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Abstract: A universal equation of state of solids is one of the far goals of condensed matter science.
Here, it is shown that within pressures of 2–100 GPa, the compression of oxides and oxide-based
networks follows a linear relation between the molar volume and the combined ionic volume that is
based on the pressure-dependent crystal radii at any pressure. This relation holds for simple and
complex oxides and modified networks such as alumosilicates, beryllosilicates, borates, and empty
zeolites. Available compression data for halides and metal-organic frameworks are also consistent
with this relation. Thus, the observed relation also serves as a measure for pore-space filling in
cage structures.
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1. Introduction

Advanced methods of computing the band structures of solids also provide good
assessments of their elastic properties. With suitable corrections of electron–electron in-
teractions, ab initio computation reproduces experimentally determined volumes over
extended ranges of pressure with small systematic uncertainties [1–3].

The present study looks for general concepts of compression across different structure
types and compositions. This purpose requires an approach somewhat different from
that of ab initio calculations: finding a general pattern for a large number of compounds
of a different structure, composition, and stoichiometry requires abstracting from the
specific direction-dependent bonding of the individual crystalline species, which vastly
differs between many of these materials. It is the purpose of this paper to examine if
there is any such general pattern of material compression beyond vague correlations with
large variances.

The compression of solids over intervals of pressure in the range of tens to hundreds
of GPa is commonly described in terms of Eulerian finite strain [4–6], and there are various
non-analytical correlations between volume, pressure, the bulk modulus, and its pressure
derivative that successfully describe solid-state compression over an extended range of
pressures, for instance, the Birch–Murnaghan [5,6] and the Vinet equation [7], or other
equations that are based on empirical potentials [6].

In a recent study [8], it was shown that pressure-dependent crystal radii can be defined
such that interatomic distances in more than 100 different observed crystal structures
between ambient and 160 GPa are reproduced within small uncertainties. It was found
that cations generally compress linearly over the examined range of pressures, whereas the
anions O2−, Cl−, and Br− follow an inverse power law. For a given valence, the cation and
anion compression vary systematically with the nuclear charge number, the screening of
the valence shell from the nuclei, and the azimuthal and principal quantum numbers [8].
Furthermore, a power–law correlation between crystal radii and electronegativity gives
an approximate quantitative measure of the change from localized ionic to more covalent
bonding along with pressure [9] that previously had been calculated [10] and inferred from
empirical data [11,12].
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These findings raise the question how the compression of solids relates to the com-
pression of the constituting atoms in the limiting case of ionic bonding—and if there is
any meaningful correlation. Although the ionic bond model falls short in describing the
properties of most solids, it is shown here that the molar and ionic volume (as defined
below) are linearly correlated for a larger number of solids of various structures and com-
positions. In other words, the volume compression of solids, as far as they are examined
here, is rather independent of directional variations in electron bond states. The linear
coefficient in the relation between the molar and ionic volume for each solid obeys a general
systematic trend.

2. Materials and Methods

The pressure dependencies of crystal radii that were recently obtained [8] are compared
to the observed compression of crystalline oxides, zeolites a metal–organic framework
(MOF), and a few halogenides. Compression of glasses and liquids shall be discussed in
a separate paper. The set of data includes polymorphs of same composition and isotypic
structures of different composition. All compression studies whose results have been used
here were conducted in diamond anvil cells at 300 K and compression was evaluated based
on X-ray diffraction and structure analysis. If available, single-crystal diffraction studies
were given preference over power diffraction data. Wherever available, data obtained
under hydrostatic or nearly hydrostatic compression in solid He or Ne media were given
preference over non-hydrostatic compression studies. However, compression studies of
empty zeolites and MOFs are conducted with silicon oil pressure media in order to shift the
filling of the framework to higher pressure. Silicon oils do not provide hydrostatic stress to
as high pressures as neon or helium at 300 K.

The following classes of materials were examined (Table 1): (a) simple oxides and
halogenides of the NaCl- and CsCl-type (henceforth, B1- and B2-type); (b) polymorphic
AO2, A2O3-oxides of the corundum-type; (c) the polymorphic silicates MgSiO3, CaSiO3,
and Mg2SiO4 and their isotypic equivalents MgGeO3 and Al2BeO4; (d) alumo-, boro-, and
beryllosilicates including framework structures; and (e) one MOF.

Pressure-dependent ionic volumes of solids are defined here as the sum of the cubes
of the pressure-dependent crystal radii of the constituting atoms. For a compound such
as AiBjCk. . ., where i, j, k. . . gives the stoichiometry of the chemical species A, B, C. . ., the
‘ionic volume’ is

4π/3 (i·rA
3 + j·rB

3 + k·rC
3 . . .), (1)

Thence, the total ionic volume at pressure P is calculated from (1) using the crystal radii
rA (P), rB (P), and rC (P) at pressure P. At each pressure P, the ionic volumes are compared
to the observed molar volumes of the material AiBjCk. . . The pressure-dependent radii that
are used in this study are taken from [8] (that is, either from the Tables 1 and 2 that are
given in reference [8] or, if not measured, are calculated by Formula (1) in reference [8]).
Bond coordinations are given as Roman numbers. The assessment of bond coordination
has been discussed in [8]. The issue of applicability of the crystal radii concept to MOFs is
discussed below.

Table 1. Fitted values A and V′ for Relation (2). Mineral species are given with the mineral name.
Synthetic phases by their chemical sum formula or, for framework structures, by the commonly used
compound name.

Phase Name A (1024/mol) 1-σ V′ (10−6 m3/mol) 1-σ Ref.

Akimotoite 1.36 0.07 10.3 2 [13]
Bridgmanite 0.85 0.04 0.67 0.98 [14–16]
Postperovskite 1.27 0.07 13.26 0.8 [17,18]
Clinoenstatite(H) 3.05 0.11 44.8 2.8 [19]
Enstatite 6.61 0.14 100 3.3 [20]
Ringwoodite 2.7 0.07 59.1 2.5 [21]
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Table 1. Cont.

Phase Name A (1024/mol) 1-σ V′ (10−6 m3/mol) 1-σ Ref.

MgGe-ilmenite 2.43 0.13 37 3.6 [13]
MgO 1.428 0.027 3.5 0.24 [22]
Breyite 24.8 0.5 486 14 [23]
MgGe-postperovskite 1.19 0.09 9.7 2.2 [24]
CaOB1 1.27 0.04 1.58 0.41 [25]
CaOB2 0.87 0.02 0.19 0.23 [25]
LaAlO3 1.05 0.08 5.75 2.9 [26]
Stishovite 2.82 0.30 29.2 4.5 [27–30]
Rutile 1.99 0.14 14.0 2.3 [31]
Zeolite-Y 171 11 2044 163 [32]
Cristobalite 13.82 0.11 184.0 1.7 [33]
Quartz 9.32 0.46 117.8 6.8 [34,35]
Eskolaite 2.53 0.04 39.02 0.96 [36]
Corundum 2.25 0.04 32.94 0.90 [37–39]
Chrysoberyl 1.1 0.05 19.6 2.5 [40]
Forsterite 3.88 0.04 81.3 1.3 [41]
Davemaoite 0.92 0.02 3.00 0.57 [42]
CaIr-postperovskite 1.10 0.01 1.39 0.31 [43]
Spinel (Mg,Al) 2.55 0.05 51.7 1.8 [44]
Cancrinite 8.19 0.18 1381 47 [45]
Kalsilite 2.42 0.06 63 1 [46]
Nepheline 4.84 0.05 673 8 [47]
Pyrope 1.94 0.06 110.6 6.4 [48,49]
Grossular 1.53 0.08 70 10 [49]
Dravite 5.09 0.38 827 83 [50]
Andalusite 2.92 0.17 64.6 6.7 [51]
Inyoite 10.22 0.17 835 18 [52]
TbTi2O7 2.05 0.12 78.9 8.4 [53]
Na-X 116.9 6.4 1220 96 [54]
RHO-A 40.5 0.97 462 15 [54]
ZIF4 623 94 14,453 1750 [55]
Halite 0.77 0.04 22.6 0.7 [56]
NaCl_B2 8.45 0.26 1.86 0.49 [56]
KClB2 7.00 0.14 1.43 0.53 [57]
KBrB2 6.88 0.15 1.94 0.53 [57]
Forsterite-II 3.87 0.04 98.1 1.3 [41]
Forsterite-III 2.5 1.6 54.6 5.4 [41]
Cummingtonite 4.43 0.29 588 56 [58]
Coesite 4.8 0.6 51 8 [59]
Sodalite 4.86 0.13 943 35 [60]

3. Results

Figure 1 shows the correlation of the ionic and molar volume for several materials
at different pressures at 300 K. The pressures that correspond to these volumes differ for
different materials and range from a few GPa for the zeolite RHO-A to more than 100 GPa
for MgO and B2-type KCl. All materials shown in Figure 1 exhibit a linear correlation
between ionic and molar volumes. The same strong linear correlation was found for all
materials listed in Table 1 over most of the range of their isothermal compression.

The observed linear correlation of the ionic and molar volume over large ranges of
pressures for many materials of different compositions and structures (Table 1) is not a
trivial finding because the ionic bond concept is a limiting case of bonding; it neglects actual
electron density gradients along and perpendicular to the bond vectors and directional
variations in the bond strength in favor of a spherical average. Thus, Figure 1 and Table 1
show that volume compression is rather independent of these directional variations.



Crystals 2024, 14, 140 4 of 10
Crystals 2024, 14, x FOR PEER REVIEW 4 of 11 
 

 

0 10 20 30 40
0

20

1400

1600

1800

KCl B2

CaO B2

CaO

MgO

RHO-A

Esk

Dvm

CEn

V m
ol
 [c

m
3 /m

ol
]

Vion [A
3]

Bdm

Cor

 
Figure 1. Correlation of molar and ionic volumes of various materials. The relation is linear for all 
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Figure 1. Correlation of molar and ionic volumes of various materials. The relation is linear for all
materials listed in Table 1. Ionic volumes are calculated based on Equation (1). Abbreviations of
mineral names are: Bdm = bridgmanite, Dvm = davemaoite, Esk = eskolaite, Cor = corundum, and
CEn = (high-pressure) clinoenstatite.

Figure 1 unites examples of materials of different structure types and compositions.
For instance, corundum (γ-Al2O3) and eskolaite (Cr2O3) are isotypic and the linear relation
between the ionic and molar volume

Vmol(P) = A·Vion(P) − V′, (2)

is very similar with A = 2.25(4)·1024/mol = 3.74(6)NA and 2.53(4) × 1024/mol = 4.20(7)NA
and V′ = 32.9(9) and 39.0(10) × 10−6 m3/mol for corundum and eskolaite, respectively
(NA = Avogadro number). Bridgmanite and davemaoite are both ABO3-type perovskites
with B = SiVI. Within uncertainties, they exhibit equal linear coefficient A (Table 1) which,
furthermore, is nearly equal to that of CaO (B2), whereas CaO (B1) and MgO (B1) have
nearly an equal factor A, which, however, differs markedly from that of CaO (B2) (Figure 1).
Hence, materials of similar basic structure type, such as CsCl-and NaCl-type structures,
exhibit similar linear coefficients A in Relation (2). It is noted that Relation (2) deviates
from linearity if, intentionally, ionic volumes with incorrect coordinations of ions are
used. However, the worsening of the R2 value of the fits are generally small and the main
difference is a shift of A and V’. More noticeable deviations from linearity are observed
if the ionic volumes for an incorrect stoichiometry are used. This is not surprising, but
the two observations combined emphasize that the compression of oxides is controlled
by that of the anion, which dominates the ionic volume by its large radius, its strong
compression, and by stoichiometry. This suggests that Relation (2) does not provide a good
discrimination between correct and incorrect coordinations, but it is shown below that the
shift of A and V′ in Relation (2) allows for this distinction.

4. Discussion

High-pressure clinoenstatite (HCEn) MgSiO3 has the same composition as bridgman-
ite, but assumes a linear chain structure of silica tetrahedra with interstitial Mg on two
distorted octahedral sites. The correlation between the ionic and molar volume of HCEn
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is linear, but different from that of bridgmanite (Figure 1). In fact, it is close to that of
corundum and eskolaite in agreement with the fact that HCEn compression is controlled
by the contraction of the MgO6 octahedra [19], which form edge-sharing chains in the py-
roxene structure. In sum, isotypic phases and phases of similar structures exhibit the same
or a similar relation between molar and ionic volumes at any pressure, but isochemical
compounds of different structures give different linear coefficients A in Relation (2). This
rule avails for all studied oxides, but it does not extend to isotypic solids with other anions.
KCl (B2) follows a much steeper linear correlation than CaO (B2), probably because the
monovalent chloride anion ismore compressibile than the divalent oxide anion. Based on
the few available data, the cause of this difference cannot be evaluated, but it is suggested
that it is related to the anion valence.

Returning to oxides, it is noteworthy that even structures as large as zeolites [32,54]
obey the linear Relation (2) between the ionic and molar volume (Figures 1 and 2). The
relation appears to extend to metal–organic frameworks; at least, ZIF-4 [55] follows a
linear relationship between a reference ‘ionic volume’ 4π/3 · [r(ZnIV,2+)3 + 6·r(CIV,4+)3 +
4·r(NIII,2+)3] and its molar volume between 1 and 6 GPa (and the contribution of H has been
neglected in the reference ionic volume). The relationships of the molar and the reference
ionic volume of some large framework materials like Na-X, sodalite, cristobalite, and ZiF-4
are shown in Figure 2. It is understood that crystal radii are not good representations
of the chemical bonding in MOFs, besides that H is not even considered in the used
reference ionic volume. Yet, ZIF-4 exhibits a linear relation between the experimental molar
volume [55] and the reference ionic volume, as defined above. While the ionic volumes of
such framework materials may not be considered as fully quantitative, Relation (2) provides
a measure for pressure-induced void filling in such structures and for the irreversible
collapse of compressed frameworks through deviations of the measured volumes from
Relation (2).
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Figure 2. Relation of molar and ionic volume of larger framework structures. Insert: the same relation
for ZIF-4 with the equivalent.

Most materials that are listed in Table 1 show minor deviations from the linear regime
of the ionic–molar volume relationship at pressures below 1–2 GPa. This can be seen
in Figure 1 for the largest volume of eskolaite and davemaoite, respectively, with each
corresponding to about 1 GPa of pressure. This low-pressure offset signifies a slight con-
traction of the molar relative to the ionic volume and is interpreted as reflecting directional
components in elastic bond compression that are beyond the spherically symmetric model
of pressure-dependent crystal radii and which have been assessed through the concept of
bonded radii [61]. While the 0–2 GPa regime is important in many respects, the present
study focuses on the linear regime that avails for the elastic compression of all examined
materials above this low-pressure regime and up to the highest pressures examined.
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It may be objected that many of the examined materials do not exhibit a strongly ionic
bond character or include bonds of different degrees of valence electron transfer between
cations and anions. However, the observed linear correlation between ionic and molar
volume (Figures 1 and 2, Table 1) shows that the pressure-dependent crystal radii reproduce
the compression of solids of vastly different compositions, structures, and bond topologies
over a large range of pressures. While this novel correlation is not a substitute for the more
precise first-principles-based computation of the elasticity of specific solids, it allows for the
direct comparison of the compression behavior across structure types and compositional
spaces as well as the prediction of bulk moduli for very large structures or multicomponent
solid solutions where computation is costly.

In a second step, the nature of the constant factor A and the constant term V′ has to be
examined. V′ has the dimension of a volume and does not vanish when Vion becomes zero.
Thus, on a first glance, V′ may be taken as a geometric measure of the interstitial voids in
a given structure. However, V′ remains invariant over the examined ranges of pressure
since Relation (2) remains linear within narrow bounds (Figures 1 and 2, Table 1). In fact,
for a given composition, V′ changes significantly only upon phase transitions, such as from
the B1 to the B2 phase of CaO, or from enstatite to HCEn and further to akimotoite and
bridgmanite, all four of which are polymorphs of MgSiO3 (see Figure 1). In addition, V′

is quite different for isotypic halogenides and oxides such as KCl and CaO in the B2-type
structure. Thus, V′ is not purely geometric. Rather, V′ represents a rigid minimal void
space of a given structure, but not the actual interstitial space that is reduced along with
the reduction of interatomic distances in a solid. For oxides, A/NA is related to V′/V0 (V0
being the molar volume at standard conditions) as (V′/V0)3/2 = 0.61(2)A/NA-1.06(9) with
an R2 of 0.975. This is shown in Figure 3. The fit has been conducted over all data points
with A/NA and (V′/V0)3/2 < 15.
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(see Table 1). A (here divided by the Avogadro number NA) relates to V′/V0 to the power 3/2 for all
materials listed in Table 1. However, very large framework structures appear to have a constant offset.
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Consequently, this range of data (2) can be reformulated as

V(P) = NAVion(P)·
[

0.61(2)
(

V′

V0

) 3
2

− 1.06(9)

]
− V′ (3)

where NA is the Avogadro Number, V0 the molar volume at standard conditions, and
V(P) and Vion(P) are the molar and ionic volumes at pressures P and V′, as defined in
Equations (1) and (2), respectively.

Relation (3) holds for simple and complex oxides including garnets, pyrochlore (Tb-Ti),
sodalite, inyoite, and tourmaline. At the end of the Section 3, it was mentioned that changes
of the ionic volume to the wrong composition or wrong coordination cause only minor
deviations from linearity in Relation (2), but cause shifts of the constant factor A and the
constant term V′. For instance, if the molar volumes of HCEn are (arbitrarily) correlated
with the ionic volumes of grossular, the coefficient A changes from 5.06 (11) to 0.47 (2), and
V′ changes from 44.8 (2.8) to 23.7 (2.8).,These values are distinctly shifted off the main trend
of data in Figure 3 and Relation (3). The ionic volume for MgX, SiVI, and OVI are used
instead of MgVI, SiIV, and OIII for HCEn shifts A and V′ to 0.69 (3) and 9.3 (9), respectively,
which is still noticeably off the trend defined by Equation (3). Thus, Relation (3) provides
a distinction for correct and incorrect bond coordinations and stoichiometry, though it is
limited by the fact that the oxide anion compression dominates over cation compression
and by the variance in a correlation such as (3) that compares materials of vastly different
structures and compositions (see Figure 3).

However, very large framework structures such as the zeolites RHO-A, Na-X, and
ZIF-4 deviate markedly from (3) while they obey Relation (2). ZIF-4 is not an oxide and
compliance to (3) is not expected since halogenides also do not follow Relation (3). For
the zeolites, it is noted that a geometric rescaling of the chemical formula unit Z based
on the reduced chemical formula brings the molar–ionic volume relation close to match
Relation (3). These are the data points shown in Figure 3 for A NA and (V′/V0)3/2 > 15. The
relation appears to be the same, but with a constant offset different from that for A/NA and
(V′/V0)3/2 < 15. The reduced chemical formulas have been calculated as follows: For Na-X,
a faujasite-type zeolite, the chemical formula Na4.38H1.62Al6Si6O24 with Z = 16 has been
rewritten as (Na,H)3/4Al3/4Si3/4O3, where the three highest symmetric sites in the structure,
32e (partially occupied by Na and H), are mapped onto one site, and the reduced unit cell
gives a volume at standard conditions of 70.1 rather than 560.8 cm3/mol. It requires more
compression data for empty zeolites beyond 2 GPa to assess if the proposed rescaling is
justified. At the present state, the validity of Relation (3) (Figure 3) is only confirmed for
A/NA and (V′/V0)3/2 < 15, while Relation (2) holds for all examined materials, including
zeolites (see Figures 1 and 2). It should be noted that deviations from hydrostatic pressure
in the experiments on empty framework materials may affect these data more than those
collected in helium, neon, or liquid methanol–ethanol mixtures (see Section 2).

In sum, the molar volume at any pressure and of any of the examined phases is
represented as a sum of the cubes of the crystal radii of the constituting chemical species
and a rigid reference volume V′ that relates the ionic to the molar volume. Thus, for
compounds with O2− as a constituting anion and with a known composition and molar
volume at standard conditions, their compression at 300 K is easily computed based on
Relations (2) and (3).

5. Conclusions

An extensive set of compression data for simple and complex oxides is used to show a
strong linear correlation between the molar and ionic volume at any examined pressure
above 2 GPa. Ionic volumes are computed as a sum of the cubes of the pressure-dependent
crystal radii multiplied by their stoichiometric factors (Section 2, Equation (1)). The lin-
earity of the relation between the molar and ionic volume, thus defined, extends to large
framework structures such as zeolites and MOFs. The relation also applies to halogenides.
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For oxides, the linear relationship between the molar and ionic volume is further
reduced by defining a single volumetric parameter that relates the molar and ionic vol-
ume and that can be obtained at standard conditions. This extended Relation (Section 4,
Equation (3)) holds for simple oxides and for silicates including garnets, tourmaline, and
sodalite. Based on this relation, known pressure-dependent crystal radii and the molar
volume at standard conditions volume compression is easily computed. This approach
is of interest for assessing the compression of multicomponent solid solutions and of
very large structures such as zeolites where ab initio predictions are costly. Moreover,
Equation (1) through (3) allow for assessing empty framework compression through devi-
ations from the linear relation between ionic and molar volumes as function of pressure,
and, thus, for discriminating the effect of compression-induced void filling and irreversible
framework collapse.

In the same way, the observed relation can be used to monitor volume misfits from
deviatoric stresses in high-pressure experiments. Furthermore, the relationship between the
molar and ionic volume is useful in assessing the pressure-derivative of the bulk modulus,
k0′ , which is the same for the ionic and the molar volumes, but is commonly hard to
assess directly through fits of pressure–volume data by equations of state. In addition, the
relation can be used to assess isotherms at temperatures different from 300 K, which are
experimentally more challenging and are subject to combined uncertainties of pressure and
temperature assessments.

Overall, the present work shows that above 2 GPa, the volume compression of ox-
ides and halides is largely independent of directional differences in bond strength and
electron distribution.

Finally, it should be noted that the general linear relationship between empirical molar
volumes and the ionic volumes that are derived from the pressure-dependent crystal radii
confirms that the latter are meaningful physical parameters because they properly represent
the volume compression of a large number of compounds and structures.
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