Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = metal–organic cages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3819 KiB  
Article
Controllable Nitrogen-Doped Hollow Carbon Nano-Cage Structures as Supercapacitor Electrode Materials
by Yitong Sun, Xiaoqin Niu, Laidong Yang, Ning Mi and Lei Zhao
Molecules 2025, 30(10), 2130; https://doi.org/10.3390/molecules30102130 - 12 May 2025
Viewed by 510
Abstract
Supercapacitors (SCs) have garnered significant attention due to their high power density and long cycle life. Among the various electrode materials, carbon materials have emerged as a focal point of research owing to their superior conductivity, stability, and reproducibility. However, the relatively low [...] Read more.
Supercapacitors (SCs) have garnered significant attention due to their high power density and long cycle life. Among the various electrode materials, carbon materials have emerged as a focal point of research owing to their superior conductivity, stability, and reproducibility. However, the relatively low specific capacitance and specific surface area of carbon materials result in suboptimal electrochemical performance, which seriously hinders their practical applications. This work introduces a straightforward yet effective strategy for constructing hollow nano-cage structures by tannic acid etching of ZIF-8. In this process, tannic acid releases protons that selectively etch the MOF structure, while the residual large molecules adhere to the ZIF-8 surface, stabilizing its framework and preventing structural collapse. Following high-temperature heat treatment, novel hollow nitrogen-doped carbon nano-cage structures (HNCs) are successfully synthesized. Electrochemical tests reveal that the material has a capacity of 349.3 F g−1 at a current density of 0.5 A g−1, and still has a coulombic efficiency of 97.61% as well as a capacity retention of 97.86% after cycling for 10,000 cycles at a current density of 3 A g−1. Therefore, this study provides a novel way to explore the application of carbon materials with excellent electrochemical performance for energy storage. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

16 pages, 3829 KiB  
Article
Preparation and Characterization of Muscone Oil-Based Cyclodextrin Metal–Organic Frameworks: Molecular Dynamics Simulations and Stability Evaluation
by Zifan Qiao, Lihua Chen, Mubarak G. Bello and Shiyu Huang
Pharmaceutics 2025, 17(4), 497; https://doi.org/10.3390/pharmaceutics17040497 - 9 Apr 2025
Viewed by 840
Abstract
Objective: Muscone (MUS), a primary active component of musk, is known for its significant pharmacological properties. However, its clinical application is limited due to poor water solubility and moderate stability. This study aims to address these limitations by encapsulating MUS within biodegradable γ-cyclodextrin [...] Read more.
Objective: Muscone (MUS), a primary active component of musk, is known for its significant pharmacological properties. However, its clinical application is limited due to poor water solubility and moderate stability. This study aims to address these limitations by encapsulating MUS within biodegradable γ-cyclodextrin metal–organic frameworks (γ-CD-MOFs) using a solvent-free method to enable oral MUS delivery by improving solubility and stability, pending in vivo validation. Methods: MUS was encapsulated into γ-CD-MOFs using a solvent-free method, achieving an optimal loading rate of 10.6 ± 0.7%. Comprehensive characterization was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Biocompatibility was assessed using RAW264.7 cells, and molecular dynamics simulations were conducted to study the interactions between MUS and γ-CD-MOFs. Results: Characterization techniques confirmed the successful encapsulation of MUS into γ-CD-MOFs. Biocompatibility studies revealed no cytotoxicity, indicating that the system is safe for drug delivery. Molecular dynamics simulations showed that MUS preferentially occupies the large spherical cages of γ-CD-MOFs, driven by non-covalent interactions. Solubility tests and in vitro release studies demonstrated that the solubility of MUS was improved after encapsulation within γ-CD-MOFs. Stability assessments indicated that γ-CD-MOFs significantly enhanced the thermal and photostability of MUS, with high residual amounts remaining under various storage conditions. Conclusions: This study demonstrates the potential of γ-CD-MOFs to solidify MUS, enhance its solubility, and improve its storage stability, providing a foundation for its future use in pharmaceutical applications. Full article
(This article belongs to the Special Issue Cyclodextrins and Their Pharmaceutical Applications)
Show Figures

Graphical abstract

21 pages, 4316 KiB  
Review
Functional Post-Synthetic Chemistry of Metal–Organic Cages According to Molecular Architecture and Specific Geometry of Origin
by Rodrigo Cué-Sampedro and José Antonio Sánchez-Fernández
Molecules 2025, 30(3), 462; https://doi.org/10.3390/molecules30030462 - 21 Jan 2025
Cited by 1 | Viewed by 1805
Abstract
Metal–organic cages (MOCs) are discrete supramolecular entities consisting of metal nodes and organic connectors or linkers; MOCs are noted for their high porosity and processability. Chemically, they can be post-synthetically modified (PSM) and new functional groups can be introduced, presenting attractive qualities, and [...] Read more.
Metal–organic cages (MOCs) are discrete supramolecular entities consisting of metal nodes and organic connectors or linkers; MOCs are noted for their high porosity and processability. Chemically, they can be post-synthetically modified (PSM) and new functional groups can be introduced, presenting attractive qualities, and it is expected that their new properties will differ from those of the original compound. This is why they are highly regarded in the fields of biology and chemistry. The present review deals with the current PSM strategies used for MOCs, including covalent, coordination, and noncovalent methods and their structural benefits. The main emphasis of this review is to show to what extent and under what circumstances a MOC can be designed to obtain a tailored geometric architecture. Although sometimes unclear when examining supramolecular systems, particularizing the design of and systematic approaches to the development and characterization of families of MOCs provides new insights into structure–function relationships, which will guide future developments. Full article
(This article belongs to the Special Issue Metal Organic Frameworks: Synthesis and Application, 3rd Edition)
Show Figures

Figure 1

15 pages, 5385 KiB  
Article
The Synergistic Effect of Pore Architect and Reducibility in Ceria-Promoted Ni Molecular Sieve for Methane Dry Reforming
by Norah Alwadai, Abdulaziz A. M. Abahussain, Vijay Kumar Shrivastava, Salma A. Al-Zahrani, Anis H. Fakeeha, Naif Alarifi, Mohammed O. Bayazed, Khaled M. Banabdwin, Rawesh Kumar and Ahmed Al-Fatesh
Catalysts 2024, 14(12), 852; https://doi.org/10.3390/catal14120852 - 24 Nov 2024
Cited by 2 | Viewed by 1149
Abstract
Methane and carbon dioxide, the primary contributors to global warming, are now at critical levels, threatening the extinction of numerous organisms on our planet. In this regard, dry reforming of methane reactions have gained considerable attention because of the conversion capacity of CH [...] Read more.
Methane and carbon dioxide, the primary contributors to global warming, are now at critical levels, threatening the extinction of numerous organisms on our planet. In this regard, dry reforming of methane reactions have gained considerable attention because of the conversion capacity of CH4 and CO2 into synthetic/energy-important syngas (H2 and CO). Herein, a molecular sieve (CBV3024E; SiO2/Al2O3 = 30) with ZSM-8-type pore architect, is utilized as the support for the active site of Ni and Ce promoters. Catalysts are characterized by surface area and porosity, X-ray diffraction study, Raman and infrared spectroscopy, thermogravimetry analysis, and temperature-programmed reduction/desorption techniques. A total of 2 wt.% ceria is added over 5Ni/CBV3024E to induce the optimum connectivity of aluminum in the silicate framework. NiO residing in these porous cages are mostly under “prominent interaction with support” which is reduced easily into metallic Ni as the active sites for DRM reactions. The active sites over 5Ni2Ce/CBV3024E remain stable during the DRM reaction and achieve ~58% H2 yield after 300 min TOS at 42,000 mL/(gcat.h) GHSV and ~70% H2 yield after 20 h at 26,000 mL/(gcat.h) GHSV. The high activity after a longer time stream justifies using CBV3024E molecular sieves as the support and ceria as the promoter for Ni-based catalyst towards the DRM reaction. Full article
(This article belongs to the Special Issue Advances in Catalytic Dry Reforming of Methane)
Show Figures

Figure 1

13 pages, 2810 KiB  
Article
Requirements of Constrictive Binding and Dynamic Systems on Molecular Cages for Drug Delivery
by Giovanni Montà-González, Ramón Martínez-Máñez and Vicente Martí-Centelles
Targets 2024, 2(4), 372-384; https://doi.org/10.3390/targets2040021 - 19 Nov 2024
Cited by 1 | Viewed by 1410
Abstract
Molecular cages have promising host–guest properties for drug delivery applications. Specifically, guest⊂cage complexes can be used for the on-command release of encapsulated guest molecules in response to specific stimuli. This research explores both the dynamic and constrictive binding guest⊂cage systems for drug encapsulation [...] Read more.
Molecular cages have promising host–guest properties for drug delivery applications. Specifically, guest⊂cage complexes can be used for the on-command release of encapsulated guest molecules in response to specific stimuli. This research explores both the dynamic and constrictive binding guest⊂cage systems for drug encapsulation and release in biological environments. In dynamic systems, the guest rapidly passes in-and-out through the portals of the cage, enabling drug delivery in vitro but facing limitations in vivo due to dilution effects that result in guest release. These challenges are addressed by constrictive binding systems, where the guest is trapped in a “gate-closed” state within the cage. In these systems, the on-command release is triggered by a “gate opening” event, which lowers the guest–out energy barrier. A full guest release is achieved when the gate opening reduces the cage–guest affinity, making constrictive binding systems more effective for controlled drug delivery. As a result, this study shows that guest⊂cage complexes have suitable properties for drug delivery in biological contexts. Full article
Show Figures

Graphical abstract

13 pages, 2333 KiB  
Article
Synthesis of a Pd2L4 Hydrazone Molecular Cage Through Multiple Reaction Pathways
by Giovanni Montà-González, Ramón Martínez-Máñez and Vicente Martí-Centelles
Int. J. Mol. Sci. 2024, 25(22), 11861; https://doi.org/10.3390/ijms252211861 - 5 Nov 2024
Cited by 1 | Viewed by 1627
Abstract
Molecular cages are preorganized molecules with a central cavity, typically formed through the reaction of their building blocks through chemical bonds. This requires, in most cases, forming and breaking reversible bonds during the cage formation reaction pathway for error correction to drive the [...] Read more.
Molecular cages are preorganized molecules with a central cavity, typically formed through the reaction of their building blocks through chemical bonds. This requires, in most cases, forming and breaking reversible bonds during the cage formation reaction pathway for error correction to drive the reaction to the cage product. In this work, we focus on both Pd–ligand and hydrazone bonds implemented in the structure of a Pd2L4 hydrazone molecular cage. As the cage contains two different types of reversible bonds, we envisaged a cage formation comparative study by performing the synthesis of the cage through three different reaction pathways involving the formation of Pd–ligand bonds, hydrazone bonds, or a combination of both. The three reaction pathways produce the cage with yields ranging from 73% to 79%. Despite the complexity of the reaction, the cage is formed in a high yield, even for the reaction pathway that involves the formation of 16 bonds. This research paves the way for more sophisticated cage designs through complex reaction pathways. Full article
(This article belongs to the Special Issue Molecular Cages: Design, Synthesis, and Applications)
Show Figures

Graphical abstract

17 pages, 5286 KiB  
Article
Synthesis, Urease Inhibition, Molecular Docking, and Optical Analysis of a Symmetrical Schiff Base and Its Selected Metal Complexes
by Samuel Bonne, Muhammad Saleem, Muhammad Hanif, Joseph Najjar, Salahuddin Khan, Muhammad Zeeshan, Tehreem Tahir, Anser Ali, Changrui Lu and Ting Chen
Molecules 2024, 29(20), 4899; https://doi.org/10.3390/molecules29204899 - 16 Oct 2024
Cited by 3 | Viewed by 2174
Abstract
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking [...] Read more.
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking infections in intracellular and in vivo systems, which requires drug molecules with emissive potential, specifically in the low-energy region. This study comprises the synthesis of a Schiff base ligand and its selected transition metals to evaluate their UV/fluorescence properties, inhibitory activity against urease, and molecular docking. Screening of the symmetrical cage-like ligand and its metal complexes with various eco-friendly transition metals revealed significant urease inhibition potential. The IC50 value of the ligand for urease inhibition was 21.80 ± 1.88 µM, comparable to that of thiourea. Notably, upon coordination with transition metals, the ligand–nickel and ligand–copper complexes exhibited even greater potency than the reference compound, with IC50 values of 11.8 ± 1.14 and 9.31 ± 1.31 µM, respectively. The ligand–cobalt complex exhibited an enzyme inhibitory potential comparable with thiourea, while the zinc and iron complexes demonstrated the least activity, which might be due to weaker interactions with the investigated protein. Meanwhile, all the metal complexes demonstrated a pronounced optical response, which could be utilized for fluorescence-guided targeted drug delivery applications in the future. Molecular docking analysis and IC50 values from in vitro urease inhibition screening showed a trend of increasing activity from compounds 7d to 7c to 7b. Enzyme kinetics studies using the Lineweaver–Burk plot indicated mixed-type inhibition against 7c and non-competitive inhibition against 7d. Full article
Show Figures

Figure 1

8 pages, 2371 KiB  
Short Note
Bis [4,4′-(1,3-Phenylenebis(azanylylidene))-bis(3,6-di-tert-butyl-2-oxycyclohexa-2,5-dien-1-one)-bis(dimethylsulfoxide)nickel(II)]
by Irina N. Meshcheryakova, Nikolay O. Druzhkov, Ilya A. Yakushev, Kseniya V. Arsenyeva, Anastasiya V. Klimashevskaya and Alexandr V. Piskunov
Molbank 2024, 2024(4), M1890; https://doi.org/10.3390/M1890 - 26 Sep 2024
Cited by 1 | Viewed by 1072
Abstract
A new cage-like dimeric nickel(II) complex Ni2L2(DMSO)4 based on a ditopic redox-active hydroxy-para-iminobenzoquinone type ligand LH2 (L is 4,4′-(1,3-phenylene-bis(azaneylylidene))-bis(3,6-di-tert-butyl-2-oxycyclohexa-2,5-dien-1-one dianion) was synthesized in DMSO at 120 °C. The molecular structure of [...] Read more.
A new cage-like dimeric nickel(II) complex Ni2L2(DMSO)4 based on a ditopic redox-active hydroxy-para-iminobenzoquinone type ligand LH2 (L is 4,4′-(1,3-phenylene-bis(azaneylylidene))-bis(3,6-di-tert-butyl-2-oxycyclohexa-2,5-dien-1-one dianion) was synthesized in DMSO at 120 °C. The molecular structure of the synthesized compound was determined by X-ray diffraction analysis. The complex Ni2L2(DMSO)4 is almost insoluble in all organic solvents, probably due to the presence of a large number of intermolecular contacts in its structure. The electronic spectrum and thermal stability of the crystalline compound have been studied. Full article
Show Figures

Figure 1

17 pages, 2583 KiB  
Article
Research on a Metal–Organic Framework (MOF)-Derived Carbon-Coated Metal Cathode for Strengthening Bioelectrochemical Salt Resistance and Norfloxacin Degradation
by Mengjie Fan, Hui Li, Liuhong Wang, Zhixuan Chen, Jining Liu and Yingwen Chen
Sustainability 2024, 16(16), 6711; https://doi.org/10.3390/su16166711 - 6 Aug 2024
Cited by 1 | Viewed by 1826
Abstract
Microbial fuel cells (MFCs) can realize the conversion of chemical energy to electrical energy in high-salt wastewater, but the easily deactivated cathode seriously affects the performance of MFCs. To enhance the stability and sustainability of MFC in such circumstances, a bimetallic organic framework [...] Read more.
Microbial fuel cells (MFCs) can realize the conversion of chemical energy to electrical energy in high-salt wastewater, but the easily deactivated cathode seriously affects the performance of MFCs. To enhance the stability and sustainability of MFC in such circumstances, a bimetallic organic framework ZIF-8/ZIF-67 was utilized for the synthesis of a carbon cage-encapsulated metal catalysts in this study. Catalysts with different Co and Ce ratio (Co@C (without the Ce element), CoCe0.25@C, CoCe0.5@C, and CoCe1@C) were employed to modify the activated carbon cathodes of MFCs. The tests demonstrated that the MFCs with the CoCe0.5@C cathode catalyst obtained the highest maximum power density (188.93 mW/m2) and the smaller polarization curve slope, which boosted the electrochemical activity of microorganisms attached to the anode. The appropriate addition of the Ce element was conductive to the stability of the catalyst’s active center, which is beneficial for the stability of catalytic performance. Under the function of the CoCe0.5@C catalyst, the MFCs exhibited superior and stable norfloxacin (NOR) degradation efficiency. Even after three cycles, the NOR degradation rate remained at 68%, a negligible 5.6% lower than the initial stage. Furthermore, based on the analysis of microbial diversity, the abundance of electrogenic microorganisms on a bioanode is relatively high with CoCe0.5@C as the cathode catalyst. This may be because the better cathode oxygen reduction reaction (ORR) performance can strengthen the metabolic activity of anode microorganisms. The electrochemical performance and NOR degradation ability of MFC were enhanced in a high-salt environment. This paper provides an approach to address the challenge of the poor salt tolerance of cathode catalysts in MFC treatment, and presents a new perspective on resource utilization, low carbon emissions, and the sustainable treatment of high-salt wastewater. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

13 pages, 5771 KiB  
Article
Southwestward Expansion of the Pacific Sleeper Shark’s (Somniosus pacificus) Known Distribution into the South China Sea
by Han Tian, Junsheng Zhong, Jiangyuan Chen, Yane Jiang, Jun Zhang, Wei Xie, Zuyuan Gao, Yuchao Wang, Haozhen Liu, Sujing Wang, Fei Zhang, Jie Yang and Kedong Yin
Animals 2024, 14(15), 2162; https://doi.org/10.3390/ani14152162 - 25 Jul 2024
Cited by 2 | Viewed by 2397
Abstract
We conducted an experiment of planting a dead cow and a metal-framed cage with cameras on the 1629 m deep sea floor off the southeast coast of Hainan Island in the northwestern South China Sea, using ROV diving and setting up a video [...] Read more.
We conducted an experiment of planting a dead cow and a metal-framed cage with cameras on the 1629 m deep sea floor off the southeast coast of Hainan Island in the northwestern South China Sea, using ROV diving and setting up a video camera on the cage to observe animals who came to eat the bait. The deep-sea cameras captured footage of eight Pacific sleeper sharks (Somniosus pacificus) swimming and feeding around the dead cow. To our knowledge, this is the first time the occurrence of such a shark species has been reported in the South China Sea. Eight individuals were differentiated based on the characteristic differences displayed in the images, with lengths of 1.9 to 5.1 m estimated. The video camera also recorded the predators’ behavior of tearing at the dead cow on the seabed. It was discovered that Pacific sleeper sharks are not strictly solitary and exhibit queue-feeding behavior. This study is significant as it documents a record of a data-scarce shark species, for which little information is available in the literature. It also documents an expansion of the species’ known habitat from the north Pacific Ocean into the South China Sea. Such sharks diving into the deep sea to predate on dead animals also suggests that occurrences of large chunks of dead organic bodies falling onto the deep sea might have been more frequent than we previously thought in the South China Sea. The findings have implications for understanding the geographic connectivity of large swimming animals between the South China Sea and the Pacific Ocean and provide scientific evidence for formulating conservation and management strategies for sharks and other large animals in the oceans. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 5103 KiB  
Article
Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate
by Xiaofeng Tang, Hanqing Xue, Jiawen Li, Shengnan Wang, Jie Yu and Tao Zeng
Toxics 2024, 12(5), 359; https://doi.org/10.3390/toxics12050359 - 12 May 2024
Cited by 2 | Viewed by 1947
Abstract
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are [...] Read more.
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are frequently proposed for treating persistent pollutants. In this study, the degradation performance of BPA in an oxidation system of PMS activated by transition metal sites anchored nitrogen-doped carbonaceous substrate (M-N-C) materials was investigated. As heterogeneous catalysts targeting the activation of peroxymonosulfate (PMS), M-N-C materials emerge as promising contenders poised to overcome the limitations encountered with traditional carbon materials, which often exhibit insufficient activity in the PMS activation process. Nevertheless, the amalgamation of metal sites during the synthesis process presents a formidable challenge to the structural design of M-N-C. Herein, employing ZIF-8 as the precursor of carbonaceous support, metal ions can readily penetrate the cage structure of the substrate, and the N-rich linkers serve as effective ligands for anchoring metal cations, thereby overcoming the awkward limitation. The research results of this study indicate BPA in water matrix can be effectively removed in the M-N-C/PMS system, in which the obtained nitrogen-rich ZIF-8-derived Cu-N-C presented excellent activity and stability on the PMS activation, as well as the outstanding resistance towards the variation of environmental factors. Moreover, the biological toxicity of BPA and its degradation intermediates were investigated via the Toxicity Estimation Software Tool (T.E.S.T.) based on the ECOSAR system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

11 pages, 3408 KiB  
Article
On the Diffusion of Ionic Liquids in ILs@ZIF-8 Composite Materials: A Density Functional Theory Study
by Longlong Liu, Kun Jiang, Qingjun Chen and Lei Liu
Molecules 2024, 29(8), 1697; https://doi.org/10.3390/molecules29081697 - 9 Apr 2024
Cited by 3 | Viewed by 1663
Abstract
Recently, composite materials consisting of ionic liquids (ILs) and metal–organic frameworks (MOFs) have attracted a great deal of attention due to their fantastic properties. Many theoretical studies have been performed on their special structures and gas separation applications. Yet, the mechanism for the [...] Read more.
Recently, composite materials consisting of ionic liquids (ILs) and metal–organic frameworks (MOFs) have attracted a great deal of attention due to their fantastic properties. Many theoretical studies have been performed on their special structures and gas separation applications. Yet, the mechanism for the diffusion of ILs inside MOF channels still remains unclear. Here, the DFT calculations (e.g., rigid and relaxed potential energy surface, PES, scan) together with frontier orbital analysis, natural charge analysis, and energy decomposition analysis were performed to investigate the diffusion behavior of a typical IL, [C4mim][PF6], into the ZIF-8 SOD cage. The PES profiles indicate that it is quite difficult for the cation [C4min]+ to diffuse into the cage of ZIF-8 through the pristine pores because of the large imidazole steric hindrance, which results in a large energy barrier of ca. 40 kcal·mol−1 at the least. Interestingly, the PES reveals that a successful diffusion could be obtained by thermal contributions, which enlarge the pore size through swing effects at higher temperatures. For example, both [C4mim]+ and [PF6] could easily diffuse through the channel of the ZIF-8 SOD cage when the pore size was increased to 6.9 Å. Subsequently, electronic structure analyses reveal that the main interactions between [PF6] or [C4mim]+ and ZIF-8 are the steric repulsion interactions. Finally, the effects of the amounts of [C4mim][PF6] on the ZIF-8 structures were investigated, and the results show that two pairs of [C4mim][PF6] per SOD cage are the most stable in terms of the interaction between energies and structural changes. With these findings, we propose that the high-temperature technique could be employed during the synthesis of IL@MOF membranes, to enrich their family members and their industrial applications. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

21 pages, 7734 KiB  
Review
Water-Soluble Molecular Cages for Biological Applications
by Giovanni Montà-González, Eduardo Ortiz-Gómez, Rocío López-Lima, Guillermo Fiorini, Ramón Martínez-Máñez and Vicente Martí-Centelles
Molecules 2024, 29(7), 1621; https://doi.org/10.3390/molecules29071621 - 4 Apr 2024
Cited by 11 | Viewed by 3577
Abstract
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host–guest chemical properties [...] Read more.
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host–guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages’ anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

18 pages, 7634 KiB  
Review
Biomedical Applications of Sulfonylcalix[4]arene-Based Metal–Organic Supercontainers
by Ya-Wen Fan, Meng-Xue Shi, Zhenqiang Wang, Feng-Rong Dai and Zhong-Ning Chen
Molecules 2024, 29(6), 1220; https://doi.org/10.3390/molecules29061220 - 8 Mar 2024
Cited by 3 | Viewed by 1975
Abstract
Coordination cages sustained by metal–ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal–organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an [...] Read more.
Coordination cages sustained by metal–ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal–organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an endo cavity and multiple exo cavities, are emerging as a new family of coordination cages. The well-defined built-in multiple binding domains of MOSCs allow the efficient encapsulation of guest molecules, especially for drug delivery. Here, we critically discuss the design strategy, and, most importantly, the recent advances in research surrounding cavity-specified host–guest chemistry and biomedical applications of MOSCs. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 788 KiB  
Article
Systematics of Crystalline Oxide and Framework Compression
by Oliver Tschauner
Crystals 2024, 14(2), 140; https://doi.org/10.3390/cryst14020140 - 30 Jan 2024
Cited by 3 | Viewed by 1176
Abstract
A universal equation of state of solids is one of the far goals of condensed matter science. Here, it is shown that within pressures of 2–100 GPa, the compression of oxides and oxide-based networks follows a linear relation between the molar volume and [...] Read more.
A universal equation of state of solids is one of the far goals of condensed matter science. Here, it is shown that within pressures of 2–100 GPa, the compression of oxides and oxide-based networks follows a linear relation between the molar volume and the combined ionic volume that is based on the pressure-dependent crystal radii at any pressure. This relation holds for simple and complex oxides and modified networks such as alumosilicates, beryllosilicates, borates, and empty zeolites. Available compression data for halides and metal-organic frameworks are also consistent with this relation. Thus, the observed relation also serves as a measure for pore-space filling in cage structures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop