 and F300 in a Membrane Filtration–Adsorption Process for the Removal of Antibiotics from Water
by Daniel Polak, Szymon Kamocki and Maciej Szwast
Antibiotics 2025, 14(6), 619; https://doi.org/10.3390/antibiotics14060619 - 18 Jun 2025
Viewed by 455
Abstract
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. [...] Read more.
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. This study explores the potential of two cost-effective, commercially available metal–organic frameworks (MOFs), ZIF-8 and F300, to improve the performance of membrane-based filtration–adsorption systems for removing tetracycline and sulfadiazine from water. Methods: Batch adsorption experiments were performed to evaluate the uptake capacities, kinetics, and isotherms of both MOFs toward the selected antibiotics. The membranes were modified using a low-cost silane-assisted deposition of MOF particles and tested in a microfiltration system. Removal efficiencies and water permeability were assessed and kinetic and isotherm models were applied to understand the adsorption mechanisms. Results: ZIF-8 showed superior adsorption performance, with maximum capacities of 442.2 mg/g for tetracycline and 219.3 mg/g for sulfadiazine. F300 was effective only for tetracycline. Membranes modified with ZIF-8 improved pharmaceutical removal by 187% (tetracycline) and 224% (sulfadiazine) compared to unmodified membranes. Although permeability decreased due to increased hydrophobicity, the materials and processes remained economically favorable. Conclusions: This study demonstrates that MOF-modified ceramic membranes, particularly those incorporating ZIF-8, offer a low-cost, scalable, and energy-efficient alternative for pharmaceutical removal from water. The approach combines strong environmental impact with economic viability, making it attractive for broader implementation in water treatment systems. Full article
Show Figures

Graphical abstract

24 pages, 3097 KiB  
Review
Advancements and Development Trends in Lead-Cooled Fast Reactor Core Design
by Cong Zhang, Ling Chen, Yongfa Zhang and Song Li
Processes 2025, 13(6), 1773; https://doi.org/10.3390/pr13061773 - 4 Jun 2025
Cited by 1 | Viewed by 1055
Abstract
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding [...] Read more.
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding capability, and economic efficiency. However, its engineering implementation faces key challenges, such as material compatibility, closed fuel cycles, and irradiation performance of structures. This paper comprehensively reviews the latest progress in the core design of lead-cooled fast reactors in terms of the innovation of nuclear fuel, optimization of coolant, material adaptability, and design of assemblies and core structures. The research findings indicate remarkable innovation trends in the field of lead-cooled fast reactor core design, including optimizing the utilization efficiency of nuclear fuel based on the nitride fuel system and the traveling wave burnup theory, effectively suppressing the corrosion effect of liquid metal through surface modification technology and the development of ceramic matrix composites; replacing the lead-bismuth eutectic system with pure lead coolant to enhance economic efficiency and safety; and significantly enhancing the neutron economy and system integration degree by combining the collaborative design strategy of the open-type assembly structure and control drums. In the future, efforts should be made to overcome the radiation resistance of materials and liquid metal corrosion technology, develop closed fuel cycle systems, and accelerate the commercialization process through international standardization cooperation to provide sustainable clean energy solutions for basic load power supply, high-temperature hydrogen production, ship propulsion, and other fields. Full article
(This article belongs to the Special Issue Process Safety Technology for Nuclear Reactors and Power Plants)
Show Figures

Figure 1

12 pages, 2404 KiB  
Systematic Review
Are Implant-Supported Monolithic Zirconia Single Crowns a Viable Alternative to Metal-Ceramics? A Systematic Review and Meta-Analysis
by Liandra Constantina da Mota Fonseca, Daniele Sorgatto Faé, Beatriz Neves Fernandes, Izabela da Costa, Jean Soares Miranda and Cleidiel Aparecido Araujo Lemos
Ceramics 2025, 8(2), 63; https://doi.org/10.3390/ceramics8020063 - 22 May 2025
Viewed by 775
Abstract
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. [...] Read more.
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. A systematic search was conducted in the electronic databases MEDLINE/PubMed, Web of Science, Scopus, Embase, and ProQuest for articles published up to December 2024. The inclusion criteria comprised studies evaluating only randomized clinical trials that evaluated implant-supported monolithic restorations directly compared to metal-ceramic restorations, considering any type of ceramic material and regardless of the fixation system (screw-retained or cemented), with a minimum follow-up of one year. A meta-analysis was performed using RevMan 5.4 software, and the risk of bias and certainty of evidence were assessed using the RoB 2.0 and GRADE tools, respectively. A total of six studies were included, all of which exclusively evaluated monolithic zirconia single crowns over follow-up periods ranging from 1 to 3 years. None of the included studies evaluated fixed partial dentures or restorative materials other than monolithic zirconia. In total, 267 patients (mean age range: 18–57 years) were analyzed, with a total of 174 implant-supported monolithic zirconia crowns and 165 metal-ceramic single crowns in the posterior region (premolars and molars). The meta-analysis revealed that implant-supported monolithic zirconia single crowns exhibited significantly fewer prosthetic complications compared to metal-ceramic single crowns (p < 0.0001; Risk Ratio [RR]: 0.26; Confidence Interval [CI]: 0.14–0.47). However, no statistically significant differences were observed between implant-supported monolithic zirconia and metal-ceramic single crowns regarding implant survival rates (p = 0.36; RR: 1.66; CI: 0.56–4.94) or marginal bone loss (p = 0.15; Mean Difference [MD]: −0.05; CI: −0.11–0.02). The risk of bias assessment indicated that four studies had a low risk of bias. However, the certainty of evidence was classified as low for prosthetic complications and implant survival rates and very low for marginal bone loss. Within the limitations of this review, it can be concluded that implant-supported monolithic zirconia single crowns can be considered a favorable treatment option as they show comparable implant survival and bone stability to metal-ceramic crowns, with a potential reduction in short-term prosthetic complications such as screw loosening and ceramic chipping. However, due to the limited number of studies included and low certainty of evidence, further long-term research is still needed to confirm their clinical performance over time. Full article
Show Figures

Figure 1

19 pages, 4306 KiB  
Article
The Modulation of the Pore Structure in Porous Carbon by Metal Salts and Its Application for Joining Silicon Carbide Ceramics
by Xishi Wu, Zehua Liu, Bingbing Pei, Haibo Wu and Zhengren Huang
Materials 2025, 18(10), 2336; https://doi.org/10.3390/ma18102336 - 17 May 2025
Viewed by 461
Abstract
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning [...] Read more.
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning the parameters of the resin-solvent-metal ion system, control over the pore structure of the porous carbon was achieved, with a porosity range of 16.5% to 66.5% and a pore diameter range of 8 to 248 nm. The addition of metallic salts can simply and effectively increase the pore structure after carbonization, making the infiltration of molten silicon easier. This is beneficial to the joining process of silicon carbide ceramics. Based on these findings, a high-reliability joining technique for large-sized (135 mm × 205 mm) silicon carbide ceramics was developed. The resulting interlayer was dense and defect-free, exhibiting a joining strength of 309 ± 33 MPa and a Weibull modulus of 10.67. These results highlight the critical role of structured porous media in advancing the field of large-sized ceramic joining. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 4835 KiB  
Article
Development and Evaluation of Multi-Module Retinal Devices for Artificial Vision Applications
by Kuang-Chih Tso, Yoshinori Sunaga, Yuki Nakanishi, Yasuo Terasawa, Makito Haruta, Kiyotaka Sasagawa and Jun Ohta
Micromachines 2025, 16(5), 580; https://doi.org/10.3390/mi16050580 - 15 May 2025
Viewed by 557
Abstract
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. [...] Read more.
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. To address these issues, we developed a parylene-based multi-module retinal device (MMRD) integrating a complementary metal-oxide semiconductor (CMOS) system. The proposed device is designed for suprachoroidal transretinal stimulation, with each module comprising a parylene-C thin-film substrate, a CMOS chip, and a ceramic substrate housing seven platinum electrodes. The smart CMOS system significantly reduces wiring complexity, enhancing the device’s practicality. To improve fabrication reliability, we optimized the encapsulation process, introduced multiple silane coupling modifications, and utilized polyvinyl alcohol (PVA) for easier detachment in flip-chip bonding. This study demonstrates the fabrication and evaluation of the MMRD through in vitro and in vivo experiments. The device successfully generated the expected current stimulation waveforms in both settings, highlighting its potential as a promising candidate for future artificial vision applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

21 pages, 5020 KiB  
Article
Influence of Heat Transfer on Stress Components in Metallic Plates Weakened by Multi-Curved Holes
by Faizah M. Alharbi and Nafeesa G. Alhendi
Axioms 2025, 14(5), 369; https://doi.org/10.3390/axioms14050369 - 14 May 2025
Viewed by 389
Abstract
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex [...] Read more.
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex variable procedures are used to compute the basic Goursat functions, taking into account the time-dependent variables through conformal mapping, which transfers the domain to the exterior of a unit circle. The problem reduces to a general form of a contact problem in two dimensions, which is called an integrodifferential equation of the second type with the Cauchy kernel. Additionally, different hole shapes are generated using Maple 2023. Computational simulations are performed to determine the normal and shear stress components in the presence and absence of heat effects at various times. Furthermore, numerical calculations of Goursat functions are carried out and graphically displayed for some specific materials. This investigation provides valuable information about industries, such as those regarding ceramic tile, glass, rubber, paint, ceramic pigment, and metal alloys. Full article
(This article belongs to the Special Issue Mathematical Methods in the Applied Sciences, 2nd Edition)
Show Figures

Figure 1

30 pages, 10022 KiB  
Article
A Camera Calibration Method for Temperature Measurements of Incandescent Objects Based on Quantum Efficiency Estimation
by Vittorio Sala, Ambra Vandone, Michele Banfi, Federico Mazzucato, Stefano Baraldo and Anna Valente
Sensors 2025, 25(10), 3094; https://doi.org/10.3390/s25103094 - 14 May 2025
Viewed by 630
Abstract
High-temperature thermal images enable monitoring and controlling processes in metal, semiconductors, and ceramic manufacturing but also monitor activities of volcanoes or contrasting wildfires. Infrared thermal cameras require knowledge of the emissivity coefficient, while multispectral pyrometers provide fast and accurate temperature measurements with limited [...] Read more.
High-temperature thermal images enable monitoring and controlling processes in metal, semiconductors, and ceramic manufacturing but also monitor activities of volcanoes or contrasting wildfires. Infrared thermal cameras require knowledge of the emissivity coefficient, while multispectral pyrometers provide fast and accurate temperature measurements with limited spatial resolution. Bayer-pattern cameras offer a compromise by capturing multiple spectral bands with high spatial resolution. However, temperature estimation from color remains challenging due to spectral overlaps among the color filters in the Bayer pattern, and a widely accepted calibration method is still missing. In this paper, the quantum efficiency of an imaging system including the camera sensor, lens, and filters is inferred from a sequence of images acquired by looking at a black body source between 700 °C and 1100 °C. The physical model of the camera, based on the Planck law and the optimized quantum efficiency, allows the calculation of the Planckian locus in the color space of the camera. A regression neural network, trained on a synthetic dataset representing the Planckian locus, predicts temperature pixel by pixel in the 700 °C to 3500 °C range from live images. Experiments done with a color camera, a multispectral camera, and a furnace for heat treatment of metals as ground truth show that our calibration procedure leads to temperature prediction with accuracy and precision of a few tens of Celsius degrees in the calibration temperature range. Tests on a temperature-calibrated halogen bulb prove good generalization capability to a wider temperature range while being robust to noise. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

Back to TopTop