Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = metal–insulator–metal diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 614 KB  
Article
Radiofrequency Performance Analysis of Metal-Insulator-Graphene Diodes
by Leslie Paulina Cruz-Rodríguez, Mari Carmen Pardo, Anibal Pacheco-Sanchez, Eloy Ramírez-García, Francisco G. Ruiz and Francisco Pasadas
Appl. Sci. 2025, 15(11), 5926; https://doi.org/10.3390/app15115926 - 24 May 2025
Cited by 1 | Viewed by 809
Abstract
This work presents the performance projection of a metal-insulator-graphene diode as the building block of a radiofrequency power detector, highlighting its rectifying figures of merit. The analysis was performed by means of a computer-aided design tool validated with experimental measurements of fabricated devices. [...] Read more.
This work presents the performance projection of a metal-insulator-graphene diode as the building block of a radiofrequency power detector, highlighting its rectifying figures of merit. The analysis was performed by means of a computer-aided design tool validated with experimental measurements of fabricated devices. Transient simulations were used to accurately determine the detector output voltage, while particular consideration was given to suitable convergence of the non-linear circuit response. The diode was analyzed in both ideal and non-ideal cases, with the latter accounting for its parasitic effects. In the non-ideal case, the diode exhibited a tangential responsivity of 26.9 V/W at 2.45 GHz and 31.9 V/W at 1.225 GHz. However, when parasitic elements were neglected in the ideal case, the responsivity significantly increased to 47.3 V/W at 2.45 GHz and 38.7 V/W at 1.225 GHz. Additionally, the diode demonstrated a non-linearity of 6.64 at 0.7 V and an asymmetry of 806.6 in a bias window of ±1 V, which resulted in a competitive value compared to other state-of-the-art rectifying technologies. Tangential responsivities (βv) of graphene diodes at less-studied frequencies in the gigahertz band are presented, showing a high βv value of 63.7 V/W at 1 GHz. Full article
(This article belongs to the Special Issue Nanoscale Electronic Devices: Modeling and Applications)
Show Figures

Figure 1

8 pages, 411 KB  
Article
Modeling Electronic Devices with a Casimir Cavity
by G. Jordan Maclay
Physics 2024, 6(3), 1124-1131; https://doi.org/10.3390/physics6030070 - 10 Sep 2024
Viewed by 5014
Abstract
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive [...] Read more.
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive forces and torques have been produced using various configurations of media and materials. Just a few electronic devices have been explored that utilize the electrical properties of the Casimir effect. Recently, experimental results were presented that described the operation of an electronic device that employed a Casimir cavity attached to a standard MIM (metal–insulator–metal) structure. The DC (direct current) conductance of the novel MIM device was enhanced by the attached cavity and found to be directly proportional to the capacitance of the attached cavity. The phenomenological model proposed assumed that the cavity reduced the vacuum fluctuations, which resulted in a reduced injection of carriers. The analysis presented here indicates that the optical cavity actually enhances vacuum fluctuations, which would predict a current in the opposite direction from that observed. Further, the vacuum fluctuations near the electrode are shown to be approximately independent of the size of the optical cavity, in disagreement with the experimental data which show a dependence on the size. Thus, the proposed mechanism of operation does not appear correct. A more detailed theoretical analysis of these devices is needed, in particular, one that uses real material parameters and computes the vacuum fluctuations for the entire device. Such an analysis would reveal how these devices operate and might suggest design principles for a new genre of electronic devices that make use of vacuum fluctuations. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

14 pages, 2563 KB  
Article
Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer
by Zhehan Yu, Yijun Dai, Ke Tang, Tian Luo, Shengli Qi, Smriti Singh, Lu Huang, Jichun Ye, Biplab Sarkar and Wei Guo
Electronics 2024, 13(9), 1679; https://doi.org/10.3390/electronics13091679 - 26 Apr 2024
Cited by 3 | Viewed by 2737
Abstract
We conducted a comparative study on the characterization of Ga-polar and N-polar GaN metal–insulator–semiconductor (MIS) Schottky contact with a SiNx gate dielectric. The correlation between the surface morphology and the current–voltage (I–V) characteristics of the Ga- and N-polar GaN Schottky contact with [...] Read more.
We conducted a comparative study on the characterization of Ga-polar and N-polar GaN metal–insulator–semiconductor (MIS) Schottky contact with a SiNx gate dielectric. The correlation between the surface morphology and the current–voltage (I–V) characteristics of the Ga- and N-polar GaN Schottky contact with and without SiNx was established. The insertion of SiNx helps in reducing the reverse leakage current for both structures, even though the leakage is still higher for N-polar GaN, consistent with the Schottky barrier height calculated using X-ray photoelectron spectroscopy. To optimize the electric property of the N-polar device, various substrate misorientation angles were adopted. Among the different misorientation angles of the sapphire substrate, the GaN MIS Schottky barrier diode grown on 1° sapphire shows the lowest reverse leakage current, the smoothest surface morphology, and the best crystalline quality compared to N-polar GaN grown on 0.2° and 2° sapphire substrates. Furthermore, the mechanism of the reverse leakage current of the MIS-type N-polar GaN Schottky contact was investigated by temperature-dependent I–V characterization. FP emissions are thought to be the dominant reverse conduction mechanism for the N-polar GaN MIS diode. This work provides a promising approach towards the optimization of N-polar electronic devices with low levels of leakage and a favorable ideality factor. Full article
(This article belongs to the Special Issue Wide and Ultrawide Band Gap Semiconductors: Materials and Devices)
Show Figures

Figure 1

14 pages, 6874 KB  
Article
Influence of Baccharis salicifolia Extract on Iron Oxide Nanoparticles in MCM-41@IONP and Its Application in Room-Temperature-Fabricated Metal–Insulator–Semiconductor Diodes
by Gerardo Miguel Bravo de Luciano, Blanca Susana Soto-Cruz, Anabel Romero-López, Yesmin Panecatl-Bernal, José Alberto Luna-López and Miguel Ángel Domínguez-Jiménez
Appl. Nano 2024, 5(2), 58-71; https://doi.org/10.3390/applnano5020006 - 26 Apr 2024
Viewed by 2340
Abstract
This work presents the green synthesis of iron oxide nanoparticles (IONPs) using Baccharis salicifolia extract and their incorporation in mesoporous silica MCM-41, obtaining an MCM-41@IONP composite. The MCM-41@IONP composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption and desorption, [...] Read more.
This work presents the green synthesis of iron oxide nanoparticles (IONPs) using Baccharis salicifolia extract and their incorporation in mesoporous silica MCM-41, obtaining an MCM-41@IONP composite. The MCM-41@IONP composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption and desorption, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The use of the natural reducing agent Baccharis salicifolia resulted in nanoparticles with an average size of 31 nm. Furthermore, we showcase the application of the MCM-41@IONP nanocomposite in a metal–insulator–semiconductor (MIS) diode, which was fabricated at room temperature. The current–voltage and capacitance–voltage curves of the MIS diode were carefully measured and subjected to detailed analysis. The results demonstrate the potential utility of MCM-41@IONP nanocomposite-based MIS diodes, suggesting their applicability in the design of biosensors or as discrete components in electronic devices. Full article
Show Figures

Figure 1

13 pages, 9090 KB  
Article
Design and Simulation of Tunneling Diodes with 2D Insulators for Rectenna Switches
by Evelyn Li, Parameswari Raju and Erhai Zhao
Materials 2024, 17(4), 953; https://doi.org/10.3390/ma17040953 - 19 Feb 2024
Cited by 5 | Viewed by 2886
Abstract
Rectenna is the key component in radio-frequency circuits for receiving and converting electromagnetic waves into direct current. However, it is very challenging for the conventional semiconductor diode switches to rectify high-frequency signals for 6G telecommunication (>100 GHz), medical detection (>THz), and rectenna solar [...] Read more.
Rectenna is the key component in radio-frequency circuits for receiving and converting electromagnetic waves into direct current. However, it is very challenging for the conventional semiconductor diode switches to rectify high-frequency signals for 6G telecommunication (>100 GHz), medical detection (>THz), and rectenna solar cells (optical frequencies). Such a major challenge can be resolved by replacing the conventional semiconductor diodes with tunneling diodes as the rectenna switches. In this work, metal–insulator–metal (MIM) tunneling diodes based on 2D insulating materials were designed, and their performance was evaluated using a comprehensive simulation approach which includes a density-function theory simulation of 2D insulator materials, the modeling of the electrical characteristics of tunneling diodes, and circuit simulation for rectifiers. It is found that novel 2D insulators such as monolayer TiO2 can be obtained by oxidizing sulfur-metal layered materials. The MIM diodes based on such insulators exhibit fast tunneling and excellent current rectifying properties. Such tunneling diodes effectively convert the received high-frequency electromagnetic waves into direct current. Full article
Show Figures

Figure 1

12 pages, 4915 KB  
Article
Design of Trench MIS Field Plate Structure for Edge Termination of GaN Vertical PN Diode
by Sung-Hoon Lee and Ho-Young Cha
Micromachines 2023, 14(11), 2005; https://doi.org/10.3390/mi14112005 - 28 Oct 2023
Cited by 3 | Viewed by 3297
Abstract
In this study, we developed an analytic model to design a trench metal–insulator–semiconductor (MIS) field plate (FP) structure for the edge termination of a vertical GaN PN diode. The key parameters considered in the trench MIS FP structure include trench depth, MIS dielectric [...] Read more.
In this study, we developed an analytic model to design a trench metal–insulator–semiconductor (MIS) field plate (FP) structure for the edge termination of a vertical GaN PN diode. The key parameters considered in the trench MIS FP structure include trench depth, MIS dielectric material and thickness, and interface charge density of MIS. The boundary conditions are defined based on the maximum allowed electric field strengths at the dielectric and semiconductor regions. The developed model was validated using TCAD simulations. As an example, a 1 kV GaN vertical PN diode was designed using the optimized FP structure, which exhibited the same breakdown voltage characteristics as an ideal one-dimensional PN diode structure without edge effects. This proposed simple analytic model offers a design guideline for the trench MIS FP for the edge termination of vertical PN diodes, enabling efficient design without the need for extensive TCAD simulations, thus saving significant time and effort. Full article
Show Figures

Figure 1

20 pages, 8540 KB  
Article
Enhancing the Tunable Sensitivity of a Near-Ultraviolet to Visible to Near-Infrared Photo Irradiance Sensor Using an Indium Tin Oxide-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon
by Wen-Ching Hsieh, Bing-Mau Chen, Mu-Chun Wang, Yih-Shing Lee and Chien-Chung Tsai
Crystals 2023, 13(11), 1530; https://doi.org/10.3390/cryst13111530 - 24 Oct 2023
Viewed by 1862
Abstract
This study focuses on enhancing the tunable sensitivity of a photo irradiance sensor (PIS) operating in the near-ultraviolet to visible to near-infrared (NUV-VIS-NIR) spectrum using an indium tin oxide-aluminum oxide-zirconia aluminum oxide-silicon oxide-silicon capacitor (hereafter IAZAOS). Unlike other PIS designs such as reverse-biased [...] Read more.
This study focuses on enhancing the tunable sensitivity of a photo irradiance sensor (PIS) operating in the near-ultraviolet to visible to near-infrared (NUV-VIS-NIR) spectrum using an indium tin oxide-aluminum oxide-zirconia aluminum oxide-silicon oxide-silicon capacitor (hereafter IAZAOS). Unlike other PIS designs such as reverse-biased metal–insulator–semiconductor (MIS) and tunneling MIS, the IAZAOS PIS measures changes in inversion capacitance under strong forward bias with light irradiation. The IAZAOS PIS offers several key advantages over alternative designs. It exhibits high sensitivity, weak bias dependence, low dark current, tunable sensitivity, low power consumption, CMOS process compatibility, simple low-cost manufacturing, and good gate oxide reliability. Under 1 mW/cm2 irradiation at 1 kHz, the inversion carrier concentration reaches approximately 70% saturation. The resolution achieved is 10 nW/cm2 at 1 kHz, with a sensing range spanning from 10 nW/cm2 to 1 W/cm2 across frequencies from 1 kHz to 100 kHz. These performance characteristics surpass those reported for other PIS technologies. Furthermore, the IAZAOS PIS demonstrates a quantum efficiency of about 60% at 405 nm, which surpasses the quantum efficiency of general silicon-based p(i)n diodes. Post-deposition annealing techniques are employed to enhance the sensor’s performance. Dielectric annealing improves the ZrAlOx interface trap and permittivity properties, while conducting oxide annealing enhances indium tin oxide transmission and resistivity. The combination of these treatments results in a high-speed, high-sensitivity, high-resolution, and reliable NUV-VIS-NIR sensing capability for the IAZAOS capacitor-based PIS. Full article
(This article belongs to the Special Issue Optoelectronics and Photonics in Crystals)
Show Figures

Figure 1

12 pages, 5460 KB  
Article
Built-In Packaging for Two-Terminal Devices
by Ahmet Gulsaran, Bersu Bastug Azer, Dogu Ozyigit, Resul Saritas, Samed Kocer, Eihab Abdel-Rahman and Mustafa Yavuz
Micromachines 2023, 14(7), 1473; https://doi.org/10.3390/mi14071473 - 22 Jul 2023
Cited by 4 | Viewed by 2699
Abstract
Conventional packaging and interconnection methods for two-terminal devices, e.g., diodes often involve expensive and bulky equipment, introduce parasitic effects and have reliability issues. In this study, we propose a built-in packaging method and evaluate its performance compared to probing and wire bonding methods. [...] Read more.
Conventional packaging and interconnection methods for two-terminal devices, e.g., diodes often involve expensive and bulky equipment, introduce parasitic effects and have reliability issues. In this study, we propose a built-in packaging method and evaluate its performance compared to probing and wire bonding methods. The built-in packaging approach offers a larger overlap area, improved contact resistance, and direct connection to testing equipment. The experimental results demonstrate a 12% increase in current, an 11% reduction in resistance, and improved performance of the diode. The proposed method is promising for enhancing sensing applications, wireless power transmission, energy harvesting, and solar rectennas. Overall, the built-in packaging method offers a simpler, cheaper, more compact and more reliable packaging solution, paving the way for more efficient and advanced technologies in these domains. Full article
(This article belongs to the Special Issue Advanced Interconnect and Packaging, 2nd Edition)
Show Figures

Figure 1

10 pages, 4010 KB  
Article
Study on P-AlGaAs/Al/Au Ohmic Contact Characteristics for Improving Optoelectronic Response of Infrared Light-Emitting Device
by Hyung-Joo Lee, Jae-Sam Shim, Jin-Young Park, Lee-Ku Kwac and Chang-Ho Seo
Micromachines 2023, 14(5), 1053; https://doi.org/10.3390/mi14051053 - 16 May 2023
Cited by 1 | Viewed by 2905
Abstract
The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs [...] Read more.
The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs of the reflective IR-LEDs. In the wafer bond process required for fabricating the reflective IR-LED, the Al/Au alloy, which has filled the hole patterns in Si3N4 film, was used for improving the reflectivity of the Ag reflector and was bonded directly to the top layer of p-AlGaAs on the epitaxial wafer. Based on current-voltage measurements, it was found that the Al/Au alloyed material has a distinct ohmic characteristic pertaining to the p-AlGaAs layer compared with those of the Au/Be alloy material. Therefore, the Al/Au alloy may constitute one of the favored approaches for overcoming the insulative reflective structures of reflective IR-LEDs. For a current density of 200 mA, a lower forward voltage (1.56 V) was observed from the wafer bond IR-LED chip made with the Al/Au alloy; this voltage was remarkably lower in value than that of the conventional chip made with the Au/Be metal (2.29 V). A higher output power (182 mW) was observed from the reflective IR-LEDs made with the Al/Au alloy, thus displaying an increase of 64% compared with those made with the Au/Be alloy (111 mW). Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices)
Show Figures

Figure 1

18 pages, 881 KB  
Article
Convergence of Neural Networks with a Class of Real Memristors with Rectifying Characteristics
by Mauro Di Marco, Mauro Forti, Riccardo Moretti, Luca Pancioni and Alberto Tesi
Mathematics 2022, 10(21), 4024; https://doi.org/10.3390/math10214024 - 29 Oct 2022
Cited by 2 | Viewed by 2434
Abstract
The paper considers a neural network with a class of real extended memristors obtained via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same rectifying characteristic for the current as that used in relevant models in [...] Read more.
The paper considers a neural network with a class of real extended memristors obtained via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same rectifying characteristic for the current as that used in relevant models in the literature to account for diode-like effects at the interface between the memristor metal and insulating material. The paper proves some fundamental results on the trajectory convergence of this class of real memristor neural networks under the assumption that the interconnection matrix satisfies some symmetry conditions. First of all, the paper shows that, while in the case of neural networks with ideal memristors, it is possible to explicitly find functions of the state variables that are invariants of motions, the same functions can be used as Lyapunov functions that decrease along the trajectories in the case of real memristors with rectifying characteristics. This fundamental property is then used to study convergence by means of a reduction-of-order technique in combination with a Lyapunov approach. The theoretical predictions are verified via numerical simulations, and the convergence results are illustrated via the applications of real memristor neural networks to the solution of some image processing tasks in real time. Full article
(This article belongs to the Special Issue Memristor Cellular Nonlinear Networks: Theory and Applications)
Show Figures

Figure 1

12 pages, 5037 KB  
Article
Fabricating Graphene Oxide/h-BN Metal Insulator Semiconductor Diodes by Nanosecond Laser Irradiation
by Siddharth Gupta, Pratik Joshi, Ritesh Sachan and Jagdish Narayan
Nanomaterials 2022, 12(15), 2718; https://doi.org/10.3390/nano12152718 - 8 Aug 2022
Cited by 6 | Viewed by 3545
Abstract
To employ graphene’s rapid conduction in 2D devices, a heterostructure with a broad bandgap dielectric that is free of traps is required. Within this paradigm, h-BN is a good candidate because of its graphene-like structure and ultrawide bandgap. We show how to make [...] Read more.
To employ graphene’s rapid conduction in 2D devices, a heterostructure with a broad bandgap dielectric that is free of traps is required. Within this paradigm, h-BN is a good candidate because of its graphene-like structure and ultrawide bandgap. We show how to make such a heterostructure by irradiating alternating layers of a-C and a-BN film with a nanosecond excimer laser, melting and zone-refining constituent layers in the process. With Raman spectroscopy and ToF-SIMS analyses, we demonstrate this localized zone-refining into phase-pure h-BN and rGO films with distinct Raman vibrational modes and SIMS profile flattening after laser irradiation. Furthermore, in comparing laser-irradiated rGO-Si MS and rGO/h-BN/Si MIS diodes, the MIS diodes exhibit an increased turn-on voltage (4.4 V) and low leakage current. The MIS diode I-V characteristics reveal direct tunneling conduction under low bias and Fowler-Nordheim tunneling in the high-voltage regime, turning the MIS diode ON with improved rectification and current flow. This study sheds light on the nonequilibrium approaches to engineering h-BN and graphene heterostructures for ultrathin field effect transistor device development. Full article
Show Figures

Graphical abstract

8 pages, 3995 KB  
Communication
A High-Power 3P3T Cross Antenna Switch with Low Harmonic Distortion and Enhanced Isolation Using T-Type Pull-Down Path for Cellular Mobile Devices
by Arash Hejazi, Reza E. Rad, S. A. Hosseini Asl, Kyung-Duk Choi, Joon-Mo Yoo, Hyungki Huh, Seokkee Kim, Yeonjae Jung and Kang-Yoon Lee
Sensors 2022, 22(14), 5461; https://doi.org/10.3390/s22145461 - 21 Jul 2022
Viewed by 3064
Abstract
This paper presents a radio frequency (RF) triple pole triple throw 3P3T cross antenna switch for cellular mobile devices. The negative biasing scheme was applied to improve the power-handling capability and linearity of the switch by increasing the maximum tolerable voltage drop across [...] Read more.
This paper presents a radio frequency (RF) triple pole triple throw 3P3T cross antenna switch for cellular mobile devices. The negative biasing scheme was applied to improve the power-handling capability and linearity of the switch by increasing the maximum tolerable voltage drop across the drain and source and reverse biasing the parasitic junction diodes. To avoid signal reflection through the antenna in off-state, all the antenna ports were equipped with 50-ohm termination to provide the pull-down path. Considering the simultaneous operation of antenna ports in different switch cases, the presented T-type pull-down path demonstrated improvement of isolation by over 15 dB. Using stacked switches, the 3P3T handled the input power level of over 35 dBm. The chip was manufactured in 65 nm complementary metal oxide semiconductor (CMOS) silicon on insulator (SOI) technology with a die size of 790 × 730 µm. The proposed structure achieved insertion loss, isolation, and voltage standing wave ratio (VSWR) of less than −0.9 dB, −40 dB, and 1.6, respectively, when the input signal was 3.8 GHz. The measured results prove the implemented switch shows the second and third harmonic distortion performances of less than −60 dBm when the input power level and frequency are 25 dBm and 3.8 GHz, respectively. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

10 pages, 1929 KB  
Article
Synthesis and Characterization of Nanostructured Multi-Layer Cr/SnO2/NiO/Cr Coatings Prepared via E-Beam Evaporation Technique for Metal-Insulator-Insulator-Metal Diodes
by Sana Abrar, Muhammad Bilal Hanif, Abdulaziz Salem Alghamdi, Abdul Khaliq, K. S. Abdel Halim, Tayyab Subhani, Martin Motola and Abdul Faheem Khan
Materials 2022, 15(11), 3906; https://doi.org/10.3390/ma15113906 - 31 May 2022
Cited by 4 | Viewed by 3023
Abstract
Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) [...] Read more.
Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) which enable the femtosecond fast intoxication in MIIM diodes. In this work, nanostructured multi-layer Cr/SnO2/NiO/Cr coatings were fabricated via e-beam evaporation with the following thicknesses: 150 nm/20 nm/10 nm/150 nm. Coatings were characterized via Rutherford backscattering (RBS), scanning electron microscopy (SEM), and two-probe conductivity testing. RBS confirmed the layered structure and optimal stoichiometry of the coatings. A non-linear and asymmetric behavior at <1.5 V applied bias with the non-linearity maximum of 2.6 V−1 and the maximum sensitivity of 9.0 V−1 at the DC bias point was observed. The promising performance of the coating is due to two insulating layers which enables resonant tunneling and/or step-tunneling. Based on the properties, the present multi-layer coatings can be employed for MIIM application. Full article
Show Figures

Figure 1

22 pages, 1885 KB  
Review
Oxides for Rectenna Technology
by Ivona Z. Mitrovic, Saeed Almalki, Serdar B. Tekin, Naser Sedghi, Paul R. Chalker and Stephen Hall
Materials 2021, 14(18), 5218; https://doi.org/10.3390/ma14185218 - 10 Sep 2021
Cited by 11 | Viewed by 6316
Abstract
The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency [...] Read more.
The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier that can convert terahertz and infrared alternating current (AC) signals to usable direct current (DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates for the rectenna system. Its unparalleled ability to have a high response time is due to the fast, femtosecond tunneling process that governs current transport. This paper presents an overview of single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing on reviewing key figures of merit, such as zero-bias responsivity (β0), zero-bias dynamic resistance (R0) and asymmetry. The two major oxide contenders for MInM diodes have been NiO and Al2O3, in combination with HfO2, Ta2O5, Nb2O5, ZnO and TiO2. The latter oxide has also been used in combination with Co3O4 and TiOx. The most advanced rectennas based on MI2M diodes have shown that optimal (β0 and R0) can be achieved by carefully tailoring fabrication processes to control oxide stoichiometry and thicknesses to sub-nanometer accuracy. Full article
(This article belongs to the Special Issue Physics, Electrical and Structural Properties of Dielectric Layers)
Show Figures

Figure 1

17 pages, 871 KB  
Article
Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD
by Aymeric Panglosse, Philippe Martin-Gonthier, Olivier Marcelot, Cédric Virmontois, Olivier Saint-Pé and Pierre Magnan
Sensors 2021, 21(17), 5860; https://doi.org/10.3390/s21175860 - 31 Aug 2021
Cited by 15 | Viewed by 5972
Abstract
Single-Photon Avalanche Diodes (SPAD) in Complementary Metal-Oxide Semiconductor (CMOS) technology are potential candidates for future “Light Detection and Ranging” (Lidar) space systems. Among the SPAD performance parameters, the Photon Detection Probability (PDP) is one of the principal parameters. Indeed, this parameter is used [...] Read more.
Single-Photon Avalanche Diodes (SPAD) in Complementary Metal-Oxide Semiconductor (CMOS) technology are potential candidates for future “Light Detection and Ranging” (Lidar) space systems. Among the SPAD performance parameters, the Photon Detection Probability (PDP) is one of the principal parameters. Indeed, this parameter is used to evaluate the SPAD sensitivity, which directly affects the laser power or the telescope diameter of space-borne Lidars. In this work, we developed a model and a simulation method to predict accurately the PDP of CMOS SPAD, based on a combination of measurements to acquire the CMOS process doping profile, Technology Computer-Aided Design (TCAD) simulations, and a Matlab routine. We compare our simulation results with a SPAD designed and processed in CMOS 180 nm technology. Our results show good agreement between PDP predictions and measurements, with a mean error around 18.5%, for wavelength between 450 and 950 nm and for a typical range of excess voltages between 15 and 30% of the breakdown voltage. Due to our SPAD architecture, the high field region is not entirely insulated from the substrate, a comparison between simulations performed with and without the substrate contribution indicates that PDP can be simulated without this latter with a moderate loss of precision, around 4.5 percentage points. Full article
(This article belongs to the Special Issue Application and Advance of Photodetector and Image Sensors)
Show Figures

Figure 1

Back to TopTop