Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = mercury (II) cation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10383 KiB  
Article
Synthesis, Physicochemical Properties, and Ion Recognition Ability of Azulene-Based Bis-(Thio)Semicarbazone
by Anamaria Hanganu, Catalin Maxim, Andreea Dogaru, Adrian E. Ion, Coralia Bleotu, Augustin M. Madalan, Daniela Bala and Simona Nica
Molecules 2025, 30(1), 83; https://doi.org/10.3390/molecules30010083 - 29 Dec 2024
Cited by 1 | Viewed by 1267
Abstract
Azulene-1,3-bis(semicarbazone), 1, and azulene-1,3-bis(thiosemicarbazone), 2, were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds 1 and 2 were identified by high-resolution mass spectrometry and characterized by IR, 1H-NMR, 13C-NMR, and [...] Read more.
Azulene-1,3-bis(semicarbazone), 1, and azulene-1,3-bis(thiosemicarbazone), 2, were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds 1 and 2 were identified by high-resolution mass spectrometry and characterized by IR, 1H-NMR, 13C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a syn-closed conformation, with both arms oriented in the same direction and adopting an E configuration with respect to the imine linkages. Both hydrazones are redox active and showed fluorescence emission at 450 nm upon excitation at 350 nm. The bis-semicarbazone showed no affinity for anions nor for mercury(II) metal cation. Instead, the bis-thiosemicarbazone showed a lower affinity for chloride anions, but enhanced affinity for binding/poisoning Hg2+ ions. Both compounds were tested against osteosarcoma MG63 cell lines, exhibiting low antiproliferative activity with comparable IC50 values of 473.08 μM and 472.40 μM for compounds 1 and 2, respectively. Despite this limited antiproliferative effect, further analysis using propidium iodide staining revealed a concentration-dependent decrease in cell viability, with high concentrations inducing a marked reduction in cell number, accompanied by morphological changes characteristic of apoptosis and necrosis. Full article
Show Figures

Figure 1

15 pages, 2437 KiB  
Article
Heteronuclear Complexes of Hg(II) and Zn(II) with Sodium Monensinate as a Ligand
by Ivayla Pantcheva, Nikolay Petkov, Elzhana Encheva, Stiliyan Kolev, Svetlana Simova, Aleksandar Tsanev, Petar Dorkov and Angel Ugrinov
Molecules 2024, 29(13), 3106; https://doi.org/10.3390/molecules29133106 - 29 Jun 2024
Cited by 1 | Viewed by 1290
Abstract
The commercial veterinary antibiotic sodium monensinate (MonNa) binds mercury(II) or zinc(II) cations as thiocyanate [Hg(MonNa)2(SCN)2] (1) or isothiocyanate [Zn(MonNa)2(NCS)2] (2) neutral coordination compounds. The structure and physicochemical properties of 1 and [...] Read more.
The commercial veterinary antibiotic sodium monensinate (MonNa) binds mercury(II) or zinc(II) cations as thiocyanate [Hg(MonNa)2(SCN)2] (1) or isothiocyanate [Zn(MonNa)2(NCS)2] (2) neutral coordination compounds. The structure and physicochemical properties of 1 and 2 were evaluated by the methods of single crystal and/or powder X-ray diffraction, infrared, nuclear magnetic resonance, X-ray photoelectron spectroscopies, and electrospray-mass spectrometry. The primary cores of the two complexes comprise HgS2O2 (1) and ZnN2O2 (2) coordination motifs, respectively, due to the ambidentate binding modes of the SCN–ligands. The directly bound oxygen atoms originate from the carboxylate function of the parent antibiotic. Sodium cations remain in the hydrophilic cavity of monensin and cannot be replaced by the competing divalent metal ions. Zinc(II) binding does not influence the monensin efficacy in the case of Bacillus cereus and Staphylococcus aureus whereas the antimicrobial assay reveals the potential of complex 2 as a therapeutic candidate for the treatment of infections caused by Bacillus subtilis, Kocuria rhizophila, and Staphylococcus saprophyticus. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

16 pages, 1938 KiB  
Article
4-[(E)-2-(1-Pyrenyl)Vinyl]Pyridine Complexes: How to Modulate the Toxicity of Heavy Metal Ions to Target Microbial Infections
by Justine V. Schwarte, Aurélien Crochet and Katharina M. Fromm
Molecules 2024, 29(7), 1565; https://doi.org/10.3390/molecules29071565 - 31 Mar 2024
Cited by 1 | Viewed by 1590
Abstract
Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to [...] Read more.
Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

17 pages, 4133 KiB  
Article
Enhanced Visible Light-Driven Photocatalytic Water-Splitting Reaction of Titanate Nanotubes Sensitised with Ru(II) Bipyridyl Complex
by Mauro Malizia, Stuart A. Scott, Laura Torrente-Murciano, Adam M. Boies, Talal A. Aljohani and Herme G. Baldovi
Nanomaterials 2023, 13(22), 2959; https://doi.org/10.3390/nano13222959 - 16 Nov 2023
Cited by 4 | Viewed by 1871
Abstract
The ion exchange of Na+ cations was used to photosensitise titanates nanotubes (Ti-NTs) with tris(2,2’-bipyridine)ruthenium(II) cations (Ru(bpy)32+); this yielded a light-sensitised Ti-NTs composite denoted as (Ru(bpy)3)Ti-NTs, exhibiting the characteristic absorption of Ru(bpy)32+ in visible light. [...] Read more.
The ion exchange of Na+ cations was used to photosensitise titanates nanotubes (Ti-NTs) with tris(2,2’-bipyridine)ruthenium(II) cations (Ru(bpy)32+); this yielded a light-sensitised Ti-NTs composite denoted as (Ru(bpy)3)Ti-NTs, exhibiting the characteristic absorption of Ru(bpy)32+ in visible light. Incident photon-to-current efficiency (IPCE) measurements and the photocatalytic reduction of methyl viologen reaction confirmed that in the photosensitisation of the (Ru(bpy)3)Ti-NTs composite, charge transfer and charge separation occur upon excitation by ultraviolet and visible light irradiation. The photocatalytic potential of titanate nanotubes was tested in the water-splitting reaction and the H2 evolution reaction using a sacrificial agent and showed photocatalytic activity under various light sources, including xenon–mercury lamp, simulated sunlight, and visible light. Notably, in the conditions of the H2 evolution reaction when (Ru(bpy)3)Ti-NTs were submitted to simulated sunlight, they exceeded the photocatalytic activity of pristine Ti-NTs and TiO2 by a factor of 3 and 3.5 times, respectively. Also, (Ru(bpy)3)Ti-NTs achieved the photocatalytic water-splitting reaction under simulated sunlight and visible light, producing, after 4 h, 199 and 282 μmol×Hgcat−1. These results confirm the effective electron transfer of Ru(bpy)3 to titanate nanotubes. The stability of the photocatalyst was evaluated by a reuse test of four cycles of 24 h reactions without considerable loss of catalytic activity and crystallinity. Full article
Show Figures

Graphical abstract

8 pages, 2384 KiB  
Communication
Formation of an Unusual Pseudo-Square Planar-Induced Mercury(II) Dimeric Complex
by Huiyeong Ju, Dong Hee Lee, Seulgi Kim, Joon Rae Kim, Yunji Kang, Eunji Lee and In-Hyeok Park
Crystals 2023, 13(10), 1475; https://doi.org/10.3390/cryst13101475 - 10 Oct 2023
Cited by 2 | Viewed by 1553
Abstract
Due to the different crystallization methods, two Hg(II) complexes of a 19-membered NO2S2-macrocycle (L) and its oxidized ligand (HLox), exhibiting different stoichiometries, were prepared. First, mercury(II) iodide reacts with L to afford a dinuclear [...] Read more.
Due to the different crystallization methods, two Hg(II) complexes of a 19-membered NO2S2-macrocycle (L) and its oxidized ligand (HLox), exhibiting different stoichiometries, were prepared. First, mercury(II) iodide reacts with L to afford a dinuclear metallacycle complex [Hg2(L)2I4] (1) in which the mercury(II) exists outside the macrocyclic cavity. Meanwhile, the slow diffusion reaction gave an unusual pseudo-square planar-induced mercury(II) complex, which shows three separated parts with the formula [Hg2(HLox)I5]2[HgI2] (2). There are two complex cation units that are exo-coordinated, along with one unit consisting of a metal cluster anion. Surprisingly, L was oxidized in the disulfoxidized form (HLox) in this condition. NMR titration was used to monitor both the structural and binding characteristics of the complex formed between L and mercury(II) iodide in a solution. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

16 pages, 10116 KiB  
Article
A Reversible Optical Sensor Film for Mercury Ions Discrimination Based on Isoxazolidine Derivative and Exhibiting pH Sensing
by Reham Ali, Siwar Ghannay, Sabri Messaoudi, Fahad M. Alminderej, Kaïss Aouadi and Sayed M. Saleh
Biosensors 2022, 12(11), 1028; https://doi.org/10.3390/bios12111028 - 16 Nov 2022
Cited by 12 | Viewed by 2633
Abstract
We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0–4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2’R,3a’S,5R)-2-isopropyl-5,5’-dimethyl-4’-oxotetrahydro-2’H-spiro[cy-clohexane-1,6’-im-idazo[1,5-b]isoxazol]-2’-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor [...] Read more.
We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0–4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2’R,3a’S,5R)-2-isopropyl-5,5’-dimethyl-4’-oxotetrahydro-2’H-spiro[cy-clohexane-1,6’-im-idazo[1,5-b]isoxazol]-2’-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 μM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M−1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film. Full article
(This article belongs to the Special Issue Advances in Optical Biosensors and Chemical Sensors)
Show Figures

Figure 1

14 pages, 1453 KiB  
Article
Application of Phanerochaete chrysopsorium-Based Carbon Paste Electrode as an Electrochemical Sensor for Voltammetric Detection of Hg (II) in Chlor-Alkali Industrial Effluent
by Maria Zaib, Umar Farooq and Muhammad Makshoof Athar
Electrochem 2022, 3(4), 746-759; https://doi.org/10.3390/electrochem3040049 - 7 Nov 2022
Cited by 1 | Viewed by 2177
Abstract
In this study, an electrochemical sensor for the monitoring of Hg (II) at trace levels by using differential pulse anodic stripping voltammetry has been reported. Basically the electrochemical sensor is a Phanerochaete chrysosporium-based carbon paste electrode. Here, Phanerochaete chrysosporium has played a [...] Read more.
In this study, an electrochemical sensor for the monitoring of Hg (II) at trace levels by using differential pulse anodic stripping voltammetry has been reported. Basically the electrochemical sensor is a Phanerochaete chrysosporium-based carbon paste electrode. Here, Phanerochaete chrysosporium has played a new vital role in electrochemical detection of heavy metal apart from its known contribution in their removal. Optimal voltammetric response was observed at −0.7 V deposition potential l, 5% biomass concentration ratio (w/w), and neutral pH conditions with 12 min as the accumulation time. Selectivity was evaluated in the presence of different interfering cations. Linear range was observed for 5–50 µgL−1 of metal concentration with a detection limit of 4.4 µgL−1. The equivalence of new and reference analytical methods was statistically assessed in mercury samples collected from chlor-alkali industrial effluent by correlation of results (Pearson’s product-moment correlation), weighted Deming regression analysis, paired comparison test, relative standard deviation (RSD), median relative error (MRE), root mean square error (RMSE), and predicted residual sum of square (PRESS). This work presented a simple, efficient, and promising analytical tool in trace level detection of Hg (II), as compared to previously reported carbon paste electrodes based on biological material. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

17 pages, 5826 KiB  
Article
Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application
by Pavel A. Panchenko, Anastasija V. Efremenko, Anna S. Polyakova, Alexey V. Feofanov, Maria A. Ustimova, Yuri V. Fedorov and Olga A. Fedorova
Biosensors 2022, 12(9), 770; https://doi.org/10.3390/bios12090770 - 19 Sep 2022
Cited by 12 | Viewed by 2986
Abstract
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous [...] Read more.
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, NI-SP selectively responds to the presence of Hg2+ via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg2+ binding. This allows self-calibration of the optical response. The observed spectral behavior is consistent with the formation of the (NI-SP)·Hg2+ complex (dissociation constant 0.13 ± 0.04 µM). Bio-imaging studies showed that the ratio of fluorescence intensity in the 440–510 nm spectral region to that in the 590–650 nm region increases from 1.1 to 2.8 when cells are exposed to an increasing concentration of mercury (II) ions, thus enabling the detection of intracellular Hg2+ ions and their quantitative analysis in the 0.04–1.65 μM concentration range. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Graphical abstract

19 pages, 24862 KiB  
Article
Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide
by Talia Tene, Stefano Bellucci, Marco Guevara, Edwin Viteri, Malvin Arias Polanco, Orlando Salguero, Eder Vera-Guzmán, Sebastián Valladares, Andrea Scarcello, Francesca Alessandro, Lorenzo S. Caputi and Cristian Vacacela Gomez
Nanomaterials 2022, 12(3), 309; https://doi.org/10.3390/nano12030309 - 18 Jan 2022
Cited by 21 | Viewed by 4271
Abstract
Reduced graphene oxide (rGO) is one of the most well-known graphene derivatives, which, due to its outstanding physical and chemical properties as well as its oxygen content, has been used for wastewater treatment technologies. Particularly, extra functionalized rGO is widely preferred for treating [...] Read more.
Reduced graphene oxide (rGO) is one of the most well-known graphene derivatives, which, due to its outstanding physical and chemical properties as well as its oxygen content, has been used for wastewater treatment technologies. Particularly, extra functionalized rGO is widely preferred for treating wastewater containing dyes or heavy metals. Nevertheless, the use of non-extra functionalized (pristine) rGO for the removal of cationic pollutants is not explored in detail or is ambiguous. Herein, pristine rGO—prepared by an eco-friendly protocol—is used for the removal of cationic pollutants from water, i.e., methylene blue (MB) and mercury-(II) (Hg-(II)). This work includes the eco-friendly synthesis process and related spectroscopical and morphological characterization. Most importantly, the investigated rGO shows an adsorption capacity of 121.95 mg g−1 for MB and 109.49 mg g−1 for Hg (II) at 298 K. A record adsorption time of 30 min was found for MB and 20 min for Hg (II) with an efficiency of about 89% and 73%, respectively. The capture of tested cationic pollutants on rGO exhibits a mixed physisorption–chemisorption process. The present work, therefore, presents new findings for cationic pollutant adsorbent materials based on oxidized graphenes, providing a new perspective for removing MB molecules and Hg(II) ions. Full article
(This article belongs to the Special Issue Properties and Applications of Graphene and Its Derivatives)
Show Figures

Figure 1

12 pages, 17466 KiB  
Article
Reduction of Cd(II) Ions in the Presence of Tetraethylammonium Cations. Adsorption Effect on the Electrode Process
by Juan Torrent-Burgués
Electrochem 2021, 2(3), 415-426; https://doi.org/10.3390/electrochem2030027 - 23 Jul 2021
Viewed by 3342
Abstract
The effect of the adsorption of tetraethylammonium (TEA) cations, which present both ionic and organic characteristics, on the reduction of Cd(II) ions have been studied from dc and ac measurements at the dropping mercury electrode. The resistance to the charge transfer (Rct) and [...] Read more.
The effect of the adsorption of tetraethylammonium (TEA) cations, which present both ionic and organic characteristics, on the reduction of Cd(II) ions have been studied from dc and ac measurements at the dropping mercury electrode. The resistance to the charge transfer (Rct) and Warburg coefficient (σ) parameters have been determined through impedance measurements. Thus, the global velocity constant has been obtained. The reduction process of Cd(II) in perchloric media is reversible and is affected by the adsorption of TEA cations, especially at high TEA concentrations. Values of E1/2, half wave potential, and DO, diffusion coefficient, obtained from both dc and ac measurements agree. The velocity constants show a decrease as TEA concentration increases, with values ranging from 0.6 to 0.01 cm·s−1. The inhibitory effect of TEA adsorption on the electrode process and the relationship between electrode coverage, θ, and velocity constants, K, using several isotherm equations, have been discussed. The best fit was obtained with the equation K = 0K(1 − θ)a with an a value close to three, indicating a blocking effect and electrostatic repulsion due to TEA. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

15 pages, 5723 KiB  
Article
Symmetrical Derivative of Anthrone as a Novel Receptor for Mercury Ions: Enhanced Performance of Modified Screen-Printed Electrode
by Karamjeet Kaur, Susheel K. Mittal, Ashok Kumar SK, Ashwani Kumar, Subodh Kumar, Jonathan P. Metters and Craig E. Banks
C 2021, 7(1), 13; https://doi.org/10.3390/c7010013 - 27 Jan 2021
Cited by 2 | Viewed by 2697
Abstract
Voltammetric sensor using a symmetrical derivative of anthrone3 (1,7-diamino-3,9-dibutyl benzo[1,2,3-de:4,5,6-d’e’]diquinoline-2,8(3H,9H)-dione) (SPE-A) has been developed as a probe for Hg(II) ions. Performance of the probe as screen-printed electrode modified with the receptor (SPE-A) has been compared with anthrone3 in solution phase, using 1:1 water-acetonitrile [...] Read more.
Voltammetric sensor using a symmetrical derivative of anthrone3 (1,7-diamino-3,9-dibutyl benzo[1,2,3-de:4,5,6-d’e’]diquinoline-2,8(3H,9H)-dione) (SPE-A) has been developed as a probe for Hg(II) ions. Performance of the probe as screen-printed electrode modified with the receptor (SPE-A) has been compared with anthrone3 in solution phase, using 1:1 water-acetonitrile solvent system. Anthrone3 displayed an electrochemically quasi-reversible nature in voltammograms with both the systems and is presented as a novel disposable voltammetric sensor for mercury ions. Upon interaction with cations, both the electrode systems showed sensitivity towards Hg2+ ions with a lower detection limit of 0.61 µM. The magnitude of the voltammetric current with the SPE-A exhibited three times the current obtained with a bare glassy carbon electrode (GC). Kinetic performance of the SPE-A electrode is better than the GC electrode. The morphological studies indicate reusability of the electrodes. Full article
(This article belongs to the Special Issue Carbon Based Electrochemical Devices)
Show Figures

Figure 1

25 pages, 7045 KiB  
Article
Preparation and Characterization of the Sulfur-Impregnated Natural Zeolite Clinoptilolite for Hg(II) Removal from Aqueous Solutions
by Marin Ugrina, Martin Gaberšek, Aleksandra Daković and Ivona Nuić
Processes 2021, 9(2), 217; https://doi.org/10.3390/pr9020217 - 25 Jan 2021
Cited by 13 | Viewed by 3887
Abstract
Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by [...] Read more.
Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment. Full article
(This article belongs to the Special Issue Sustainable Remediation Processes Based on Zeolites)
Show Figures

Graphical abstract

21 pages, 4220 KiB  
Article
Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite
by Marin Ugrina, Teja Čeru, Ivona Nuić and Marina Trgo
Processes 2020, 8(11), 1523; https://doi.org/10.3390/pr8111523 - 23 Nov 2020
Cited by 24 | Viewed by 3502
Abstract
The contamination of soil and water bodies with mercury from anthropogenic sources such as mining and industry activities causes negative effect for living organisms due to the process of bioaccumulation and biomagnification through the food chain. Therefore, the need for remediation of contaminated [...] Read more.
The contamination of soil and water bodies with mercury from anthropogenic sources such as mining and industry activities causes negative effect for living organisms due to the process of bioaccumulation and biomagnification through the food chain. Therefore, the need for remediation of contaminated areas is extremely necessary and very desirable when it is cost-effective by using low-cost sorbents. This paper compares the sorption abilities of natural and iron-modified zeolite towards Hg(II) ions from aqueous solutions. The influence of pH, solid/liquid ratio (S/L), contact time, and initial concentration on the sorption efficiency onto both zeolites was investigated. At the optimal pH = 2 and S/L = 10, the maximum amount of sorbed Hg(II) is 0.28 mmol/g on the natural zeolite and 0.54 mmol/g on the iron-modified zeolite. It was found that rate-controlling step in mass transfer is intraparticle diffusion accompanied by film diffusion. Ion exchange as a main mechanism, accompanied with surface complexation and co-precipitation were included in the Hg(II) sorption onto both zeolite samples. This is confirmed by the determination of the amount of sorbed Hg(II) and the amount of released exchangeable cations from the zeolite structure as well as by the scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) of saturated zeolite samples. In a wide pH range, 4.01 ≤ pH ≤ 11.08, the leaching of Hg(II) was observed in the amount of only 0.28–0.78% from natural zeolite and 0.07–0.51% from iron-modified zeolite indicating that both zeolites could be used for remediation purposes while the results suggest that modification significantly improves the sorption properties of zeolite. Full article
Show Figures

Graphical abstract

12 pages, 4182 KiB  
Article
Colorimetric Detection of Mercury Ions in Water with Capped Silver Nanoprisms
by Fouzia Tanvir, Atif Yaqub, Shazia Tanvir, Ran An and William A. Anderson
Materials 2019, 12(9), 1533; https://doi.org/10.3390/ma12091533 - 10 May 2019
Cited by 46 | Viewed by 5119
Abstract
The emission of mercury (II) from coal combustion and other industrial processes may have impacts on water resources, and the detection with sensitive but rapid testing methods is desirable for environmental screening. Towards this end, silver nanoprisms were chemically synthesized resulting in a [...] Read more.
The emission of mercury (II) from coal combustion and other industrial processes may have impacts on water resources, and the detection with sensitive but rapid testing methods is desirable for environmental screening. Towards this end, silver nanoprisms were chemically synthesized resulting in a blue reagent solution that transitioned towards red and yellow solutions when exposed to Hg2+ ions at concentrations from 0.5 to 100 µM. A galvanic reduction of Hg2+ onto the surfaces is apparently responsible for a change in nanoprism shape towards spherical nanoparticles, leading to the change in solution color. There were no interferences by other tested mono- and divalent metal cations in solution and pH had minimal influence in the range of 6.5 to 9.8. The silver nanoprism reagent provided a detection limit of approximately 1.5 µM (300 µg/L) for mercury (II), which compared reasonably well with other reported nanoparticle-based techniques. Further optimization may reduce this detection limit, but matrix effects in realistic water samples require further investigation and amelioration. Full article
(This article belongs to the Special Issue Micro/Nano Materials for Clean Energy and Environment)
Show Figures

Figure 1

13 pages, 4352 KiB  
Article
The Mixed-Metal Oxochromates(VI) Cd(HgI2)2(HgII)3O4(CrO4)2, Cd(HgII)4O4(CrO4) and Zn(HgII)4O4(CrO4)—Examples of the Different Crystal Chemistry within the Zinc Triad
by Matthias Weil
Crystals 2017, 7(11), 340; https://doi.org/10.3390/cryst7110340 - 6 Nov 2017
Cited by 3 | Viewed by 5186
Abstract
The three mixed-metal oxochromates(VI) Cd(HgI2)2(HgII)3O4(CrO4)2, Cd(HgII)4O4(CrO4), and Zn(HgII)4O4(CrO4) were grown under hydrothermal [...] Read more.
The three mixed-metal oxochromates(VI) Cd(HgI2)2(HgII)3O4(CrO4)2, Cd(HgII)4O4(CrO4), and Zn(HgII)4O4(CrO4) were grown under hydrothermal conditions. Their crystal structures were determined from single-crystal X-ray diffraction data. The crystal-chemical features of the respective metal cations are characterised, with a linear coordination for mercury atoms in oxidation states +I and +II, octahedral coordination spheres for the divalent zinc and cadmium cations and a tetrahedral configuration of the oxochromate(VI) anions. In the crystal structures the formation of two subunits is apparent, viz. a mercury-oxygen network and a network of cadmium (zinc) cations that are directly bound to the oxochromate(VI) anions. An alternative description of the crystal structures based on oxygen-centred polyhedra is also given. Full article
(This article belongs to the Special Issue Crystal Chemistry of Zinc, Cadmium and Mercury)
Show Figures

Graphical abstract

Back to TopTop