Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = metal halide perovskites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3052 KiB  
Review
Recent Advancements in Understanding Hot Carrier Dynamics in Perovskite Solar Cells
by Muhammad Mujahid, Jonas Gradauskas, Algirdas Sužiedėlis, Edmundas Širmulis and Steponas Ašmontas
Energies 2025, 18(13), 3543; https://doi.org/10.3390/en18133543 - 4 Jul 2025
Viewed by 536
Abstract
A potential field of study for improving the efficiency of next-generation photovoltaic devices hot carriers in perovskite solar cells is investigated in this review paper. Considering their relevance to hot carrier dynamics, the paper thoroughly studies metal halide perovskites’ essential characteristics and topologies. [...] Read more.
A potential field of study for improving the efficiency of next-generation photovoltaic devices hot carriers in perovskite solar cells is investigated in this review paper. Considering their relevance to hot carrier dynamics, the paper thoroughly studies metal halide perovskites’ essential characteristics and topologies. We review important aspects like carrier excitation, exciton binding energy, phonon coupling, carrier excitation, thermalization, and hot hole and hot electron dynamics. We investigate, in particular, the significance of relaxation mechanisms, including thermalization and the Auger heating effect. Moreover, the bottleneck effect and defect management are discussed with an eye on their impact on device performance and carrier behaviour. A review of experimental methods for their use in investigating hot carrier dynamics, primarily transient photovoltage measurements, is included. Utilizing this thorough investigation, we hope to provide an insightful analysis of the difficulties and techniques for reducing the effect of hot carriers in perovskite solar cells and optimizing their performance. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

26 pages, 2010 KiB  
Review
Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance
by Donghwan Yun, Youngchae Cho, Hyeseon Shin and Gi-Hwan Kim
Energies 2025, 18(13), 3378; https://doi.org/10.3390/en18133378 - 27 Jun 2025
Viewed by 896
Abstract
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation [...] Read more.
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation space power systems. However, exposure to extreme thermal cycling, high-energy radiation, vacuum, and ultraviolet light in space leads to severe degradation. This study addresses these challenges by introducing three key design strategies: self-healing perovskite compositions that recover from radiation-induced damage, gradient buffer layers that mitigate mechanical stress caused by thermal expansion mismatch, and advanced encapsulation that serves as a multifunctional barrier against space environmental stressors. These approaches enhance device resilience and operational stability in space. The design strategies discussed in this review are expected to support long-term power generation for low-cost satellites, high-altitude platforms, and deep-space missions. Additionally, insights gained from this research are applicable to terrestrial environments with high radiation or temperature extremes. Perovskite solar cells represent a transformative solution for space photovoltaics, offering a pathway toward scalable, flexible, and radiation-tolerant energy systems. Full article
(This article belongs to the Special Issue New Advances in Material, Performance and Design of Solar Cells)
Show Figures

Figure 1

12 pages, 2346 KiB  
Article
Impact of Cetyl-Containing Ionic Liquids on Metal Halide Perovskite Structure and Photoluminescence
by Maegyn A. Grubbs, Roberto Gonzalez-Rodriguez, Sergei V. Dzyuba, Benjamin G. Janesko and Jeffery L. Coffer
Nanomaterials 2025, 15(13), 964; https://doi.org/10.3390/nano15130964 - 21 Jun 2025
Viewed by 559
Abstract
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing [...] Read more.
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing pyridinium, imidazolium, or pyrrolidinium ILs. Two different film deposition methods are compared, with the resultant films characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. For the latter, the differences in PL intensity of the perovskite are quantified using photoluminescence quantum efficiency (PLQE) measurements. It is found that a spin coating method in conjunction with the use of an imidazolium-containing IL (for a given precursor concentration) produces the strongest emissive perovskite. This optimal enhancement is attributed to a function of accessible surface charges associated with the heterocyclic cation of a given IL and perovskite defect passivation by bromide, the latter elucidated with the help of density functional theory. Proof-of-concept device fabrication is demonstrated for the case of a light emitting diode (LED) with the IL present in the emissive perovskite layer. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Graphical abstract

10 pages, 1733 KiB  
Communication
Mechanistic Insights into the Seed-Mediated Growth of Perovskite Nanostructures via a Two-Step Dissolution–Recrystallization Method
by Se-Yun Kim
Materials 2025, 18(12), 2858; https://doi.org/10.3390/ma18122858 - 17 Jun 2025
Viewed by 309
Abstract
In this study, we investigated the formation mechanism of organo-metal halide perovskite nanostructures through a two-step process categorized as dissolution–recrystallization. It is proposed that the initial formation of nanostructures is governed by the generation of seed grains, whereas the Ostwald ripening model explains [...] Read more.
In this study, we investigated the formation mechanism of organo-metal halide perovskite nanostructures through a two-step process categorized as dissolution–recrystallization. It is proposed that the initial formation of nanostructures is governed by the generation of seed grains, whereas the Ostwald ripening model explains only the subsequent growth stage of these structures. We suggest that newly generated grains—formed adjacent to pre-positioned grains—experience compressive stress arising from volume expansion during the phase transition from PbI2 to the MAPbI3 perovskite phase. Owing to their unstable state, these grains may serve as effective seeds for the nucleation and growth of nanostructures. Depending on the dipping time, diverse morphologies such as nanorods, plates, and cuboids were observed. The morphology, including the aspect ratio and growth direction of these nanostructures, appears to be strongly influenced by the residual compressive stress within the seed grains. These findings suggest that the shape and aspect ratio of perovskite nanostructures can be tailored by carefully regulating nucleation, dissolution, and growth dynamics during the two-step process. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

16 pages, 2160 KiB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Cited by 1 | Viewed by 674
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

15 pages, 2466 KiB  
Article
Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites
by Yifeng Xing, Jialin Yin, Yifei Qiao, Jie Zhao, Haiyang He, Danyang Zhao, Wanlu Zhang, Shiliang Mei and Ruiqian Guo
Nanomaterials 2025, 15(11), 818; https://doi.org/10.3390/nano15110818 - 28 May 2025
Viewed by 365
Abstract
Lead halide perovskites (LHPs) have superior luminescent properties, but their toxicity hinders their commercialization, arousing interests in tin halide perovskites as environmentally friendly substitutes for LHPs. Herein, we synthesized a series of two-dimensional tin halide perovskite ODASnBr4-xIx (ODA denotes 1,8-octanediammonium, [...] Read more.
Lead halide perovskites (LHPs) have superior luminescent properties, but their toxicity hinders their commercialization, arousing interests in tin halide perovskites as environmentally friendly substitutes for LHPs. Herein, we synthesized a series of two-dimensional tin halide perovskite ODASnBr4-xIx (ODA denotes 1,8-octanediammonium, X = 0, 1, 2, 3, 4) microcrystals via an aqueous-phase method. The differences between ODASnI4 and ODASnBr4 in luminescent properties and morphological characteristics were systematically discussed for the first time and attributed to light-driven ligand-to-metal charge transfer. The prepared ODASnBr4 has a PL peak at 567 nm and a PL QY of 99%, and the white light-emitting diodes fabricated with ODASnBr4 and commercial blue phosphors realized a luminous efficacy of up to 96.27 lm/W, which demonstrated the remarkable potential of ODASnBr4 microcrystals for high-efficiency white light-emitting diode applications. Full article
Show Figures

Figure 1

12 pages, 3193 KiB  
Article
High-Efficiency Luminescence of Mn2+-Doped Two-Dimensional Hybrid Metal Halides and X-Ray Detection
by Yue Fan, Yingyun Wang, Yunlong Bai, Bingsuo Zou and Ruosheng Zeng
Nanomaterials 2025, 15(10), 713; https://doi.org/10.3390/nano15100713 - 9 May 2025
Viewed by 476
Abstract
Mn2+ doping in metal halide perovskites enables host-to-dopant energy transfer, creating new emission pathways for optoelectronic applications. However, achieving high-efficiency luminescence in 2D systems remains challenging. We synthesized Mn2+-doped 2D PEA2CdCl4 via the hydrothermal method, characterizing its [...] Read more.
Mn2+ doping in metal halide perovskites enables host-to-dopant energy transfer, creating new emission pathways for optoelectronic applications. However, achieving high-efficiency luminescence in 2D systems remains challenging. We synthesized Mn2+-doped 2D PEA2CdCl4 via the hydrothermal method, characterizing its properties through PL spectroscopy, quantum yield measurements, and DFT calculations. Flexible films were fabricated using PDMS and PMMA matrices. The 15% Mn2+-doped crystal showed orange–red emission with 90.85% PLQY, attributed to efficient host-to-Mn2+ energy transfer and 4T16A1 transition. Prototype LEDs exhibited stable emission, while PDMS films demonstrated flexibility and PMMA films showed excellent X-ray imaging capability. This work demonstrates Mn2+ doping as an effective strategy to enhance luminescence in 2D perovskites, with potential applications in flexible optoelectronics and X-ray scintillators. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Graphical abstract

11 pages, 2434 KiB  
Article
2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes
by Xuefeng Huangfu, Junyu Chen, Gaohui Ge, Jianyu Li, Jiazhen Zhang, Qinhao Lin, Hao Xu and Shu Min Wang
Sensors 2025, 25(9), 2740; https://doi.org/10.3390/s25092740 - 26 Apr 2025
Cited by 1 | Viewed by 765
Abstract
Due to high responsivity and wide spectral sensitivity, metal halide perovskite photodiodes have a wide range of applications in the fields of visible light and near-infrared photodetection. Specific detectivity is an important quality factor for high-performance perovskite-based photodiodes, while one of the keys [...] Read more.
Due to high responsivity and wide spectral sensitivity, metal halide perovskite photodiodes have a wide range of applications in the fields of visible light and near-infrared photodetection. Specific detectivity is an important quality factor for high-performance perovskite-based photodiodes, while one of the keys to achieving high detectivity is to reduce dark current. Here, 3-fluoro phenethylammonium iodide (3F-PEAI) was used to passivate the perovskite surface and form the two-dimensional (2D) perovskite on the three-dimensional (3D) perovskite surface. The as-fabricated passivated perovskite photodiodes with 2D/3D hybrid-dimensional perovskite heterojunctions showed two orders of magnitude smaller dark current, larger open circuit voltage and faster photoresponse, when compared to the control perovskite photodiodes. Meanwhile, it maintained almost identical photocurrent, achieving a high specific detectivity up to 2.4 × 1012 Jones and over the visible-near-infrared broadband photodetection. Notably, the champion photoresponsivity value of 0.45 A W−1 was achieved at 760 nm. It was verified that the 2D capping layers were able to suppress trap states and accelerate photocarrier collection. This work demonstrates strategic passivation of surface iodine vacancies, offering a promising pathway for developing ultrasensitive and low-power consumption photodetectors based on metal halide perovskites. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

28 pages, 4534 KiB  
Review
Progress and Developments in the Fabrication and Characterization of Metal Halide Perovskites for Photovoltaic Applications
by Faouzia Tayari, Silvia Soreto Teixeira, Manuel Pedro F. Graca and Kais Iben Nassar
Nanomaterials 2025, 15(8), 613; https://doi.org/10.3390/nano15080613 - 16 Apr 2025
Cited by 6 | Viewed by 1340
Abstract
Metal halide perovskites have emerged as a groundbreaking material class for photovoltaic applications, owing to their exceptional optoelectronic properties, tunable bandgap, and cost-effective fabrication processes. This review offers a comprehensive analysis of recent advancements in synthesis, structural engineering, and characterization of metal halide [...] Read more.
Metal halide perovskites have emerged as a groundbreaking material class for photovoltaic applications, owing to their exceptional optoelectronic properties, tunable bandgap, and cost-effective fabrication processes. This review offers a comprehensive analysis of recent advancements in synthesis, structural engineering, and characterization of metal halide perovskites for efficient solar energy conversion. We explore a range of fabrication techniques, including solution processing, vapor deposition, and nanostructuring, emphasizing their impact on material stability, efficiency, and scalability. Additionally, we discuss key characterization methods, such as X-ray diffraction, electron microscopy, impedance spectroscopy, and optical analysis, that provide insights into the structural, electrical, and optical properties of these materials. Despite significant progress, challenges related to long-term stability, degradation mechanisms, and environmental sustainability persist. This review delves into current strategies for enhancing the durability and performance of perovskite-based photovoltaics and highlights emerging trends in device integration and commercialization. Finally, we provide future perspectives on optimizing material design and overcoming existing limitations to guide continued research in this rapidly advancing field. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 4694 KiB  
Article
Plasmon-Enhanced Photo-Luminescence Emission in Hybrid Metal–Perovskite Nanowires
by Tintu Kuriakose, Hao Sha, Qingyu Wang, Gokhan Topcu, Xavier Romain, Shengfu Yang and Robert A. Taylor
Nanomaterials 2025, 15(8), 608; https://doi.org/10.3390/nano15080608 - 15 Apr 2025
Viewed by 750
Abstract
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of [...] Read more.
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of noble metals to enhance the photon absorption efficiency. Here, we report plasmon-enhanced light emission in a hybrid nanowire device composed of perovskite semiconductor nanowires and silver nanoparticles formed using superfluid helium droplets. A cesium lead halide perovskite-based four-layer structure (CsPbBr3/PMMA/Ag/Si) effectively reduces the metal’s plasmonic losses while ensuring efficient surface plasmon–photon coupling at moderate power. Microphotoluminescence and time-resolved spectroscopy techniques are used to investigate the optical properties and emission dynamics of carriers and excitons within the hybrid device. Our results demonstrate an intensity enhancement factor of 29 compared with pure semiconductor structures at 4 K, along with enhanced carrier recombination dynamics due to plasmonic interactions between silver nanoparticles and perovskite nanowires. This work advances existing approaches for exciting photonic nanowires at low photon densities, with potential applications in optimizing single-photon excitations and emissions for quantum information processing. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

20 pages, 2993 KiB  
Article
Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function
by Ezequiel Paz Totolhua, Jesús Carrillo López, José Álvaro David Hernández de la Luz, Karim Monfil Leyva, Javier Flores-Méndez, Ana Cecilia Piñón Reyes, Zaira Jocelyn Hernández Simón and José Alberto Luna López
Materials 2025, 18(7), 1601; https://doi.org/10.3390/ma18071601 - 1 Apr 2025
Cited by 1 | Viewed by 1200
Abstract
Mixed-halide perovskites enable the creation of high-performance and low-cost solar cells. Chloride incorporation enhances film morphology, carrier diffusion length, and stability, improving device performance. Nevertheless, optimizing film thickness, defect density, and metal contact work function remains insufficiently explored, despite its potential to enhance [...] Read more.
Mixed-halide perovskites enable the creation of high-performance and low-cost solar cells. Chloride incorporation enhances film morphology, carrier diffusion length, and stability, improving device performance. Nevertheless, optimizing film thickness, defect density, and metal contact work function remains insufficiently explored, despite its potential to enhance power conversion efficiency. In this study, a numerical simulation was performed using SCAPS-1D (version 3.3.10) to identify the optimal parameters for the FTO/TiO2/CH3NH3Pb3−xClx/Spiro-OMeTAD/Au configuration. The best performance parameters that have been published in the literature based on experimental results are as follows: VOC = 1.077 V, JSC = 21.45 mA/cm2, FF = 77.57%, and PCE = 17.97%. In contrast, the performance parameters obtained from numerical simulations for the same structure are VOC = 1.28 V, JSC = 21.63 mA/cm2, FF = 78%, and PCE = 21.53%. In our numerical analysis, we achieved efficiencies that were comparable to those reported in experimental studies, and after optimization, superior performance parameters were attained, including VOC = 1.179 V, JSC = 27.26 mA/cm2, FF = 81.03%, and PCE = 26.07%. These results indicate that optimized parameters can be integrated into the design and fabrication of mixed-halide perovskite solar cells to enhance performance. Full article
Show Figures

Figure 1

18 pages, 4833 KiB  
Article
Achieving Ultralong Room-Temperature Phosphorescence in Two-Dimensional Metal-Halide Perovskites by Tuning Alkyl Chain Length
by Suqin Wang, Hui Zhu, Ming Sheng, Bo Shao, Yu He, Zhuang Liu, Min Li and Guangtao Zhou
Inorganics 2025, 13(4), 108; https://doi.org/10.3390/inorganics13040108 - 1 Apr 2025
Cited by 1 | Viewed by 507
Abstract
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, [...] Read more.
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, both of which exhibit significant RTP emission. Notably, 4-POMACC demonstrates a stronger green RTP emission with a significantly longer lifetime (254 ms) and a higher photoluminescence quantum yield (9.5%) compared to 4-POEACC. A thorough investigation of structural and optical properties reveals that shorter alkyl chains can enhance the optical performance due to reduced molecular vibrations and more effective exciton recombination. Computational calculations further show that the smaller energy gap between S1 and Tn in 4-POMA facilitates intersystem crossing, thereby improving RTP performance. Based on their remarkable phosphorescence properties, we demonstrated their applications in information encryption. This work offers a novel design strategy that could inspire the development of next-generation RTP materials. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

10 pages, 2184 KiB  
Article
CsPbI3 Perovskite Nanorods: Enhancing Fluorescence Efficiency and Environmental Stability via Trioctylphosphine Ligand Coordination
by Chengqi Liu, Zahir Abdalla, Xiaoqian Wang, Manrui Liu, Yanhui Jiao, Zisheng Tang, Qi Zhang and Yong Liu
Materials 2025, 18(7), 1518; https://doi.org/10.3390/ma18071518 - 28 Mar 2025
Cited by 1 | Viewed by 518
Abstract
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in [...] Read more.
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in which trioctylphosphine (TOP) directly serves as both the surface ligand and solvent to synthesize highly stable α-CsPbI3 nanorods (NRs). This approach produces monodisperse α-phase NRs with controlled sizes (1 μm and 150 nm in length, and an aspect ratio of 10:1), as confirmed by high-resolution transmission electron microscopy (TEM) and X-ray diffraction. The optimized NRs exhibit a high photoluminescence quantum yield of around 80%, as well as excellent environmental stability; after 15 days of storage, the photoluminescence quantum yield (PLQY) retention is 90%. Transient absorption spectroscopy shows that the carrier lifetime is extended to 23.95 ns and 27.86 ns, attributed to the dual role of TOP in defect passivation and hydrolysis suppression. This work provides a scalable paradigm for stabilizing metastable perovskite nanostructures through rational ligand selection, paving the way for durable perovskite-based optoelectronics. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

13 pages, 3917 KiB  
Article
Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics
by Qingyu Li, Helong Wu, Weiguo Li, Jiming Zhang and Rongjian Sa
Molecules 2025, 30(7), 1468; https://doi.org/10.3390/molecules30071468 - 26 Mar 2025
Viewed by 462
Abstract
Chalcogenide perovskites have shown great potential for photovoltaic applications. Most researchers have begun to pay close attention to the crystal synthesis, phase stability, and optoelectronic properties of chalcogenide perovskites AMX3 (A = Ca, Sr, Ba; M = Ti, Zr, Hf, Sn; X [...] Read more.
Chalcogenide perovskites have shown great potential for photovoltaic applications. Most researchers have begun to pay close attention to the crystal synthesis, phase stability, and optoelectronic properties of chalcogenide perovskites AMX3 (A = Ca, Sr, Ba; M = Ti, Zr, Hf, Sn; X = S, Se). At present, the A-site metal cations are mainly limited to alkaline earth metal cations in the literature. The replacement of the alkaline earth metal cations by Yb2+ is proposed as an alternative for chalcogenide perovskites. In this study, the phase stability, and mechanical, electronic, optical, and photovoltaic properties of novel chalcogenides YbMX3 (M = Zr, Hf; X = S, Se) are theoretically evaluated in detail for the first time. It is mentioned that YbZrS3 and YbHfS3 are marginally thermodynamically stable while YbZrSe3 and YbHfSe3 exhibit superior phase stability against decomposition. Good mechanical and dynamical stability of these chalcogenide perovskites are verified, and they are all ductile materials. The accurate electronic structure calculations suggest that the predicted direct bandgap of YbMSe3 (M = Zr, Hf) is within 1.3–1.7 eV. Additionally, the small effective mass and low exciton binding energy of YbMSe3 (M = Zr, Hf) are favorable for their photovoltaic applications. However, YbZrS3 and YbHfS3 show larger direct band gaps with a change from 1.92 to 2.27 eV. The optical and photovoltaic properties of these compounds are thoroughly studied. In accordance with their band gaps, YbZrSe3 and YbHfSe3 are discovered to exhibit high visible-light absorption coefficients. The maximum conversion efficiency analysis shows that YbMSe3 (M = Zr, Hf) can achieve an excellent efficiency, especially for YbZrSe3, whose efficiency can reach ~32% in a film thickness of 1 μm. Overall, our study uncovers that YbZrSe3 is an ideal stable photovoltaic material with a high efficiency comparable to those of lead-based halide perovskites. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

10 pages, 2006 KiB  
Article
Pressure Engineering to Enable Improved Stability and Performance of Metal Halide Perovskite Photovoltaics
by Erin Burgard, Saivineeth Penukula, Marco Casareto and Nicholas Rolston
Molecules 2025, 30(6), 1292; https://doi.org/10.3390/molecules30061292 - 13 Mar 2025
Viewed by 942
Abstract
In this work, we demonstrate that an external pressure of 15–30 kPa can significantly improve metal halide perovskite (MHP) film thermal stability. We demonstrate this through the application of weight on top of an MHP film during thermal aging in preserving the perovskite [...] Read more.
In this work, we demonstrate that an external pressure of 15–30 kPa can significantly improve metal halide perovskite (MHP) film thermal stability. We demonstrate this through the application of weight on top of an MHP film during thermal aging in preserving the perovskite phase and the mobile ion concentration, an effect which we hypothesize reduces the extent to which volatile species can escape from the MHP lattice. This method is shown to be effective for a more scalable approach by only applying the weight to a cover glass during the lamination of an epoxy-based resin, after which the weight is removed. The amount of pressure applied during lamination is shown to correlate with stability in both 1 sun illumination and damp heat testing. Lastly, the performance of MHP photovoltaic devices is improved using pressure during lamination, an effect which is attributed to improved interfacial contact between the MHP and the adjacent charge transport layers and healing of any voids or defects that may exist at the buried interface after processing. As such, there are implications for tuning the amount of pressure that is applied during lamination to enable the durability of MHP solar modules toward manufacturing-scale deployment. Full article
Show Figures

Figure 1

Back to TopTop