Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = metal fine particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2146 KiB  
Article
Synthesis and Antiviral Activity of Nanowire Polymers Activated with Ag, Zn, and Cu Nanoclusters
by Thomas Thomberg, Hanna Bulgarin, Andres Lust, Jaak Nerut, Tavo Romann and Enn Lust
Pharmaceutics 2025, 17(7), 887; https://doi.org/10.3390/pharmaceutics17070887 - 6 Jul 2025
Viewed by 484
Abstract
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) [...] Read more.
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) dissolved in N,N-dimethylacetamide and functionalized with copper, silver, and zinc nanoclusters were fabricated via electrospinning. This study aims to evaluate and compare the virucidal effects of nanofibers functionalized with metal nanoclusters against the human influenza A virus A/WSN/1933 (H1N1) and SARS-CoV-2. Methods: A comprehensive characterization of materials, including X-ray diffraction, scanning electron microscopy, microwave plasma atomic emission spectroscopy, thermogravimetric analysis, contact angle measurements, nitrogen sorption analysis, mercury intrusion porosimetry, filtration efficiency, and virucidal tests, was used to understand the interdependence of the materials’ physical characteristics and biological effects, as well as to determine their suitability for application as antiviral materials in air filtration systems. Results: All the filter materials tested demonstrated very high particle filtration efficiency (≥98.0%). The material embedded with copper nanoclusters showed strong virucidal efficacy against the SARS-CoV-2 alpha variant, achieving an approximately 1000-fold reduction in infectious virions within 12 h. The fibrous nanowire polymer functionalized with zinc nanoclusters was the most effective material against the human influenza A virus strain A/WSN/1933 (H1N1). Conclusions: The materials with Cu nanoclusters can be used with high efficiency to passivate and kill the SARS-CoV-2 alpha variant virions, and Zn nanoclusters modified activated porous membranes for killing human influenza A virus A7WSN/1933 (H1N1) virions. Full article
Show Figures

Figure 1

18 pages, 5983 KiB  
Article
Fixed Particle Size Ratio Pure Copper Metal Powder Molding Fine Simulation Analysis
by Yuanbo Zhao, Mengyao Weng, Wenchao Wang, Wenzhe Wang, Hui Qi and Chongming Li
Crystals 2025, 15(7), 628; https://doi.org/10.3390/cryst15070628 - 5 Jul 2025
Viewed by 272
Abstract
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three [...] Read more.
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three random packing structures with different particle size ratios (1:2, 1:3, and 1:4) were generated by the DEM, and then simulated by the FEM to analyze the average relative density, von Mises stress, and force chain structures of the compact. The results show that for HCP and SC structures with a regular stacking structure, the average relative densities of the compact were higher than those of random packing structures, which were 0.9823, 0.9693, 0.9456, 0.9502, and 0.9507, respectively. Compared with their initial packing density, it could be improved by up to 21.13%. For the bigger particle in HCP and SC structures, the stress concentration was located between the adjacent layers, while in the small particles, it was located between contacted particles. During the initial compaction phase, smaller particles tend to occupy the voids between larger particles. As the pressure increases, larger particles deform plastically in a notable way to create a stabilizing force chain. This action reduces the axial stress gradient and improves radial symmetry. The transition from a contact-dominated to a body-stress-dominated state is further demonstrated by stress distribution maps and contact force vector analysis, highlighting the interaction between particle rearrangement and plasticity. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

10 pages, 1777 KiB  
Communication
Glucose-Mediated Microstructure Refinement of Electroless Silver Coatings on Atomized Fe Particles
by Dehou Song, Tiebao Wang, Lichen Zhao, Pan Gong and Xin Wang
Surfaces 2025, 8(3), 44; https://doi.org/10.3390/surfaces8030044 - 25 Jun 2025
Viewed by 370
Abstract
Electroless silver (Ag) plating has emerged as a simple yet effective surface modification technique, garnering significant attention in consumer electronics and composite materials. This study systematically investigates the influence of glucose dosage on the microstructural refinement of Ag coatings deposited from silver–ammonia solutions [...] Read more.
Electroless silver (Ag) plating has emerged as a simple yet effective surface modification technique, garnering significant attention in consumer electronics and composite materials. This study systematically investigates the influence of glucose dosage on the microstructural refinement of Ag coatings deposited from silver–ammonia solutions onto iron (Fe) particles while also evaluating the oxidation resistance of Ag-plated particles through thermogravimetric analysis. Optimal results were achieved at a silver nitrate concentration of 0.02 mol/L and a glucose concentration of 0.05 mol/L, producing Fe particles with a uniform and dense silver coating featuring an average Ag grain size of 76 nm. The moderate excess glucose played a dual role: facilitating Ag+ ion reduction while simultaneously inhibiting the growth of Ag atomic clusters, thereby ensuring microstructural refinement of the silver layer. Notably, the Ag-plated particles demonstrated superior oxidation resistance compared to their uncoated counterparts. These findings highlight the significance of fine-grained electroless Ag plating in developing high-temperature conductive metal particles and optimizing interfacial structures in composite materials. Full article
Show Figures

Figure 1

22 pages, 2006 KiB  
Article
Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality
by Aline Grard and Jean-François Deliège
Water 2025, 17(13), 1876; https://doi.org/10.3390/w17131876 - 24 Jun 2025
Viewed by 546
Abstract
The present study focuses on the dynamics of trace metals (TM) in two European rivers, the Mosel and the Meuse. A deterministic description of hydro-sedimentary processes has been performed. The model used to describe pollutant transport and dilution at the watershed scale has [...] Read more.
The present study focuses on the dynamics of trace metals (TM) in two European rivers, the Mosel and the Meuse. A deterministic description of hydro-sedimentary processes has been performed. The model used to describe pollutant transport and dilution at the watershed scale has been enhanced with the implementation of the MicMod sub-model. The objective of this study is to characterise the dynamics of TM in the water column and bed sediment. A multi-class grain size representation has been developed in MicMod. The dissolved and particulate TM phases have been calculated with specific partitioning coefficients associated with each suspended sediment (SS) class. The processes involved in TM fate have been calibrated in MicMod, including settling velocity, TM releases from the watershed (point and diffuse loads), etc. Following the calibration of the parameters involved in TM transport within the river ecosystem, the main goal is to describe TM dynamics using a pressure–impact relationship model. It was demonstrated that the description of at least one class of fine particles is necessary to obtain an adequate representation of TM concentrations. The focus of this study is low flow periods, which are characterised by the presence of fine particles. The objective is to gain a deeper understanding of the processes that control the transport of TM. This paper establishes consistent pressure–impact relationships between TM loads (urban, industrial, soils) from watersheds and concentrations in rivers. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 2734 KiB  
Article
An Intelligent Optimization System Using Neural Networks and Soft Computing for the FMM Etching Process
by Wen-Chin Chen, An-Xuan Ngo and Jun-Fu Zhong
Mathematics 2025, 13(13), 2050; https://doi.org/10.3390/math13132050 - 20 Jun 2025
Viewed by 261
Abstract
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine [...] Read more.
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine metal mask (FMM) etching process, a critical step in producing high-resolution AMOLED panels. The system integrates advanced optimization techniques, including the Taguchi method, analysis of variance (ANOVA), back-propagation neural network (BPNN), and a hybrid particle swarm optimization–genetic algorithm (PSO-GA) approach to identify optimal process parameters. Experimental results demonstrate a marked improvement in product yield and process stability while reducing manufacturing costs. By ensuring consistent quality and efficiency, this system overcomes limitations of traditional process control; strengthens the AMOLED industry’s global competitiveness; and provides a scalable, sustainable solution for smart manufacturing in next-generation display technologies. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

13 pages, 6776 KiB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 406
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

34 pages, 776 KiB  
Review
Pathways to the Brain: Impact of Fine Particulate Matter Components on the Central Nervous System
by Yasuhiro Ishihara, Miki Tanaka, Naoyuki Nezu, Nami Ishihara, Ami Oguro and Christoph F. A. Vogel
Antioxidants 2025, 14(6), 730; https://doi.org/10.3390/antiox14060730 - 14 Jun 2025
Viewed by 702
Abstract
Fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) has been extensively studied due to its adverse health effects. Most research has focused on its impact on the respiratory system; however, increasing attention is being directed toward its effects [...] Read more.
Fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) has been extensively studied due to its adverse health effects. Most research has focused on its impact on the respiratory system; however, increasing attention is being directed toward its effects on the brain. Associations between air pollution and neurological disorders—such as Alzheimer’s disease, cerebral infarction, and autism spectrum disorder—have been reported, with mechanism-based studies in animal models providing further insights. PM2.5 comprises a complex mixture of thousands of chemical constituents. To elucidate its neurotoxicity mechanisms, it is essential to investigate both its transport pathways to the brain and the specific actions of its individual components. This review highlights key PM2.5 components—water-soluble ions, metals, carbonaceous particles, polycyclic aromatic hydrocarbons, quinones, plastics, and bioaerosols—and outlines their potential routes of entry into the central nervous system, along with their associated mechanisms of action. By integrating these findings, this review contributes to a deeper understanding of the neurological effects mediated by PM2.5, which represent one of the most critical aspects of its health impact. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

11 pages, 3341 KiB  
Article
Carburization of Tantalum Metal Powder Using Activated Carbon
by Seonmin Hwang and Dongwon Lee
Materials 2025, 18(12), 2710; https://doi.org/10.3390/ma18122710 - 9 Jun 2025
Viewed by 317
Abstract
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal [...] Read more.
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal reduction of Ta2O5, using activated carbon and graphite as carbon sources under high vacuum. Carburization was conducted at 1100–1400 °C for durations of 5–20 h. Carbon contents were analyzed via combustion analysis, and activation energies were calculated based on Arrhenius plots. The results showed that the activated carbon significantly enhanced carbon uptake compared to graphite due to its higher porosity and surface reactivity. The formation and transformation of carbide phases were confirmed via X-ray diffraction, revealing a progression from Ta to Ta2C and eventually to single-phase TaC with increasing carbon content. Scanning electron microscopy (SEM) analysis showed that fine particles formed on the surface as carbon content increased, indicating local nucleation of TaC. Although the theoretical carbon content of stoichiometric TaC (6.22 wt.%) was not fully achieved, the near-theoretical lattice parameter (4.4547 Å) was approached. These findings suggest that activated carbon can serve as an effective carburizing agent for the synthesis of TaC under vacuum conditions. Full article
(This article belongs to the Special Issue Low-Carbon Technology and Green Development Forum)
Show Figures

Figure 1

15 pages, 1018 KiB  
Article
Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment
by Thitisuda Kanchana-at, Win Trivitayanurak, Sopannha Chy and Narisa Kengtrong Bordeerat
Atmosphere 2025, 16(6), 678; https://doi.org/10.3390/atmos16060678 - 3 Jun 2025
Viewed by 511
Abstract
Particulate matter (PM) has been associated with various health issues. However, the most hazardous constituents of fine particles remain unclear, particularly in Asia where the chemical compositions are highly diverse and understudied. This study investigated the concentration and health risks of particulate-bound polycyclic [...] Read more.
Particulate matter (PM) has been associated with various health issues. However, the most hazardous constituents of fine particles remain unclear, particularly in Asia where the chemical compositions are highly diverse and understudied. This study investigated the concentration and health risks of particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the indoor air of religious spaces in Bangkok, Thailand. Air samples were collected from four religious sites during periods of high activity using a six-stage NanoSampler to capture particle sizes ranging from <0.1 to >10 µm. Chemical analyses were conducted using gas chromatography-mass spectrometry (GC-MS/MS) for PAHs and inductively coupled plasma-mass spectrometry (ICP-MS) for heavy metals. The results revealed significantly elevated concentrations of PM2.5, PAHs (notably benzo[a]anthracene (BaA), chrysene (CHR), and fluoranthene (FLU)), and heavy metals (particularly Mn, Ni, and Cu). Health risk assessments indicated that both the incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) values for several pollutants exceeded the U.S. EPA safety thresholds, suggesting serious cancer and non-cancer health risks for workers exposed to these environments over prolonged periods. This study highlights incense burning as a dominant source of toxic indoor air pollutants and underscores the urgent need for mitigation strategies to reduce occupational exposure in religious buildings. Full article
Show Figures

Figure 1

20 pages, 1980 KiB  
Article
Spatiotemporal Variations and Health Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Fine Particles (PM1.1) of a Typical Copper-Processing Area, China
by Weiqian Wang, Jie Ruan and Qingyue Wang
Atmosphere 2025, 16(6), 674; https://doi.org/10.3390/atmos16060674 - 1 Jun 2025
Viewed by 372
Abstract
This study investigates the concentrations, health risks, and potential sources of heavy metal elements and polycyclic aromatic hydrocarbons (PAHs) in PM1.1 particles in Zhuji, a major copper-processing city in China. The ratios of heavy metals (summer: 0.906; winter: 0.619) and PAHs (>0.750 [...] Read more.
This study investigates the concentrations, health risks, and potential sources of heavy metal elements and polycyclic aromatic hydrocarbons (PAHs) in PM1.1 particles in Zhuji, a major copper-processing city in China. The ratios of heavy metals (summer: 0.906; winter: 0.619) and PAHs (>0.750 in both seasons) in PM1.1/PM2.0 suggest significant accumulation in ultrafine particles. In winter, heavy metal concentrations in PM1.1 reached up to 448 ng/m3, and PAH concentrations were 13.4 ng/m3—over ten times higher than in summer. Health risk assessments revealed that hazard index (HI) values exceeded 1.00 for five age groups (excluding infants) during winter, indicating chronic exposure risks. Incremental lifetime cancer risk (ILCR) values surpassed the upper acceptable limit (1.0 × 10⁻⁴) for four age groups, with Cr, As, Cd, and Pb as major contributors. PAH-related ILCRs were also elevated in winter, with benzo[a]pyrene (BaP) identified as the most potent carcinogen. Enrichment factor (EF) and principal component analysis (PCA) indicated that industrial activities and traffic emissions were the dominant anthropogenic sources of heavy metals. Diagnostic ratio analysis further showed that PAHs mainly originated from vehicle and coal combustion. These findings provide critical insights into pollution patterns in industrial cities and underscore the importance of targeted mitigation strategies. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

28 pages, 5977 KiB  
Review
Advances in Flotation Reagents for Cassiterite Separation: Challenges and Sustainable Solutions
by Xianchen Wang, Hong Li, Xinhong Liu, Yuan Tang and Chenquan Ni
Molecules 2025, 30(11), 2380; https://doi.org/10.3390/molecules30112380 - 29 May 2025
Viewed by 642
Abstract
Tin is a crucial strategic metal, extensively employed in aerospace, new energy materials, and other advanced fields. However, with the progressive depletion of high-grade tin ores, the utilization of low-grade tin ores for metal tin production has emerged as a significant trend. Nonetheless, [...] Read more.
Tin is a crucial strategic metal, extensively employed in aerospace, new energy materials, and other advanced fields. However, with the progressive depletion of high-grade tin ores, the utilization of low-grade tin ores for metal tin production has emerged as a significant trend. Nonetheless, low-grade tin ores present inherent challenges that hinder their direct application in tin extraction. Flotation remains an effective method to enhance ore grade, yet issues such as fine particle dispersion and ore complexity persist. In light of this, the present study provides a comprehensive review of cassiterite resource characteristics, surface chemistry, flotation reagents, and relevant case studies. By delving into the physicochemical properties of cassiterite, this paper elucidates its floatability and the distinctions among various flotation reagents. Furthermore, it identifies critical challenges in cassiterite flotation and proposes targeted, feasible strategies to support the efficient exploitation of tin resources, thereby fostering the sustainable development of the tin industry. Full article
Show Figures

Figure 1

18 pages, 3111 KiB  
Article
Advances in the Development of Hydrometallurgical Processes in Acidic and Alkaline Environments for the Extraction of Copper from Tailings Deposit
by Diego Davoise and Ana Méndez
Minerals 2025, 15(6), 550; https://doi.org/10.3390/min15060550 - 22 May 2025
Viewed by 607
Abstract
The geopolitical and economic situation impacts raw materials demand. As principal ore deposits reach exhaustion, the study of new sources of raw materials becomes essential. Therefore, mining wastes emerge as alternative sources of raw materials. Their physicochemical properties, such as small particle size [...] Read more.
The geopolitical and economic situation impacts raw materials demand. As principal ore deposits reach exhaustion, the study of new sources of raw materials becomes essential. Therefore, mining wastes emerge as alternative sources of raw materials. Their physicochemical properties, such as small particle size or concentration of some metals of interest, enhance reprocessing. A number of critical raw materials (As, Co, Cu, Sb) and base metals (Pb, Zn), as well as precious metals (Ag), were found present in an abandoned tailing deposit composed by finely grounded washed roasted pyrites within the Iberian Pyrite Belt. Copper leaching from a sample of this deposit was investigated. Two hydrometallurgical approaches were studied: acidic leaching with and without activated carbon; and alkaline leaching with glycine solutions. Leaching tests were carried out during 24 h at ambient and moderate temperatures (60 °C). In acidic medium, the maximum copper extraction varied from 88 to 92.5%, while in alkaline medium, the maximum copper extraction was in the range of 71%–76%. Using activated carbon and H2O2 seemed to slightly promote the copper extraction with the maximum extraction (92.5%) after 2 h of leaching at 60 °C. Complementarily, above 50% of the zinc and cobalt contained were extracted. In contrast, temperature in alkaline conditions played a key role in reaction speed, but also in precipitation of copper insoluble compounds. In addition, the glycine solution at pH 10–10.5 showed high selectivity for copper over zinc, iron, lead, arsenic, and antimony. Two extra tests at pH above 12 showed arsenic dissolution (up to 51% at pH 12.5). Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Graphical abstract

22 pages, 3206 KiB  
Article
CO2 Reforming of Methane over Ru Supported Catalysts Under Mild Conditions
by Alexandros K. Bikogiannakis, Andriana Lymperi, Paraskevas Dimitropoulos, Kyriakos Bourikas, Alexandros Katsaounis and Georgios Kyriakou
Molecules 2025, 30(10), 2135; https://doi.org/10.3390/molecules30102135 - 12 May 2025
Viewed by 690
Abstract
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water [...] Read more.
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water Gas Shift (RWGS) reaction under mild conditions using Ru-based catalysts supported on CeO2, YSZ, TiO2, and SiO2, with three reactant ratios: (i) stoichiometric, PCO2 = 1 kPa, PCH4 = 1 kPa, (ii) oxidizing, PCO2 = 2 kPa, PCH4 = 1 kPa, and (iii) reducing, PCO2 = 1 kPa, PCH4 = 4 kPa. The results highlight the importance of redox support for catalyst stability, with mobile lattice oxygen aiding carbon gasification. While Ru/CeO2 is stable at high temperatures, it rapidly deactivates at low temperatures, emphasizing the need for precise metal particle size control. This work demonstrates the necessity of fine-tuning catalyst properties for more sustainable DRM, offering insights for next-generation CO2 utilization catalysts. Full article
(This article belongs to the Special Issue New Insight in Catalysis and Electrocatalysis for CO2 Conversion)
Show Figures

Graphical abstract

17 pages, 5835 KiB  
Article
Effect of Solvent Pre-Treatment on the Leaching of Copper During Printed Circuit Board Recycling
by Ahmed Tarek Ismail Mohamed, Giuliana Schimperna, Gianluca Cantoni, Francesca Demichelis, Debora Fino, Sara Perucchini, Francesca Rubertelli and Francesco Laviano
Recycling 2025, 10(3), 80; https://doi.org/10.3390/recycling10030080 - 1 May 2025
Viewed by 567
Abstract
Printed circuit boards (PCBs) are fundamental components of electronic devices, acting as an important source of various valuable metals such as copper, gold, and silver. Efficient recycling methods that offer high recovery rates are essential to the full reutilization of these materials. Hydrometallurgical [...] Read more.
Printed circuit boards (PCBs) are fundamental components of electronic devices, acting as an important source of various valuable metals such as copper, gold, and silver. Efficient recycling methods that offer high recovery rates are essential to the full reutilization of these materials. Hydrometallurgical leaching is a prominent technique for metal recovery, but its efficiency can be significantly enhanced through solvent pre-treatment. In this study, an experimental analysis of the material composition of different categories of PCBs is presented. In addition, the study evaluates the influence of particle size on the subsequent copper leaching process and the efficiency of copper recovery. These investigations aim to better understand the material composition of PCBs and propose an optimized material recovery technique. The study finds that there are significant variances among the different categories of PCBs investigated, allowing a more informed handling process of WEEE. This research suggests that solvent pretreatment using DMSO for PCB particle sizes between 5.6 mm and 2 mm would be a good optimization technique, mitigating the drawbacks of treating fine particles while maintaining appealing recovery efficiency. Full article
Show Figures

Figure 1

20 pages, 6900 KiB  
Article
Influence of Ni60-WC Bionic Unit on the Wear Performance of 20CrMnTi Steel Prepared via Laser Cladding
by Bo Cui, You Lv, Zhaolong Sun and Yan Tong
Metals 2025, 15(5), 507; https://doi.org/10.3390/met15050507 - 30 Apr 2025
Viewed by 301
Abstract
In recent years, the field of bionic engineering has advanced at a remarkable pace. Numerous engineering challenges have been addressed through inspiration drawn from biological organisms in nature. In this paper, laser cladding was employed to fabricate a bionic unit inspired by the [...] Read more.
In recent years, the field of bionic engineering has advanced at a remarkable pace. Numerous engineering challenges have been addressed through inspiration drawn from biological organisms in nature. In this paper, laser cladding was employed to fabricate a bionic unit inspired by the radial ribs of the bivalve shell surface morphology on 20CrMnTi steel, with the aim of enhancing its wear performance. The metallic powder used in the experiments was prepared by blending Ni60 alloy powder with tungsten carbide (WC) in a predetermined ratio. The WC content was maintained within a mass percentage range of 15% to 60% in the composite powder system. The microstructure and properties of the bionic unit were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and a hardness tester, while its dry sliding wear resistance was evaluated using a block-on-ring tribometer. The influence of the WC content on the microstructure, hardness, surface roughness, and wear performance of the bionic unit was investigated. The experimental results revealed that the bionic unit exhibited a dual microstructure comprising equiaxed crystals and fine dendritic structures. The incorporation of WC induced pronounced grain refinement, while the dispersed WC particles formed effective metallurgical bonding with the Ni-substrate. A positive correlation was observed between the WC content and hardness, with peak hardness reaching 1008 HV0.2 at 60% WC. Tribological analysis demonstrated a wear mechanism transition from dominant abrasive wear to a hybrid abrasive–adhesive wear. The wear volume of the bionic unit decreased with increasing WC content, and the extent of damage was reduced. Full article
Show Figures

Figure 1

Back to TopTop