Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = metal-ceramic joining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13173 KiB  
Article
Surface Modification by Plasma Electrolytic Oxidation of Friction Surfacing 4043 Aluminum-Based Alloys Deposited onto Structural S235 Steel Substrate
by Roxana Muntean and Ion-Dragoș Uțu
Materials 2025, 18(14), 3302; https://doi.org/10.3390/ma18143302 - 13 Jul 2025
Viewed by 467
Abstract
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without [...] Read more.
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without melting the material, classifies this technique as distinct from other standard methods. This unconventional deposition method is based on the severe plastic deformation that appears on a rotating metallic rod (consumable material) pressed against the substrate under an axial load. The present study aims to investigate the tribological properties and corrosion resistance provided by the aluminum-based FS coatings deposited onto a structural S235 steel substrate and further modified by plasma electrolytic oxidation (PEO). During the PEO treatment, the formation of a ceramic film is enabled, while the hardness, chemical stability, corrosion, and wear resistance of the modified surfaces are considerably increased. The morpho-structural characteristics and chemical composition of the PEO-modified FS coatings are further investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the PEO-modified aluminum-based coatings was carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated in a 3.5 wt.% NaCl solution. The corrosion rates of the aluminum-based coatings decreased significantly when the PEO treatment was applied, while the wear rate was substantially reduced compared to the untreated aluminum-based coating and steel substrate, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 4306 KiB  
Article
The Modulation of the Pore Structure in Porous Carbon by Metal Salts and Its Application for Joining Silicon Carbide Ceramics
by Xishi Wu, Zehua Liu, Bingbing Pei, Haibo Wu and Zhengren Huang
Materials 2025, 18(10), 2336; https://doi.org/10.3390/ma18102336 - 17 May 2025
Viewed by 461
Abstract
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning [...] Read more.
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning the parameters of the resin-solvent-metal ion system, control over the pore structure of the porous carbon was achieved, with a porosity range of 16.5% to 66.5% and a pore diameter range of 8 to 248 nm. The addition of metallic salts can simply and effectively increase the pore structure after carbonization, making the infiltration of molten silicon easier. This is beneficial to the joining process of silicon carbide ceramics. Based on these findings, a high-reliability joining technique for large-sized (135 mm × 205 mm) silicon carbide ceramics was developed. The resulting interlayer was dense and defect-free, exhibiting a joining strength of 309 ± 33 MPa and a Weibull modulus of 10.67. These results highlight the critical role of structured porous media in advancing the field of large-sized ceramic joining. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

27 pages, 15329 KiB  
Review
Research Status and Development Trends of Joining Technologies for Ceramic Matrix Composites
by Biao Chen, Hang Sun, Yuchen Ye, Chunming Ji, Shidong Pan and Bing Wang
Materials 2025, 18(4), 871; https://doi.org/10.3390/ma18040871 - 17 Feb 2025
Viewed by 978
Abstract
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high [...] Read more.
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high specific strength, high specific stiffness, good thermal stability, oxidation resistance, and corrosion resistance, CMCs are widely used in the aerospace, automotive, energy, defense, and bio-medical fields. However, large and complex-shaped ceramic matrix composite parts are greatly influenced by factors such as the molding process, preparation costs, and consistency of quality, which makes the joining technology for CMCs increasingly important and a key trend for future development. However, due to the anisotropic nature of CMCs, the design of structural components varies, with different properties in different directions. Additionally, the chemical compatibility and physical matching between dissimilar materials in the joining process lead to much more complex joint design and strength analysis compared to traditional materials. This paper categorizes the joining technologies for CMCs into mechanical joining, bonding, soldering joining, and hybrid joining. Based on different joining techniques, the latest research progress on the joining of CMCs with themselves or with metals is reviewed. The advantages and disadvantages of each joining technology are summarized, and the future development trends of these joining technologies are analyzed. Predicting the performance of joining structures is currently a hot topic and challenge in research. Therefore, the study systematically reviews research combining failure mechanisms of ceramic matrix composite joining structures with finite element simulation techniques. Finally, the paper highlights the breakthroughs achieved in current research, as well as existing challenges, and outlines future research and application directions for ceramic matrix composite joining. Full article
Show Figures

Figure 1

18 pages, 33544 KiB  
Article
Specially Structured AgCuTi Foil Enables High-Strength and Defect-Free Brazing of Sapphire and Ti6Al4V Alloys: The Microstructure and Fracture Characteristics
by Shaohong Liu, Hairui Liu, Limin Zhou, Hao Cui, Manmen Liu, Li Chen, Ming Wen, Haigang Dong, Feng Liu, Wei Wang and Song Li
Materials 2024, 17(15), 3812; https://doi.org/10.3390/ma17153812 - 2 Aug 2024
Cited by 2 | Viewed by 1338
Abstract
A novel AgCuTi brazing foil with a unique microstructure was developed, which could achieve strong vacuum brazing of Ti6Al4V (TC4) and sapphire. The brazing foil was composed of Ag solid solution (Ag(s,s)), Cu solid solution (Cu(s,s)), and layered Ti-rich phases, and had a [...] Read more.
A novel AgCuTi brazing foil with a unique microstructure was developed, which could achieve strong vacuum brazing of Ti6Al4V (TC4) and sapphire. The brazing foil was composed of Ag solid solution (Ag(s,s)), Cu solid solution (Cu(s,s)), and layered Ti-rich phases, and had a low liquidus temperature of 790 °C and a narrow melting range of 16 °C, facilitating the defect-free joining of TC4 and sapphire. The sapphire/TC4 joint fabricated by using this novel AgCuTi brazing foil exhibited an outstanding average shear strength of up to 132.2 MPa, which was the highest value ever reported. The sapphire/TC4 joint had a characteristic structure, featuring a brazing seam reinforced by TiCu particles and a thin Ti3(Cu,Al)3O reaction layer of about 1.3 μm. The fracture mechanism of the sapphire/TC4 joint was revealed. The crack originated at the brazing seam with TiCu particles, then propagated through the Ti3(Cu,Al)3O reaction layer, detached the reaction layer from the sapphire, and finally penetrated into the sapphire. This study offers valuable insights into the design of active brazing alloys and reliable metal–ceramic bonding. Full article
Show Figures

Figure 1

21 pages, 8143 KiB  
Article
Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding
by Al Basir, Abu Bakar Sulong, Norhamidi Muhamad, Afifah Z. Juri, Nashrah Hani Jamadon, Farhana Mohd Foudzi and Nabilah Afiqah Mohd Radzuan
Polymers 2024, 16(13), 1831; https://doi.org/10.3390/polym16131831 - 27 Jun 2024
Viewed by 2445
Abstract
The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing [...] Read more.
The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing stages of 2C-µPIM is challenging. This study investigated the solvent and thermal debinding mechanisms of green bi-material micro-parts of 3YSZ and bimodal SS 316L without collapsing the ceramic/metal joining. In this research, feedstocks were prepared by integrating the powders individually with palm stearin and low-density polyethylene binders. The results demonstrated that during the solvent debinding process, the palm stearin removal rate in the bi-materials composed of 3YSZ and bimodally configured SS 316L feedstocks intensified with an increase in temperature. The establishment of interconnected pores in the solvent-debound components facilitated the thermal debinding process, which removed 99% of the binder system. Following sintering, the debound bi-materials exhibited a relative density of 95.3%. According to a study of the microstructures using field emission scanning electron microscopy, an adequate bond between 3YSZ and bimodal SS 316L was established in the micro-part after sintering. The bi-material sintered at 1350 °C had the highest hardness of 1017.4 HV along the joining region. Full article
(This article belongs to the Special Issue Molding Process of Polymers and Composites)
Show Figures

Figure 1

114 pages, 85007 KiB  
Review
Advancements in Additive Manufacturing for Copper-Based Alloys and Composites: A Comprehensive Review
by Alireza Vahedi Nemani, Mahya Ghaffari, Kazem Sabet Bokati, Nima Valizade, Elham Afshari and Ali Nasiri
J. Manuf. Mater. Process. 2024, 8(2), 54; https://doi.org/10.3390/jmmp8020054 - 2 Mar 2024
Cited by 21 | Viewed by 7242
Abstract
Copper-based materials have long been used for their outstanding thermal and electrical conductivities in various applications, such as heat exchangers, induction heat coils, cooling channels, radiators, and electronic connectors. The development of advanced copper alloys has broadened their utilization to include structural applications [...] Read more.
Copper-based materials have long been used for their outstanding thermal and electrical conductivities in various applications, such as heat exchangers, induction heat coils, cooling channels, radiators, and electronic connectors. The development of advanced copper alloys has broadened their utilization to include structural applications in harsh service conditions found in industries like oil and gas, marine, power plants, and water treatment, where good corrosion resistance and a combination of high strength, wear, and fatigue tolerance are critical. These advanced multi-component structures often have complex designs and intricate geometries, requiring extensive metallurgical processing routes and the joining of the individual components into a final structure. Additive manufacturing (AM) has revolutionized the way complex structures are designed and manufactured. It has reduced the processing steps, assemblies, and tooling while also eliminating the need for joining processes. However, the high thermal conductivity of copper and its high reflectivity to near-infrared radiation present challenges in the production of copper alloys using fusion-based AM processes, especially with Yb-fiber laser-based techniques. To overcome these difficulties, various solutions have been proposed, such as the use of high-power, low-wavelength laser sources, preheating the build chamber, employing low thermal conductivity building platforms, and adding alloying elements or composite particles to the feedstock material. This article systematically reviews different aspects of AM processing of common industrial copper alloys and composites, including copper-chrome, copper-nickel, tin-bronze, nickel-aluminum bronze, copper-carbon composites, copper-ceramic composites, and copper-metal composites. It focuses on the state-of-the-art AM techniques employed for processing different copper-based materials and the associated technological and metallurgical challenges, optimized processing variables, the impact of post-printing heat treatments, the resulting microstructural features, physical properties, mechanical performance, and corrosion response of the AM-fabricated parts. Where applicable, a comprehensive comparison of the results with those of their conventionally fabricated counterparts is provided. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

17 pages, 13774 KiB  
Article
Microstructure and Mechanical Properties of Ti6Al4V to Al2O3 Brazed Joints Using Ti-Ag/Cu-Ti Thin Films
by Beatriz Monteiro and Sónia Simões
Metals 2024, 14(2), 146; https://doi.org/10.3390/met14020146 - 24 Jan 2024
Cited by 1 | Viewed by 1659
Abstract
The processing and characterizing of bonding Ti6Al4V to Al2O3 brazed joints using interlayer thin films was investigated. The brazing was conducted in a tubular furnace with an argon flux at 980 °C for 30 min. The brazing fillers consisted of [...] Read more.
The processing and characterizing of bonding Ti6Al4V to Al2O3 brazed joints using interlayer thin films was investigated. The brazing was conducted in a tubular furnace with an argon flux at 980 °C for 30 min. The brazing fillers consisted of different combinations of thin Ag/Cu and Ti films with variable thicknesses. The joint interface analysis involved using digital microscopy (DM) and optical microscopy (OM). Microstructural characterization and chemical composition were performed via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Mechanical properties were assessed through microhardness and shear strength tests. Brazing successfully produced interfaces with a combination of titanium films and Ag/Cu as brazing filler. The results revealed that the interface mainly comprises Ti2Cu, TiCu2Al, α-Ti, and Ti2(Cu,Ag). Some segregation of (Ag) was observed at the interfaces, but a decrease in its amount was observed when compared to joints produced using Ag/Cu fillers. The thickness of the titanium film in the brazing filler strongly influenced the integrity of the joints. The amount of (Ag) at the interface diminished as the Ti film’s thickness decreased, leading to an improvement in the mechanical properties of the joints. Using a combination of Ag/Cu and Ti thin films revealed a potential approach to reduce the segregation of soft phases at interfaces, promoting a significant improvement in joining metal to ceramic materials. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

15 pages, 3576 KiB  
Article
Nickel Coatings on Ceramic Materials Using Different Diffusion Techniques
by Mala M. Sharma, Amanda M. Stutzman, Jeremy M. Schreiber, Douglas E. Wolfe and Timothy J. Eden
Coatings 2023, 13(12), 2072; https://doi.org/10.3390/coatings13122072 - 12 Dec 2023
Viewed by 1601
Abstract
Diffusion bonding is a process that has proven effective for the joining of metal to ceramic, but the differences in coefficient of thermal expansion still pose challenges during and after the bonding process. This work details the exploration of traditional diffusion-bonding processes using [...] Read more.
Diffusion bonding is a process that has proven effective for the joining of metal to ceramic, but the differences in coefficient of thermal expansion still pose challenges during and after the bonding process. This work details the exploration of traditional diffusion-bonding processes using two traditional approaches, which include bonding of a 99.9+% pure Ni foil to SiC, Si3N4, and YSZ disks using (1) a hot isostatic press (HIP), with and without added weight to promote interfacial contact, and (2) field-assisted sintering (FAST). Samples were consolidated by heating to 1200 °C and held for 6 h under vacuum before cooling to room temperature during the HIP method. For the FAST technique, bonding experiments were performed at both 800 °C and 1200 °C in a vacuum environment under 10 MPa uniaxial pressure. After the Ni was bonded to the ceramics, diffusion heat treatments were carried out in the HIP. For electroless-plated samples, the heat-treatment temperature was chosen as 825 °C to avoid melting. For electroplated samples, heat treatment occurred at 925 °C or higher. Electroplated YSZ samples were heat-treated at 1150 °C as the Ni-Si eutectic is not a concern in this system. The time at temperature varied from 6 h to 48 h depending on the material combination tested. Post-heat-treatment diffusion characteristics were analyzed using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). A main cause of poor bonding performance in the HIP samples was reduced interfacial contact, while cohesive failures in the FAST samples are likely due to the formation of brittle intermetallic Ni-Si phases. Preliminary results indicate success in bonding Ni to SiC, Si3N4, and YSZ using a diffusion-enhanced approach on electroplated specimens. Full article
(This article belongs to the Special Issue Nanostructured Materials Deposition Techniques and Characterization)
Show Figures

Figure 1

20 pages, 5696 KiB  
Article
Numerical Modeling of Residual Stresses and Fracture Strengths of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Reactive Air Brazed Joints
by Donat Rudenskiy, Simone Herzog, Lutz Horbach, Nils Christian Gebhardt, Felix Weber, Anke Kaletsch and Christoph Broeckmann
Materials 2023, 16(23), 7265; https://doi.org/10.3390/ma16237265 - 21 Nov 2023
Cited by 2 | Viewed by 1440
Abstract
Reactive Air Brazing (RAB) enables the joining of vacuum-sensitive oxide ceramics, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), to metals in a one-step process. However, damage may form in ceramic or joint during RAB. In this work, [...] Read more.
Reactive Air Brazing (RAB) enables the joining of vacuum-sensitive oxide ceramics, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), to metals in a one-step process. However, damage may form in ceramic or joint during RAB. In this work, experimental microstructure characterization, measurement, and prediction of local material properties using finite element analysis were combined to enlighten these damage mechanisms, which are currently not well understood. Micromechanical simulations were performed using representative volume elements. Cooling simulations indicate that small-sized CuO precipitations are most likely to cause crack initiation in BSCF during cooling. The ball-on-three-balls experiment with porous BSCF samples was analyzed numerically to determine the values of temperature-dependent BSCF fracture stresses. The inversely calibrated fracture stresses in the bulk BSCF phase are underestimated, and true values should be quite high, according to an extreme value analysis of pore diameters. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

18 pages, 2642 KiB  
Article
Investigation of Laser-Welded Co-Cr Dental Alloys by Microscopy and Mechanical Testing
by Andreja Carek, Ljerka Slokar Benić, Dino Buković and Martina Šlaj
Metals 2023, 13(7), 1323; https://doi.org/10.3390/met13071323 - 24 Jul 2023
Viewed by 2733
Abstract
In order to improve the hold and function of dentures for the patient, various prostheses made of metal, mostly metal alloys, are used every day in dental practise. Cobalt-chromium alloys are usually the first choice because they have very good mechanical properties and [...] Read more.
In order to improve the hold and function of dentures for the patient, various prostheses made of metal, mostly metal alloys, are used every day in dental practise. Cobalt-chromium alloys are usually the first choice because they have very good mechanical properties and satisfactory clinical conditions. Nowadays, laser welding is increasingly used in dental practise due to its numerous advantages over other technologies. In this work, therefore, six commercially available Co-Cr alloys were investigated. Three of them are used for metal-ceramic work, two for denture frameworks and one is suitable for both applications. They were joined by laser welding and subsequently analysed microscopically. Their mechanical properties were determined and statistically evaluated. The microhardness of the laser-welded alloys is in the range of 282–465 MPa in the weld zone and between 283 and 435 MPa in the heat-affected zone. The flexural strength of the laser-welded alloys is lower than the control group, but an alloy for the metal-ceramic work (I-BOND NF) shows very similar value. Furthermore, this alloy, together with two other metal-ceramic alloys, survived a maximum of cycles in dynamic tests. It was found that the laser method can be used for joining Co-Cr alloys while ensuring appropriate parameters that guarantee the quality of the dental work. Full article
(This article belongs to the Section Biobased and Biodegradable Metals)
Show Figures

Figure 1

21 pages, 19872 KiB  
Article
Diffusion Barriers Minimizing the Strength Degradation of Reactive Air Brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membranes during Aging
by Simone Herzog, Anke Kaletsch and Christoph Broeckmann
Membranes 2023, 13(5), 504; https://doi.org/10.3390/membranes13050504 - 10 May 2023
Cited by 3 | Viewed by 1884
Abstract
The separation of oxygen from air by means of inorganic ceramic membranes requires gas-tight ceramic–metal joints that enable reliable permeation operation in the oxygen partial pressure gradient at 850 °C. Reactive air brazing is a promising method to solve this challenge. However, reactive [...] Read more.
The separation of oxygen from air by means of inorganic ceramic membranes requires gas-tight ceramic–metal joints that enable reliable permeation operation in the oxygen partial pressure gradient at 850 °C. Reactive air brazing is a promising method to solve this challenge. However, reactive air brazed BSCF membranes suffer from a significant strength degradation that is caused by unhindered diffusion from the metal component during aging. In this study, we investigated how diffusion layers applied on the austenitic steel AISI 314 influence the bending strength of BSCF-Ag3CuO-AISI314 joints after aging. Three different approaches were compared as diffusion barriers: (1) aluminizing via pack cementation, (2) spray coating with NiCoCrAlReY, and (3) spray coating with NiCoCrAlReY and an additional 7YSZ top layer. Coated steel components were brazed to bending bars and aged for 1000 h at 850 °C in air prior to four-point bending and subsequent macroscopic as well microscopic analyses. In particular, coating with NiCoCrAlReY showed low-defect microstructures. The characteristic joint strength was raised from 17 MPa to 35 MPa after 1000 h aging at 850 °C. In addition, the dominant delamination fracture between the steel and the mixed oxide layer, observed in the reference series with uncoated steel, could be replaced by mixed and ceramic fractures of higher strength. The effect of residual joint stresses on the crack formation and path is analyzed and discussed. Chromium poisoning could no longer be detected in the BSCF, and interdiffusion through the braze was effectively reduced. Since the strength degradation of reactive air brazed joints is mainly caused by the metallic joining partner, the findings on the effect of the diffusion barriers in BSCF joints might be transferred to numerous other joining systems. Full article
Show Figures

Graphical abstract

13 pages, 9752 KiB  
Article
The Joining of Alumina to Hastelloy by a TiZrCuNi Filler Metal: Wettability and Interfacial Reactivity
by Andrea Baggio, Fabiana D’Isanto, Fabrizio Valenza, Sofia Gambaro, Valentina Casalegno, Milena Salvo and Federico Smeacetto
Materials 2023, 16(5), 1976; https://doi.org/10.3390/ma16051976 - 28 Feb 2023
Cited by 5 | Viewed by 2221
Abstract
A systematic microstructural characterization of alumina joined to Hastelloy C22® by means of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The contact angles of the liquid BTi-5 alloy measured at 900°C for the two [...] Read more.
A systematic microstructural characterization of alumina joined to Hastelloy C22® by means of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The contact angles of the liquid BTi-5 alloy measured at 900°C for the two materials to be joined are 12° and 47° for alumina and Hastelloy C22® after 5 min, respectively, thus demonstrating good wetting and adhesion at 900 °C with very little interfacial reactivity or interdiffusion. The thermomechanical stresses caused by the difference in the coefficient of thermal expansion (CTE) between the Hastelloy C22® superalloy (≈15.3 × 10−6 K−1) and its alumina counterpart (≈8 × 10−6 K−1) were the key issues that had to be resolved to avoid failure in this joint. In this work, a circular configuration of the Hastelloy C22®/alumina joint was specifically designed to produce a feedthrough for sodium-based liquid metal batteries operating at high temperatures (up to 600 °C). In this configuration, adhesion between the metal and ceramic components was enhanced after cooling by compressive forces created on the joined area due to the difference in CTE between the two materials. Full article
Show Figures

Figure 1

15 pages, 903 KiB  
Review
Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Review
by Zbigniew Raszewski, Dariusz Brząkalski, Łukasz Derpeński, Marek Jałbrzykowski and Robert E. Przekop
Materials 2022, 15(20), 7131; https://doi.org/10.3390/ma15207131 - 13 Oct 2022
Cited by 30 | Viewed by 4037
Abstract
The combination of two dissimilar materials has always been a serious problem in dentistry. In order to meet this challenge, it is necessary to combine both chemical methods (treatment with silanes, (meth)acrylic functional monomers) and the development of the surface of the joined [...] Read more.
The combination of two dissimilar materials has always been a serious problem in dentistry. In order to meet this challenge, it is necessary to combine both chemical methods (treatment with silanes, (meth)acrylic functional monomers) and the development of the surface of the joined material in a physical way, e.g., by sandblasting with alumina, alumina with silica, acid etching, the use of lasers and other means. The purpose of this literature review is to present all methods of joining dental composites with other materials such as ceramics, metal, another composite material. This review covers articles published within the period 2012–2022 in journals indexed in the PubMed database, written in English and describing joining different dental materials to each other. All the critical steps of new joint preparation have been addressed, including proper cleaning of the joint surface, the application of appropriate primers capable of forming a chemical bond between ceramics, zirconium oxide or metals and alloys, and finally, the application of new composite materials. Full article
Show Figures

Figure 1

14 pages, 4947 KiB  
Article
Wettability and Spreading Behavior of Sn–Ti Alloys on Si3N4
by Huaijin Wang, Wei Fu, Yidi Xue, Shihui Huo, Min Guo, Shengpeng Hu and Xiaoguo Song
Crystals 2022, 12(7), 921; https://doi.org/10.3390/cryst12070921 - 29 Jun 2022
Cited by 2 | Viewed by 2461
Abstract
The purpose of this study was to investigate the wetting behavior and interfacial reactions of Sn-Ti alloys, which has been widely applied to join ceramics with metals, on Si3N4 substrates. The isothermal wetting process of Sn-xTi alloys (x = 0.5, [...] Read more.
The purpose of this study was to investigate the wetting behavior and interfacial reactions of Sn-Ti alloys, which has been widely applied to join ceramics with metals, on Si3N4 substrates. The isothermal wetting process of Sn-xTi alloys (x = 0.5, 1.0, 1.5, 2.0 and 2.5 wt.%) on Si3N4 was systematically studied from 1223 K to 1273 K through sessile drop methods. The microstructures of the interface were characterized by X-ray diffraction (XRD) and microscope (SEM). The active Ti element remarkably enhanced the wettability of Sn-xTi melts on Si3N4 substrates because of the formation of metallic reaction layers (Ti5Si3 and TiN). With the Ti content rising, thicker Ti5Si3 layer formed on the TiN phase inducing a lower equilibrium contact angle. The value of the lowest contact angle was 6°, which was obtained in the Sn-2.0Ti/Si3N4 system at 1273 K. Larger Ti5Si3 grains were found in Sn-2.5Ti melt and a higher final contact angle was obtained. Lower temperature increased the final contact angle and slowed down the spreading rate. The formation of reaction products was calculated thematically, and the spreading kinetics was calculated according to the reaction-driven theory. The spreading behavior of Sn-Ti alloy on Si3N4 ceramic was composed of rapid-spreading stage and sluggish-spreading stage. The calculated activity energy of spreading was 395 kJ/mol. Eventually, the wetting process of Sn-2.0Ti/Si3N4 system was successfully elucidated. These results provide significant guidance information for the brazing between metals and Si3N4 ceramic. Full article
Show Figures

Figure 1

10 pages, 2383 KiB  
Article
A New Strategy for Dissimilar Material Joining between SiC and Al Alloys through Use of High-Si Al Alloys
by Yongjing Yang, Ayan Bhowmik, Jin Lee Tan, Zehui Du and Wei Zhou
Metals 2022, 12(5), 887; https://doi.org/10.3390/met12050887 - 23 May 2022
Cited by 1 | Viewed by 3289
Abstract
Joining metals and ceramics plays a crucial role in many engineering applications. The current research aims to develop a simple and convenient approach for dissimilar material joining between SiC and Al alloys. In this work, Al alloys with Si contents varying from 7 [...] Read more.
Joining metals and ceramics plays a crucial role in many engineering applications. The current research aims to develop a simple and convenient approach for dissimilar material joining between SiC and Al alloys. In this work, Al alloys with Si contents varying from 7 wt.% to 50 wt.% were bonded with SiC at a high temperature of 1100 °C by a pressure-less bonding process in a vacuum furnace, and shear tests were carried out to study the bonding strength. When using low-Si Al alloys to bond with SiC, the bonding strength was very low. The bonding strength of Al/SiC joints increased significantly through the use of high-Si Al alloys with 30 wt.% and 50 wt.% Si. The shear strength achieved (28.8 MPa) is far higher than those reported previously. The remarkable improvement in bonding strength is attributed to the suppression of brittle interfacial products and reduced thermal stresses. This research provides a new strategy for joining between SiC and a wide range of Al alloys through the use of high-Si Al alloys as the interlayers. Full article
(This article belongs to the Special Issue Advances in Welding, Joining and Surface Coating Technology)
Show Figures

Figure 1

Back to TopTop