Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar Cell Structure
2.2. Basic Equations and Numerical Parameters
- Poisson’s equation:
- 2.
- Continuity equations for electrons and holes:
- 3.
- Charge transport equations for electrons and holes:
- 4.
- Absorption coefficient:
3. Results and Discussion
3.1. The Perovskite Absorption Coefficient
3.2. Impact of the Perovskite Layer Thickness
3.3. Impact of the TiO2 Layer Thickness
3.4. Impact of the Spiro-OMeTAD Layer Thickness
3.5. Impact of the Perovskite Layer Defect Density
3.6. Impact of the Defect Density of the Interfaces: TiO2/CH3NH3PbI3−xClx and CH3NH3PbI3−xClx/Spiro-OMeTAD
3.7. Impact of the Series Resistance (Rseries) and Shunt Resistance (Rshunt)
3.8. Impact of the Operating Temperature and Metallic Contact Work Function
3.9. J–V Characteristic Curve, EQE, and Energy Band Diagram
3.10. Comparative Study Between the Experiment and Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif, R.; Khalid, A.; Waqas, S.; Rehman, A.; Ghulam, H.; Husnain, H.; Mahmood, K.; Afzalc, S.; Saleem, F. A comprehensive review of the current progresses and material advances in perovskite solar cells. Nanoscale Adv. 2023, 5, 3803–3833. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.; Khan, Z.; Jan, S.T. A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, M.; Chen, W.C. A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Front. Chem. 2022, 10, 802890. [Google Scholar] [CrossRef]
- Diouf, B.; Muley, A.; Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 2023, 16, 6498. [Google Scholar] [CrossRef]
- Euvrard, J.; Yan, Y.; Mitzi, D.B. Electrical doping in halide perovskites. Nat. Rev. Mater. 2021, 6, 531–549. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, B.; Chen, Y.; Guo, C. Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Front. Bioeng. Biotechnol. 2022, 10, 900269. [Google Scholar] [CrossRef]
- Mehdi, H.; Mhamdi, A.; Bouazizi, A. Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3−xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 2019, 109, 104915. [Google Scholar] [CrossRef]
- Lian, Z.; Yan, Q.; Gao, T.; Ding, J.; Lv, Q.; Ning, C.; Li, Q.; Sun, J. Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm−3. J. Am. Chem. Soc. 2016, 138, 9409–9412. [Google Scholar] [CrossRef]
- Chae, J.; Dong, Q.; Huang, J.; Centrone, A. Chloride Incorporation Process in CH3NH3PbI3−xClx Perovskites via Nanoscale Bandgap Maps. Nano Lett. 2019, 15, 8114–8121. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Nakka, L.; Cheng, Y.; Aberle, A.G.; Lin, F. Analytical review of spiro-OMeTAD hole transport materials: Paths toward stable and efficient perovskite solar cells. Adv. Energy Sustain. Res. 2022, 3, 2200045. [Google Scholar] [CrossRef]
- Dahiya, H.; Suthar, R.; Khandelwal, K.; Karak, S.; Sharma, G.D. Recent advances in organic and inorganic hole and electron transport layers for organic solar cells: Basic concept and device performance. ACS Appl. Electron. Mater. 2022, 4, 5119–5143. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Zhang, H.; El Jery, A.; Aldrdery, M. A critical review on advancement and challenges in using TiO2 as electron transport layer for perovskite solar cell. Mater. Today Sustain. 2024, 27, 100857. [Google Scholar] [CrossRef]
- Afre, R.A.; Pugliese, D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines 2024, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Burgelman, M.; Decock, M.K.; Niemegeers, A.; Verschraegen, J.; Degrave, S. SCAPS-1D Manual; University of Gent: Gent, Belgium, 2021; p. 155. [Google Scholar]
- Burgelman, M.; Decock, K.; Kheli, S.; Abass, A. Advanced electrical simulation of thin film solar cells. Thin Solid Films 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Verschraegen, J.; Burgelman, M. Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 2007, 515, 6276–6279. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Zekry, A.; Shaker, A.; Abouelatta, M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 2020, 101, 109738. [Google Scholar] [CrossRef]
- Alipour, H.; Ghadimi, A. Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt. Mater. 2021, 120, 111432. [Google Scholar] [CrossRef]
- Fujiwara, H.; Collins, R.W. Spectroscopic Ellipsometry for Photovoltaics; Springer: Cham, Switzerland, 2018; pp. 519–520. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, B.K.; Dwivedi, D.K. Device simulation of low cost HTM free perovskite solar cell based on TiO2 electron transport layer. AIP Conf. Proc. 2020, 2220, 140022. [Google Scholar] [CrossRef]
- Sahoo, A.; Mohanty, I.; Mangal, S. Effect of acceptor density, thickness and temperature on device performance for tin-based perovskite solar cell. Mater. Today Proc. 2022, 62, 6210–6215. [Google Scholar] [CrossRef]
- Stanić, D.; Kojić, V.; Cižmar, T.; Juraić, K.; Bagladi, L.; Mangalam, J.; Rath, T.; Gajović, A. Simulating the performance of a formamidinium based mixed cation lead halide perovskite solar cell. Materials 2021, 14, 6341. [Google Scholar] [CrossRef] [PubMed]
- Isoe, W.; Mageto, M.; Maghanga, C.; Mwamburi, M.; Odari, V.; Awino, C. Thickness Dependence of Window Layer on CH3NH3PbI3−xClx Perovskite Solar Cell. Int. J. Photoenergy 2020, 2020, 8877744. [Google Scholar] [CrossRef]
- Ayad, M.; Fathi, M.; Mellit, A. Study and performance analysis of Perovskite solar cell structure based on organic and inorganic thin films. Optik 2021, 233, 166619. [Google Scholar] [CrossRef]
- Shukla, N.; Prajapati, D.; Tiwari, S. Investigation on Design and Device Modeling of High Performance CH3NH3PbI3−xClx Perovskite Solar Cells. J. Ravishankar Univ. 2021, 34, 58–63. [Google Scholar] [CrossRef]
- Ahamed, T.; Rahaman, I.; Karmakar, S.; Halim, M.A.; Sarkar, P.K. Thickness optimization and the effect of different hole transport materials on methylammonium tin iodide (CH3NH3SnI3)-based perovskite solar cell. Emergent Mater. 2023, 6, 175–183. [Google Scholar] [CrossRef]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Du, H.J.; Wang, W.C.; Zhu, J.Z. Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 2016, 25, 108802. [Google Scholar] [CrossRef]
- Basyoni, M.S.S.; Salah, M.M.; Mousa, M.; Shaker, A.; Zekry, A.; Abouelatta, M. On the Investigation of Interface Defects of Solar Cells: Lead-Based vs Lead-Free Perovskite. IEEE Access. 2021, 9, 130221–130232. [Google Scholar] [CrossRef]
- Shubham; Raghvendra; Pathak, C.; Pandey, S.K. Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron. Devices 2020, 67, 2837–2843. [Google Scholar] [CrossRef]
- Abdy, H.; Aletayeb, A.; Kolahdouz, M.; Soleimani, E.A. Investigation of metal-nickel oxide contacts used for perovskite solar cell. AIP Adv. 2019, 9, 015216. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhou, Y.; Yu, C.; Hua, Y.; Yu, Y.; Li, R.; Lin, X.; Chen, R.; Wu, H.; et al. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. J. Am. Chem. Soc. 2021, 143, 7759–7768. [Google Scholar] [CrossRef] [PubMed]
- Behrouznejad, F.; Shahbazi, S.; Taghavinia, N.; Wu, H.P.; Wei-Guang, E. A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 2016, 4, 13488–13498. [Google Scholar] [CrossRef]
- Ritu; Gagandeep; Kumar, R.; Chand, F. Numerical simulation of a mixed-halide perovskite solar cell using doping gradient. J. Comput. Electron. 2023, 22, 1532–1540. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Sun, S.; Buonassisi, T.; Correa-Baena, J.P. State-of-the-Art Electron-Selective Contacts in Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Baig, F.; Khattak, Y.H.; Shuja, A.; Riaz, K.; Soucase, M.B. Performance investigation of Sb2Se3 based solar cell by device optimization, band offset engineering and Hole Transport Layer in SCAPS-1D. Curr. Appl. Phys. 2020, 20, 973–981. [Google Scholar] [CrossRef]
- Kim, G.W.; Choi, H.; Kim, M.; Lee, J.; Sung, Y.S.; Park, T. Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future. Adv. Energy Mater. 2020, 10, 1–30. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Jamal, M.S.; Shahahmadi, S.A.; Wadia, M.A.A.; Chelvanathan, P.; Asim, N.; Misran, H.; Hossain, M.I.; Ami, N.; Sopian, K.; Akhtaruzzaman, M. Effect of Defect Density and Energy Level Mismatch on the Performance of Perovskite Solar Cells by Numerical Simulation. Optik 2019, 182, 1204–1210. [Google Scholar] [CrossRef]
- Ouslimane, T.; Et-taya, L.; Elmaimouni, L.; Benami, A. Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 2021, 7, e06379. [Google Scholar] [CrossRef]
- Paz-Totolhua, E.; Carrillo-López, J.; Benítez-Lara, A.; Monfil-Leyva, K.; Piñón-Reyes, A.C.; Flores-Méndez, J.; Luna-López, J.A. Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability. Materials 2023, 16, 7445. [Google Scholar] [CrossRef] [PubMed]
- Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Gan, Y.; Zhao, D.; Qin, B.; Bi, X.; Liu, Y.; Ning, W.; Yang, R.; Jiang, Q. Numerical Simulation of High-Performance CsPbI3/FAPbI3 Heterojunction Perovskite Solar Cells. Energies 2022, 15, 7301. [Google Scholar] [CrossRef]
- Haque, M.M.; Mahjabin, S.; Khan, S.; Hossain, M.I.; Muhammad, G.; Shahiduzzaman, M.; Sopian, K.; Akhtaruzzaman, M. Study on the interface defects of eco-friendly perovskite solar cells. Sol. Energy 2022, 247, 96–108. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, B.K.; Dwivedi, D.K. Modeling of highly efficient and low cost CH3NH3Pb(I1−xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 2019, 100, 109631. [Google Scholar] [CrossRef]
- Głowienka, D.; Zhang, D.; Di-Giacomo, F.; Najafi, M.; Veenstra, S.; Szmytkowski, J.; Galagan, Y. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy 2020, 67, 104186. [Google Scholar] [CrossRef]
- Porwal, S.; Paul, M.; Dixit, H.; Mishra, S.; Singh, T. Investigation of Defects in Cs2SnI6-Based Double Perovskite Solar Cells Via SCAPS-1D. Adv. Theory Simul. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Yan, X.; Wang, W.; Yang, X.; Yi, W.; Wang, Y.; Li, H.; Gu, W.; Sheng, C. Origin of thermal instability of CH3NH3PbI3−xClx films for photovoltaic devices. Mater. Lett. 2016, 176, 114–117. [Google Scholar] [CrossRef]
- Zandi, S.; Saxena, P.; Gorji, N.E. Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 2019, 197, 105–110. [Google Scholar] [CrossRef]
- Devi, N.; Parrey, K.A.; Aziz, A.; Datta, S. Numerical simulations of perovskite thin-film solar cells using a CdS hole blocking layer. J. Vac. Sci. Technol. B 2018, 36, 5026163. [Google Scholar] [CrossRef]
- Shyma, A.P.; Sellappan, R. Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various. Materials 2022, 15, 7859. [Google Scholar] [CrossRef]
- Jäger, T.; Romanyuk, E.Y.; Bissig, B.; Pianezzi, F.; Nishiwaki, S.; Reinhard, P.; Steinhauser, J.; Schwenk, J.; Tiwari, N.A. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes. J. Appl. Phys. 2015, 117, 225303. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H.J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 2014, 7, 1142–1147. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Q.; Hong, Z.; Zhou, H.; Xu, X.; De-Marco, N.; Sun, P.; Zhao, Z.; Cheng, Y.B.; Yang, Y. Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 11076–11083. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A.Z.; Song, T.B.; Wang, H.H.; Xu, X.; Liu, Y.; Lu, S.; You, J.; et al. The optoelectronic role of chlorine in CH3NH3PbI3 (Cl)-based perovskite solar cells. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef]
Parameters | FTO (TCO) [18,19,20] | TiO2 (HTL) [21,22,23] | Perovskite (CH3NH3PbI3−xClx) [24,25,26] | Spiro-OMeTAD (ETL) [27,28,29] |
---|---|---|---|---|
Thickness (nm) | 500 | 80 | 300 | 250 |
3.5 | 3.2 | 1.55 | 3.2 | |
4.0 | 4.2 | 3.9 | 2.1 | |
9.0 | 9.0 | 30 | 3 | |
20 | 20 | 2 | 0.0002 | |
10 | 10 | 2 | 0.0002 | |
Parameters | Perovskite (CH3NH3PbI3−xClx) [30,31] | HTL/Perovskite [30,31] | Perovskite/ETL [30,31] |
---|---|---|---|
Defect type Electron capture cross section (cm2) Hole capture cross section (cm2) Energetic distribution Reference for defect energy level Et Energy level with respect to Reference (eV) Total density (integrated over all energies) (1/cm3) | Neutral 1.0 × 10−15 1.0 × 10−15 Gaussian Below Ec 0.65 1.0 × 1017 | Neutral 1.0 × 10−15 1.0 × 10−15 Single Above EV 0.6 1.0 × 1015 | Neutral 1.0 × 10−15 1.0 × 10−15 Single Above EV 0.6 1.0 × 1015 |
Parameters | Gold (Au) [32,33,34] | ||
Work function (eV) Surface recombination velocity of electrons (cm/s) Surface recombination velocity of holes (cm/s) |
5.1 107 105 |
Device Structure | (V) | (mA/cm2) | (%) | (%) | Ref. |
---|---|---|---|---|---|
FTO/TiO2+Al2O3/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Experimental) | 1.02 | 21.5 | 71 | 15.9 | [55] |
ITO/TiCl-TiO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Experimental) | 1.09 | 19.7 | 75.9 | 16.4 | [56] |
ITO/У-TiO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Experimental) | 1.077 | 21.45 | 77.57 | 17.91 | [57] |
FTO/TiO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Numerical simulation) | 1.28 | 21.63 | 78 | 21.53 | [26] |
FTO/TiO2/CH3NH3Pb3−xClx/Spiro-OMeTAD/Ag (Experimental) | 1.25 | 26.11 | 69.89 | 22.72 | [24] |
FTO/TiO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Initial numerical simulation) | 0.933 | 26.36 | 67.75 | 16.67 | This work |
FTO/TiO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au (Optimized numerical simulation) | 1.179 | 27.26 | 81.03 | 26.07 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz Totolhua, E.; Carrillo López, J.; Hernández de la Luz, J.Á.D.; Monfil Leyva, K.; Flores-Méndez, J.; Piñón Reyes, A.C.; Hernández Simón, Z.J.; Luna López, J.A. Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function. Materials 2025, 18, 1601. https://doi.org/10.3390/ma18071601
Paz Totolhua E, Carrillo López J, Hernández de la Luz JÁD, Monfil Leyva K, Flores-Méndez J, Piñón Reyes AC, Hernández Simón ZJ, Luna López JA. Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function. Materials. 2025; 18(7):1601. https://doi.org/10.3390/ma18071601
Chicago/Turabian StylePaz Totolhua, Ezequiel, Jesús Carrillo López, José Álvaro David Hernández de la Luz, Karim Monfil Leyva, Javier Flores-Méndez, Ana Cecilia Piñón Reyes, Zaira Jocelyn Hernández Simón, and José Alberto Luna López. 2025. "Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function" Materials 18, no. 7: 1601. https://doi.org/10.3390/ma18071601
APA StylePaz Totolhua, E., Carrillo López, J., Hernández de la Luz, J. Á. D., Monfil Leyva, K., Flores-Méndez, J., Piñón Reyes, A. C., Hernández Simón, Z. J., & Luna López, J. A. (2025). Enhanced Efficiency of Mixed-Halide Perovskite Solar Cells Through Optimization of the Layer Thicknesses, Defect Density, and Metal Contact Work Function. Materials, 18(7), 1601. https://doi.org/10.3390/ma18071601