Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = metal–metal oxide interfacial site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Cited by 1 | Viewed by 765
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 5430 KiB  
Article
Electrocatalytic Pathways and Efficiency of Cuprous Oxide (Cu2O) Surfaces in CO2 Electrochemical Reduction (CO2ER) to Methanol: A Computational Approach
by Zubair Ahmed Laghari, Wan Zaireen Nisa Yahya, Sulafa Abdalmageed Saadaldeen Mohammed and Mohamad Azmi Bustam
Catalysts 2025, 15(2), 130; https://doi.org/10.3390/catal15020130 - 29 Jan 2025
Viewed by 1697
Abstract
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, [...] Read more.
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, combining experimental approaches with computational quantum mechanics to elucidate reaction mechanisms. Although computational studies face challenges due to a lack of accurate approximations, they offer valuable insights and assist in selecting suitable catalysts for specific applications. This study investigates the electrocatalytic pathways of CO2 reduction on cuprous oxide (Cu2O) catalysts, utilizing the computational hydrogen electrode (CHE) model based on density functional theory (DFT). The electrocatalytic performance of flat Cu2O (100) and hexagonal Cu2O (111) surfaces was systematically analysed, using the standard hydrogen electrode (SHE) as a reference. Key parameters, including free energy changes (ΔG), adsorption energies (Eads), reaction mechanisms, and pathways for various intermediates were estimated. The results showed that CO2 was reduced to CO(g) on both Cu2O surfaces at low energies. However, methanol (CH3OH) production was observed preferentially on Cu2O (111) at ΔG = −1.61 eV, whereas formic acid (HCOOH) and formaldehyde (HCOH) formation were thermodynamically unfavourable at interfacial sites. The CO2-to-methanol conversion on Cu2O (100) exhibited a total ΔG of −3.38 eV, indicating lower feasibility compared to Cu2O (111) with ΔG = −5.51 eV. These findings, which are entirely based on a computational approach, highlight the superior catalytic efficiency of Cu2O (111) for methanol synthesis. This approach also holds the potential for assessing the catalytic performance of other transition metal oxides (e.g., nickel oxide, cobalt oxide, zinc oxide, and molybdenum oxide) and their modified forms through doping or alloying with various elements. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2952 KiB  
Article
Tailoring Metal–Oxide Interfaces via Selectively CeO2-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance
by Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li and Hong He
Nanomaterials 2025, 15(3), 197; https://doi.org/10.3390/nano15030197 - 27 Jan 2025
Cited by 1 | Viewed by 960
Abstract
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2 [...] Read more.
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2O3-xCeO2) that are selectively decorated by CeO2, which form core–shell-like structures and generate more Pd-CeO2 interfacial sites, so that the three-way catalytic activity of Pd/Al2O3-xCeO2 catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO2 and good low-temperature reducibility. At the moment, the Pd/Al2O3-xCeO2 catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO2 and part of the Pd species being incorporated into the lattice of CeO2. This is a major reason for the Pd/Al2O3-xCeO2 catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal–oxide interfaces and the interaction between Pd NPs and CeO2 are responsible for the excellent catalytic performance and stability of Pd/Al2O3-xCeO2 catalysts in three-way reactions. Full article
Show Figures

Figure 1

13 pages, 3466 KiB  
Article
Supported Inverse MnOx/Pt Catalysts Facilitate Reverse Water Gas Shift Reaction
by Wenli Bi, Ruoyu Zhang, Qingfeng Ge and Xinli Zhu
Catalysts 2024, 14(7), 456; https://doi.org/10.3390/catal14070456 - 16 Jul 2024
Cited by 3 | Viewed by 1620
Abstract
Catalytic conversion of CO2 to CO via the reverse water gas shift (RWGS) reaction has been identified as a promising approach for CO2 utilization and mitigation of CO2 emissions. Bare Pt shows low activity for the RWGS reaction due to [...] Read more.
Catalytic conversion of CO2 to CO via the reverse water gas shift (RWGS) reaction has been identified as a promising approach for CO2 utilization and mitigation of CO2 emissions. Bare Pt shows low activity for the RWGS reaction due to its low oxophilicity, with few research works having concentrated on the inverse metal oxide/Pt catalyst for the RWGS reaction. In this work, MnOx was deposited on the Pt surface over a SiO2 support to prepare the MnOx/Pt inverse catalyst via a co-impregnation method. Addition of 0.5 wt% Mn to 1 wt% Pt/SiO2 improved the intrinsic reaction rate and turnover frequency at 400 °C by two and twelve times, respectively. Characterizations indicate that MnOx partially encapsulates the surface of the Pt particles and the coverage increases with increasing Mn content, which resembles the concept of strong metal–support interaction (SMSI). Although the surface accessible Pt sites are reduced, new MnOx/Pt interfacial perimeter sites are created, which provide both hydrogenation and C-O activation functionalities synergistically due to the close proximity between Pt and MnOx at the interface, and therefore improve the activity. Moreover, the stability is also significantly improved due to the coverage of Pt by MnOx. This work demonstrates a simple method to tune the oxide/metal interfacial sites of inverse Pt-based catalyst for the RWGS reaction. Full article
Show Figures

Graphical abstract

18 pages, 21085 KiB  
Article
High-Temperature Cyclic Oxidation Behavior and Microstructure Evolution of W- and Ce-Containing 18Cr-Mo Type Ferritic Stainless Steel
by Jiahao Zheng, Yang Feng, Yang Zhao and Liqing Chen
Materials 2024, 17(10), 2230; https://doi.org/10.3390/ma17102230 - 9 May 2024
Cited by 2 | Viewed by 1629
Abstract
Due to the recurrent starting and stopping operations of automobiles during service, their engines’ hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the [...] Read more.
Due to the recurrent starting and stopping operations of automobiles during service, their engines’ hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the high-temperature cyclic oxidation performance of 18Cr-Mo (444-type) ferritic stainless steel by alloying with high-melting-point metal W and the rare earth element Ce. For this purpose, a high-temperature cyclic oxidation experiment was designed to simulate the actual service environment and investigate the high-temperature cyclic oxidation behavior and microstructure evolution of 444-type ferritic stainless steel alloyed with W and Ce. The oxide structure and composition formed during this process were analyzed and characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS) and electron probe X-ray micro-analyzer (EPMA), in order to reveal the mechanism of action of W and Ce in the cyclic oxidation process. The results show that 18Cr-Mo ferritic stainless steel alloyed with W and Ce exhibits an excellent resistance to high-temperature cyclic oxidation. The element W can promote the precipitation of the Laves phase between the matrix and the oxide film, and the small-sized Laves phase can inhibit the interfacial diffusion of oxidation reaction elements and prevent the inward growth of the oxide film. The element Ce can refine oxide particles and reduce the thickness of the oxide film. CeO2 particles within the oxide film can serve as nucleation sites for the formation of oxide particles from reactive elements, and they also contribute to pinning the oxide film, thereby enhancing its adhesion. Full article
Show Figures

Figure 1

13 pages, 3683 KiB  
Article
Graphene-Oxide-Modified Metal–Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation
by Long Feng, Qiuning Zhang, Jianwen Su, Bing Ma, Yinji Wan, Ruiqin Zhong and Ruqiang Zou
Nanomaterials 2024, 14(1), 24; https://doi.org/10.3390/nano14010024 - 21 Dec 2023
Cited by 8 | Viewed by 2499
Abstract
MOF-74 (metal–organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles [...] Read more.
MOF-74 (metal–organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage. Full article
Show Figures

Figure 1

16 pages, 3493 KiB  
Article
Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt
by Ayoub Laghrissi and Mohammed Es-Souni
Nanomaterials 2023, 13(13), 2007; https://doi.org/10.3390/nano13132007 - 5 Jul 2023
Cited by 2 | Viewed by 2020
Abstract
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered [...] Read more.
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered Au/Pd nanostructures than monolithic Pd, electrodeposited 20 nm Pd discs on Au-NRs are first investigated in terms of their catalytic activity for the hydrogen evolution reaction (HER) and compared to monolithic 20 nm Pd and Pt discs. To further boost performance, the interfacial interaction area between the Au-NRs supports and the active metals (Pt and Pd) was increased via magnetron sputtering an extremely thin layer of Pt and Pd (20 nm overall sputtered thickness) on the Au-NRs after template removal. In this way, the whole NR surface (top and lateral) was covered with Pt and Pd nanoparticles, ensuring a maximum interfacial contact between the support and the active metal. The HER performance obtained was substantially higher than that of the other nanostructures. A Salient result of the present work, however, is the superior activity obtained for sputtered Pd on Au in comparison to that of sputtered Pt on Au. The results also show that increasing the Au-NR length translates in a strong increase in performance. Density functional theory calculations show that the interfacial electronic interactions between Au and Pd lead to suitable values of hydrogen adsorption energy on all possible sites, thus promoting faster (barrier-free diffusion) hydrogen adsorption and its recombination to H2. A Volmer–Heyrovsky mechanism for HER is proposed, and a volcano plot is suggested based on the results of the Tafel plots and the calculated hydrogen adsorption energies. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

19 pages, 25463 KiB  
Article
Carbonized Polydopamine-Based Nanocomposites: The Effect of Transition Metals on the Oxygen Electrocatalytic Activity
by Jesús Cebollada, David Sebastián, María Jesús Lázaro and Maria Victoria Martínez-Huerta
Nanomaterials 2023, 13(9), 1549; https://doi.org/10.3390/nano13091549 - 5 May 2023
Cited by 15 | Viewed by 3225
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the most critical processes in renewable energy-related technologies, such as fuel cells, water electrolyzers, and unitized regenerative fuel cells. N-doped carbon composites have been demonstrated to be promising ORR/OER catalyst candidates [...] Read more.
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the most critical processes in renewable energy-related technologies, such as fuel cells, water electrolyzers, and unitized regenerative fuel cells. N-doped carbon composites have been demonstrated to be promising ORR/OER catalyst candidates because of their excellent electrical properties, tunable pore structure, and environmental compatibility. In this study, we prepared porous N-doped carbon nanocomposites (NC) by combining mussel-inspired polydopamine (PDA) chemistry and transition metals using a solvothermal carbonization strategy. The complexation between dopamine catechol groups and transition metal ions (Fe, Ni, Co, Zn, Mn, Cu, and Ti) results in hybrid structures with embedded metal nanoparticles converted to metal–NC composites after the carbonization process. The influence of the transition metals on the structural, morphological, and electrochemical properties was analyzed in detail. Among them, Cu, Co, Mn, and Fe N-doped carbon nanocomposites exhibit efficient catalytic activity and excellent stability toward ORR. This method improves the homogeneous distribution of the catalytically active sites. The metal nanoparticles in reduced (MnO, Fe3C) or metallic (Cu, Co) oxidation states are protected by the N-doped carbon layers, thus further enhancing the ORR performance of the composites. Still, only Co nanocomposite is also effective toward OER with a potential bifunctional gap (ΔE) of 0.867 V. The formation of Co-N active sites during the carbonization process, and the strong coupling between Co nanoparticles and the N-doped carbon layer could promote the formation of defects and the interfacial electron transfer between the catalyst surface, and the reaction intermediates, increasing the bifunctional ORR/OER performance. Full article
(This article belongs to the Special Issue Application of Porous Nanomaterials in Energy Storage and Catalysis)
Show Figures

Figure 1

14 pages, 7808 KiB  
Article
ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction
by Yixuan Li, Yanqi Xu, Cunjun Li, Wenfeng Zhu, Wei Chen, Yufei Zhao, Ruping Liu and Linjiang Wang
Molecules 2023, 28(3), 1173; https://doi.org/10.3390/molecules28031173 - 25 Jan 2023
Cited by 15 | Viewed by 3122
Abstract
The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such [...] Read more.
The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such as Ni, Co, and Fe). In this work, high-performance NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) architectures with hollow nanocage structures as electrocatalysts for EOR were prepared via sacrificial ZIF-67 templates on CNTs. Comprehensive structural characterizations revealed that the as-synthesized NiCo-LDH@CNTs architecture displayed 3D hollow nanocages of NiCo-LDH and abundant interfacial structure between NiCo-LDH and CNTs, which could not only completely expose active sites by increasing the surface area but also facilitate the electron transfer during the electrocatalytic process, thus, improving EOR activity. Benefiting from the 3D hollow nanocages and interfacial structure fabricated by the sacrificial ZIF-67-templated method, the NiCo-LDH@CNTs-2.5% architecture exhibited enhanced electrocatalytic activity for ethanol oxidation compared to single-component NiCo-LDH, where the peak current density was 11.5 mA·cm−2, and the jf/jb value representing the resistance to catalyst poisoning was 1.72 in an alkaline environment. These results provide a new perspective on the fabrication of non-precious metal electrocatalysts for EOR in DEFCs. Full article
(This article belongs to the Special Issue Catalysis, Electronics, Energy and Health at Nanoscale Domain)
Show Figures

Figure 1

20 pages, 5808 KiB  
Review
Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview
by Changming Fang and Zhongyun Fan
Metals 2022, 12(10), 1618; https://doi.org/10.3390/met12101618 - 27 Sep 2022
Cited by 10 | Viewed by 2577
Abstract
Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to a liquid/solid interface at temperatures above its nucleation temperature. It produces a precursor for heterogeneous nucleation in the liquid and thus has a strong influence on the nucleation process. Oxide [...] Read more.
Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to a liquid/solid interface at temperatures above its nucleation temperature. It produces a precursor for heterogeneous nucleation in the liquid and thus has a strong influence on the nucleation process. Oxide particles, including magnesia, spinel, and alumina, are inevitably formed in the liquid during liquid–metal handling and casting. They may act as nucleation sites for potential grain refinement. Knowledge about prenucleation at liquid–metal/oxide (M(l)/oxide) interfaces is important for an understanding of heterogeneous nucleation during casting. Here, we present an overview of the recent studies on the prenucleation at the M(l)/oxide interfaces using ab initio molecular dynamics simulation techniques. We observed a wide variety of interfacial chemistry and identified the formation of an ordered metal layer terminating the oxide substrates, such as MgO{1 1 1} (denoting MgO with {1 1 1} surface termination), α-Al2O3{0 0 0 1}, MgAl2O4{1 1 1} and γ-Al2O3{1 1 1} in liquid light metals. The terminating metal atoms are positively charged and form topologically rough layers, which strongly impact the prenucleation at the interfaces. We suggest modification of nucleation potency of the substrate surfaces via elemental segregation to manipulate the solidification processes. This is demonstrated by the segregation of La atoms at the Al(l)/γ-Al2O3 interfaces. Full article
Show Figures

Figure 1

11 pages, 2525 KiB  
Article
Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO2 Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application
by Md Moniruzzaman, Yedluri Anil Kumar, Mohan Reddy Pallavolu, Hammad Mueen Arbi, Salem Alzahmi and Ihab M. Obaidat
Nanomaterials 2022, 12(18), 3187; https://doi.org/10.3390/nano12183187 - 14 Sep 2022
Cited by 99 | Viewed by 4892
Abstract
Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting [...] Read more.
Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting area for MnO2. In the meantime, the excellent retentions of the hierarchical phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO2. The unique cobalt-doped@MnO2 nanocomposite electrode facilitates stable electrochemical architecture, multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO2 nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of 337.8 F g–1 at 0.5 A g–1; this is greater than pristine MnO2 (277.9 F g–1). The results demonstrate a worthy approach for the designing of high-performance SCs by the grouping of the nanostructured dopant material and metal oxides. Full article
Show Figures

Graphical abstract

14 pages, 2940 KiB  
Article
Dehydroxylation of Kaolinite Tunes Metal Oxide–Nanoclay Interactions for Enhancing Antibacterial Activity
by Dongyue Wang, Yuhang Meng, Aidong Tang and Huaming Yang
Minerals 2022, 12(9), 1097; https://doi.org/10.3390/min12091097 - 29 Aug 2022
Cited by 2 | Viewed by 2265
Abstract
Engineered nanoparticle–support interaction is an effective strategy for tuning the structures and performance of engineered nanoparticles. Here, we show that tuning the dehydroxylation of kaolinite nanoclay as the support could induce zinc oxide–kaolinite interactions. We used free energy theory, electron microscopy, and X-ray [...] Read more.
Engineered nanoparticle–support interaction is an effective strategy for tuning the structures and performance of engineered nanoparticles. Here, we show that tuning the dehydroxylation of kaolinite nanoclay as the support could induce zinc oxide–kaolinite interactions. We used free energy theory, electron microscopy, and X-ray photoemission spectroscopy to identify interaction strengths between metal oxides and the underlying nanoclay induced by dehydroxylation. Desirable exposure of nanoparticle sites and the geometrical and crystal structure were obtained by tuning the interface interactions between ZnO nanoparticles and nanoclay. The surface free energy of zinc oxide–nanoclay results in different interfacial interactions, and the properties of the surface free energy electron-donating (γ) and electron-accepting (γ+) parameters have significant effects on the electron acceptor. This could, in turn, promote stronger interactions between zinc oxide and the kaolinite surface, which produce more active (0001) Zn-polar surfaces with promoting zinc oxide nanoparticles growing along the <0001> direction. Reactive oxygen species, leached zinc ions, and electron transfer can modulate the antibacterial activities of the samples as a function of interface free energy. This further demonstrates the interfacial interactions induced by dehydroxylation. This work has new application potential in biomedicine and materials science. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Graphical abstract

13 pages, 8487 KiB  
Article
NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction
by Ze Wang, Qianyu Zhou, Yanni Zhu, Yangfan Du, Weichun Yang, Yuanfu Chen, Yong Li and Shifeng Wang
Nanomaterials 2022, 12(13), 2200; https://doi.org/10.3390/nano12132200 - 27 Jun 2022
Cited by 16 | Viewed by 3245
Abstract
Currently, precious metal group materials are known as the efficient and widely used oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. The exorbitant prices and scarcity of the precious metals have stimulated scale exploration of alternative non-precious metal catalysts with low-cost [...] Read more.
Currently, precious metal group materials are known as the efficient and widely used oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. The exorbitant prices and scarcity of the precious metals have stimulated scale exploration of alternative non-precious metal catalysts with low-cost and high performance. Layered double hydroxides (LDHs) are a promising precursor to prepare cost-effective and high-performance catalysts because they possess abundant micropores and nitrogen self-doping after pyrolysis, which can accelerate the electron transfer and serve as active sites for efficient OER. Herein, we developed a new highly active NiFeMn-layered double hydroxide (NFM LDH) based electrocatalyst for OER. Through building NFM hydroxide/oxyhydroxide heterojunction and incorporation of conductive graphene, the prepared NFM LDH-based electrocatalyst delivers a low overpotential of 338 mV at current density of 10 mA cm−2 with a small Tafel slope of 67 mV dec−1, which are superior to those of commercial RuO2 catalyst for OER. The LDH/OOH heterojunction involves strong interfacial coupling, which modulates the local electronic environment and boosts the kinetics of charge transfer. In addition, the high valence Fe3+ and Mn3+ species formed after NaOH treatment provide more active sites and promote the Ni2+ to higher oxidation states during the O2 evolution. Moreover, graphene contributes a lot to the reduction of charge transfer resistance. The combining effects have greatly enhanced the catalytic ability for OER, demonstrating that the synthesized NFM LDH/OOH heterojunction with graphene linkage can be practically applied as a high-performance electrocatalyst for oxygen production via water splitting. Full article
(This article belongs to the Special Issue Functional Modification of Nanomaterials for Efficient Applications)
Show Figures

Figure 1

12 pages, 2435 KiB  
Article
Tuning the Defects of Two-Dimensional Layered Carbon/TiO2 Superlattice Composite for a Fast Lithium-Ion Storage
by Bingheng Liu, Bo Gu, Jingxian Wang, Anchang Li, Ming Zhang and Zhongrong Shen
Materials 2022, 15(5), 1625; https://doi.org/10.3390/ma15051625 - 22 Feb 2022
Cited by 4 | Viewed by 2063
Abstract
Defect engineering is one of the effective ways to improve the electrochemical property of electrode materials for lithium-ion batteries (LIB). Herein, an organic functional molecule of p-phenylenediamine is embedded into two-dimensional (2D) layered TiO2 as the electrode for LIB. Then, the 2D [...] Read more.
Defect engineering is one of the effective ways to improve the electrochemical property of electrode materials for lithium-ion batteries (LIB). Herein, an organic functional molecule of p-phenylenediamine is embedded into two-dimensional (2D) layered TiO2 as the electrode for LIB. Then, the 2D carbon/TiO2 composites with the tuning defects are prepared by precise control of the polymerization and carbothermal atmospheres. Low valence titanium in metal oxide and nitrogen-doped carbon nanosheets can be obtained in the carbon/TiO2 composite under a carbonization treatment atmosphere of N2/H2 gas, which can not only increase the electronic conductivity of the material but also provide sufficient electrochemical active sites, thus producing an excellent rate capability and long-term cycle stability. The prepared composite can provide a high capacity of 396.0 mAh g−1 at a current density of 0.1 A g−1 with a high capacitive capacity ratio. Moreover, a high specific capacity of 80.0 mAh g−1 with retention rate of 85% remains after 10,000 cycles at 3.0 A g−1 as well as the Coulomb efficiency close to 100%. The good rate-capability and cycle-sustainability of the layered materials are ascribed to the increase of conductivity, the lithium-ion transport channel, and interfacial capacitance due to the multi-defect sites in the layered composite. Full article
Show Figures

Graphical abstract

19 pages, 13993 KiB  
Article
Tuning of Structural, Dielectric, and Electronic Properties of Cu Doped Co–Zn Ferrite Nanoparticles for Multilayer Inductor Chip Applications
by Muhammad Hadi, Khalid Mujasam Batoo, Ankush Chauhan, Omar M. Aldossary, Ritesh Verma and Yujie Yang
Magnetochemistry 2021, 7(4), 53; https://doi.org/10.3390/magnetochemistry7040053 - 14 Apr 2021
Cited by 129 | Viewed by 6123
Abstract
Herein, we report the synthesis of nanoparticles and doping of Cu-doped Co–Zn ferrites using the auto-combustion sol–gel synthesis technique. X-ray diffraction studies confirmed the single-phase structure of the samples with space group Fd3m and crystallite size in the range of 20.57–32.69 [...] Read more.
Herein, we report the synthesis of nanoparticles and doping of Cu-doped Co–Zn ferrites using the auto-combustion sol–gel synthesis technique. X-ray diffraction studies confirmed the single-phase structure of the samples with space group Fd3m and crystallite size in the range of 20.57–32.69 nm. Transmission electron microscopy micrographs and selected area electron diffraction patterns confirmed the polycrystalline nature of the ferrite nanoparticles. Energy-dispersive X-ray spectroscopy revealed the elemental composition in the absence of any impurity phases. Fourier-transform infrared studies showed the presence of two prominent peaks at approximately 420 cm−1 and 580 cm−1, showing metal–oxygen stretching and the formation of ferrite composite. X-ray photoelectron spectroscopy was employed to determine the oxidation states of Fe, Co, Zn, and Cu and O vacancies based on which cationic distributions at tetrahedral and octahedral sites are proposed. Dielectric spectroscopy showed that the samples exhibit Maxwell–Wagner interfacial polarization, which decreases as the frequency of the applied field increases. The dielectric loss of the samples was less than 1, confirming that the samples can be used for the fabrication of multilayer inductor chips. The ac conductivity of the samples increased with increasing doping and with frequency, and this has been explained by the hopping model. The hysteresis loops revealed that coercivity decreases slightly with doping, while the highest saturation magnetization of 55.61 emu/g was obtained when x = 0.1. The magnetic anisotropic constant was found to be less than 0.5, which suggests that the samples exhibit uniaxial anisotropy rather than cubic anisotropy. The squareness ratio indicates that the samples are useful in high-frequency applications. Full article
(This article belongs to the Special Issue Advances in Fine Particle Magnetism and Bio-Magnetic Materials)
Show Figures

Figure 1

Back to TopTop