Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = merchantable stand volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8710 KiB  
Article
Comparison of Field Sampling- and Airborne Laser Scanning-Derived Stand-Level Inventories in a Mixed Conifer Forest and Volume Validation Using Log Scaling Data
by Aaron M. Sparks, Mark V. Corrao, Robert F. Keefe, Ryan Armstrong and Alistair M. S. Smith
Forests 2025, 16(5), 784; https://doi.org/10.3390/f16050784 - 7 May 2025
Viewed by 471
Abstract
Forest managers need stand-level forest inventories to make operational decisions and model growth and yield to inform long-term planning. However, few studies have quantified errors in field sampling- and airborne laser scanning (ALS)-derived inventories at the stand level, particularly in species-diverse and structurally [...] Read more.
Forest managers need stand-level forest inventories to make operational decisions and model growth and yield to inform long-term planning. However, few studies have quantified errors in field sampling- and airborne laser scanning (ALS)-derived inventories at the stand level, particularly in species-diverse and structurally diverse mixed conifer forests. In this study, we compared stand-level metrics derived from field cruise measurements of a forest-wide stratified sample of variable-radius plots, an ALS-derived area-based approach (ABA) trained and tested using an independent sample of fixed-area stem-mapped plots, and two ALS-derived individual tree approaches. Inventory volume estimates were validated using the gross volume of harvested logs from multi-stand harvest data, tracked by load and location and scaled at the processing mill. Results show that the ABA and individual tree approaches produced stand-level volume estimates with similar errors (−8 to 6%) to the cruise estimated volume (−16 to 6%) when compared with scaled volume. Across the entire forest, regression-based equivalence tests showed that merchantable and total stand volume estimates between the cruise and ALS-derived individual tree methods were more similar than between cruise and ABA methods, potentially due to underestimation of trees by both cruise and individual tree methods in some areas of the study area. Our results also highlight important differences between conventional cruise inventories and ALS-derived inventories, such as the spatial variability of within-stand attributes that ALS inventories provide. Overall, this study improves our understanding of the limitations and advantages of conventional and ALS-derived stand-level inventories in mixed conifer, structurally diverse forests. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 2886 KiB  
Article
Forest Stem Extraction and Modeling (FoSEM): A LiDAR-Based Framework for Accurate Tree Stem Extraction and Modeling in Radiata Pine Plantations
by Muhammad Ibrahim, Haitian Wang, Irfan A. Iqbal, Yumeng Miao, Hezam Albaqami, Hans Blom and Ajmal Mian
Remote Sens. 2025, 17(3), 445; https://doi.org/10.3390/rs17030445 - 28 Jan 2025
Cited by 3 | Viewed by 1285
Abstract
Accurate characterization of tree stems is critical for assessing commercial forest health, estimating merchantable timber volume, and informing sustainable value management strategies. Conventional ground-based manual measurements, although precise, are labor-intensive and impractical at large scales, while remote sensing approaches using satellite or UAV [...] Read more.
Accurate characterization of tree stems is critical for assessing commercial forest health, estimating merchantable timber volume, and informing sustainable value management strategies. Conventional ground-based manual measurements, although precise, are labor-intensive and impractical at large scales, while remote sensing approaches using satellite or UAV imagery often lack the spatial resolution needed to capture individual tree attributes in complex forest environments. To address these challenges, this study provides a significant contribution by introducing a large-scale dataset encompassing 40 plots in Western Australia (WA) with varying tree densities, derived from Hovermap LiDAR acquisitions and destructive sampling. The dataset includes parameters such as plot and tree identifiers, DBH, tree height, stem length, section lengths, and detailed diameter measurements (e.g., DiaMin, DiaMax, DiaMean) across various heights, enabling precise ground-truth calibration and validation. Based on this dataset, we present the Forest Stem Extraction and Modeling (FoSEM) framework, a LiDAR-driven methodology that efficiently and reliably models individual tree stems from dense 3D point clouds. FoSEM integrates ground segmentation, height normalization, and K-means clustering at a predefined elevation to isolate stem cores. It then applies circle fitting to capture cross-sectional geometry and employs MLESAC-based cylinder fitting for robust stem delineation. Experimental evaluations conducted across various radiata pine plots of varying complexity demonstrate that FoSEM consistently achieves high accuracy, with a DBH RMSE of 1.19 cm (rRMSE = 4.67%) and a height RMSE of 1.00 m (rRMSE = 4.24%). These results surpass those of existing methods and highlight FoSEM’s adaptability to heterogeneous stand conditions. By providing both a robust method and an extensive dataset, this work advances the state of the art in LiDAR-based forest inventory, enabling more efficient and accurate tree-level assessments in support of sustainable forest management. Full article
(This article belongs to the Special Issue New Insight into Point Cloud Data Processing)
Show Figures

Figure 1

16 pages, 2758 KiB  
Article
The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia
by Martina Štěrbová, Ivan Barka, Ladislav Kulla and Joerg Roessiger
Land 2024, 13(10), 1714; https://doi.org/10.3390/land13101714 - 19 Oct 2024
Viewed by 1033
Abstract
The aim of the study is to quantify the impacts of a possible transition to close-to-nature forestry in Slovakia and to compare the expected development of the total volume production, growing stock, merchantable wood increment and harvesting possibilities of forests in Slovakia with [...] Read more.
The aim of the study is to quantify the impacts of a possible transition to close-to-nature forestry in Slovakia and to compare the expected development of the total volume production, growing stock, merchantable wood increment and harvesting possibilities of forests in Slovakia with current conventional management using the FCarbon forest-growth model and available data from the Information System of Forest Management. The subject of the study was all forest stands available for wood supply (FAWS). The simulations were run in annual iterations using tree input data aggregated over 10-year-wide age classes. The calculation of wood increments was based on available growth models. In the business-as-usual (BAU) scenario, stock losses were based on the actual intensity of wood harvesting in the reference period 2013–2022. In the scenario of the transition to close-to-nature forest management, the losses were specifically modified from the usual harvesting regime at the beginning, to the target harvesting mode in selective forest at the end of the simulated period. With the modelling method used, a gradual increase in forest stocks occurred in both evaluated scenarios in the monitored period, namely by 10% in the case of BAU and by 23% in the case of close-to-nature forest management until 2050. In absolute mining volume, CTNF is by 5–10% lower than BAU management, with the difference gradually decreasing. The results show that the introduction of close-to-nature forest management will temporarily reduce the supply of wood to the market, but this reduction will not be significant and will be compensated by a higher total volume production, and thus also by increased carbon storage in forests. Full article
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Pre-Commercial Thinning Increases Tree Size and Reduces Western Gall Rust Infections in Lodgepole Pine
by Francis Scaria and Bradley D. Pinno
Forests 2024, 15(5), 808; https://doi.org/10.3390/f15050808 - 3 May 2024
Cited by 4 | Viewed by 1652
Abstract
Alberta’s forest industry is predicted to be impacted by a medium-term decline in timber supply. Intensive silviculture tools, such as pre-commercial thinning, have been shown to increase individual tree growth, shorten rotation lengths, and improve stand merchantability in important commercial species such as [...] Read more.
Alberta’s forest industry is predicted to be impacted by a medium-term decline in timber supply. Intensive silviculture tools, such as pre-commercial thinning, have been shown to increase individual tree growth, shorten rotation lengths, and improve stand merchantability in important commercial species such as lodgepole pine. However, lodgepole pine stands are susceptible to western gall rust infections, and thinning at an early stage may increase infection rates. This study collected tree and stand level data from 33 operational harvest origin lodgepole pine stands consisting of 11 stands thinned at age 17–19 years (PCT_18), 11 stands thinned at age 23–25 (PCT_24), and 11 unthinned stands. Approximately 40 years after pre-commercial thinning, merchantable volume is similar in all stands but thinned stands, regardless of timing, had greater individual tree size (~15% higher) compared to unthinned stands. Pre-commercially thinned stands also had a higher potential for commercial thinning since they have lower variability in tree size and longer live crown lengths. In addition, delayed thinning (PCT_24) reduced western gall rust infections and the severity of infections compared to both PCT_18 and unthinned stands. In conclusion, pre-commercial thinning should be considered for lodgepole pine stands in order to address timber supply issues in Alberta. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 7183 KiB  
Article
Influence of Tree, Stand, and Site Attributes on Hardwood Product Yield: Insights into the Acadian Forests
by Caroline Bennemann, Eric R. Labelle and Jean-Martin Lussier
Forests 2023, 14(2), 182; https://doi.org/10.3390/f14020182 - 18 Jan 2023
Cited by 3 | Viewed by 2569
Abstract
Acadian forests of New Brunswick, Canada, are highly variable both in terms of species composition and quality. This is particularly accurate for hardwoods, for which value recovery is closely influenced by wood quality and a proper understanding of tree attributes. Therefore, based on [...] Read more.
Acadian forests of New Brunswick, Canada, are highly variable both in terms of species composition and quality. This is particularly accurate for hardwoods, for which value recovery is closely influenced by wood quality and a proper understanding of tree attributes. Therefore, based on several databases created between 2012 and 2021, the objectives of this study were to (1) characterize the stand-level distribution of species, size, form, and risk according to site factors and (2) determine the influence of different tree, stand, and site factors on the recovery of merchantable, sawlog, and veneer volumes. In total, 287,984 trees stemming from 9233 plots were analyzed for objective 1. For a subset of trees (743), tree, stand, and site attributes were also related to the product output of harvesting operations through a comprehensive inventory of standing trees and their associated products. Analyses were performed with linear and multinomial logistic regressions as well as factor analysis of mixed data (FAMD). Key results indicated that tree attributes and product recovery were significantly influenced by (1) environmental factors (soil, temperature, and precipitation), summarized by ecoregion in this study and (2) tree size and form. These findings suggest that the inclusion of site factors in supply planning could improve product recovery during forest operations. Full article
Show Figures

Figure 1

33 pages, 3266 KiB  
Article
Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning
by Peter F. Newton
Forests 2022, 13(10), 1695; https://doi.org/10.3390/f13101695 - 15 Oct 2022
Cited by 1 | Viewed by 2028
Abstract
The objectives of this study were to evaluate and exemplify the potential utility of a climate-sensitive modular-based structural stand density management model (SSDMM) developed for red pine (Pinus resinosa Aiton) in crop planning decision making. Firstly, the model’s predictive ability was assessed [...] Read more.
The objectives of this study were to evaluate and exemplify the potential utility of a climate-sensitive modular-based structural stand density management model (SSDMM) developed for red pine (Pinus resinosa Aiton) in crop planning decision making. Firstly, the model’s predictive ability was assessed using a retrospective validation approach without consideration of climate change effects. Although limited in scope and applicability, the preliminary results revealed that the magnitude of the mean prediction error for the principal determinates governing stand development did not exceed ±15%. Secondly, the potential utility of the model was illustrated within a spatial-based forest management planning context for a range of climate change scenarios. These exemplifications included three conventional crop plan simulations (initial spacing (IS), IS plus one commercial thinning (CT) treatment, and IS plus two CTs) developing under three climate change scenarios (1971–2000 climate norms, and 4.5 and 8.5 representative concentration pathways) over 75-year rotations (2022–2097) at three geographically diverse locales (north-eastern (Kirkland Lake), north-central (Thessalon), and north-western (Thunder Bay) Ontario, Canada). Resultant developmental indices and (or) productivity metrics were contrasted in terms of (1) regional-specific differences in temporal stand dynamical patterns and rotational yields with increasing climatic change severity, and (2) silvicultural effectiveness of the crop plans within and across locales for each climate change scenario. Climate-wise, although the results revealed marginal regional differences across a multitude of rotational outcome metrics, declines in mean tree size and merchantable volume productivity, and most importantly utility pole production within unthinned plantations, were among the most consequential and consistent negative outcomes associated with climate-induced site productivity declines. Silviculturally, crop plans that included thinning treatments relative to their counterparts that did not, yielded trees of greater mean size and were able to maintain utility pole production status while not achieving similar levels of site occupancy or volumetric productivity. Management-wise, maintenance of pole production status along with concurrent increases in fiscal worth even in light of climate change outweighed the marginal decline in volumetric productivity that was associated with the thinning regimes. In summary, the validation results provided a measure of predictive performance relative to the underlying calibration data set whereas the exemplifications illustrated the model’s potential operational utility in spatial-based forest management planning. For managers aspiring to maintain the historical productivity legacy of red pine through optimal density management decision making while acknowledging prediction uncertainty when forecasting stand development trajectories under climate change, the SSDMM provides an optional decision-support tool for designing climate-smart crop plans during the Anthropocene. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

21 pages, 7851 KiB  
Article
Mobile Laser Scanning for Estimating Tree Structural Attributes in a Temperate Hardwood Forest
by Bastien Vandendaele, Olivier Martin-Ducup, Richard A. Fournier, Gaetan Pelletier and Philippe Lejeune
Remote Sens. 2022, 14(18), 4522; https://doi.org/10.3390/rs14184522 - 10 Sep 2022
Cited by 24 | Viewed by 5842
Abstract
The emergence of mobile laser scanning (MLS) systems that use simultaneous localization and mapping (SLAM) technology to map their environment opens up new opportunities for characterizing forest structure. The speed and accuracy of data acquisition makes them particularly adapted to operational inventories. MLS [...] Read more.
The emergence of mobile laser scanning (MLS) systems that use simultaneous localization and mapping (SLAM) technology to map their environment opens up new opportunities for characterizing forest structure. The speed and accuracy of data acquisition makes them particularly adapted to operational inventories. MLS also shows great potential for estimating inventory attributes that are difficult to measure in the field, such as wood volume or crown dimensions. Hardwood species represent a significant challenge for wood volume estimation compared to softwoods because a substantial portion of the volume is included in the crown, making them more prone to allometric bias and more complex to model. This study assessed the potential of MLS data to estimate tree structural attributes in a temperate hardwood stand: height, crown dimensions, diameter at breast height (DBH), and merchantable wood volume. Merchantable wood volume estimates were evaluated to the third branching order using the quantitative structural modeling (QSM) approach. Destructive field measurements and terrestrial laser scanning (TLS) data of 26 hardwood trees were used as reference to quantify errors on wood volume and inventory attribute estimations from MLS data. Results reveal that SLAM-based MLS systems provided accurate estimates of tree height (RMSE = 0.42 m (1.78%), R2 = 0.93), crown projected area (RMSE = 3.23 m2 (5.75%), R2 = 0.99), crown volume (RMSE = 71.4 m3 (23.38%), R2 = 0.99), DBH (RMSE = 1.21 cm (3.07%), R2 = 0.99), and merchantable wood volume (RMSE = 0.39 m3 (18.57%), R2 = 0.95), when compared to TLS. They also estimated operational merchantable volume with good accuracy (RMSE = 0.42 m3 (21.82%), R2 = 0.94) compared to destructive measurements. Finally, the merchantable stem volume derived from MLS data was estimated with high accuracy compared to TLS (RMSE = 0.11 m3 (8.32%), R2 = 0.96) and regional stem taper models (RMSE = 0.16 m3 (14.7%), R2 = 0.93). We expect our results would provide a better understanding of the potential of SLAM-based MLS systems to support in-situ forest inventory. Full article
(This article belongs to the Special Issue Terrestrial Laser Scanning of Forest Structure)
Show Figures

Graphical abstract

22 pages, 5484 KiB  
Article
Development of a Climate-Sensitive Structural Stand Density Management Model for Red Pine
by Peter F. Newton
Forests 2022, 13(7), 1010; https://doi.org/10.3390/f13071010 - 27 Jun 2022
Cited by 4 | Viewed by 2524
Abstract
The primary objective of this study was to develop a climate-sensitive modular-based structural stand density management model (SSDMM) for red pine (Pinus resinosa Aiton) plantations situated within the western Great Lakes—St. Lawrence and south-central Boreal Forest Regions of Canada. For a given [...] Read more.
The primary objective of this study was to develop a climate-sensitive modular-based structural stand density management model (SSDMM) for red pine (Pinus resinosa Aiton) plantations situated within the western Great Lakes—St. Lawrence and south-central Boreal Forest Regions of Canada. For a given climate change scenario (e.g., representative concentration pathway (RCP)), geographic location (longitude and latitude), site quality (site index) and crop plan (e.g., initial espacement density and subsequent thinning treatments), the resultant hierarchical-based SSDMM consisting of six integrated modules, enabled the prediction of a multitude of management-relevant performance metrics over rotational lengths out to the year 2100. These metrics included productivity measures (e.g., mean annual volume, biomass and carbon increments), volumetric yield estimates (e.g., total and merchantable volumes), pole and log product distributions (e.g., number and size distribution of pulp and saw logs, and utility poles), biomass production and carbon sequestration outcomes (e.g., oven-dried masses of above-ground components and associated carbon mass equivalents), recoverable end-product volumes and associated monetary values (e.g., volumes and economic worth estimates of recovered chip and dimensional lumber products extractable via stud and randomized length mill processing protocols), and crop tree fibre attributes reflective of end-product potential (e.g., wood density, microfibril angle, and modulus of elasticity). The core modules responsible for quantifying stand dynamics and structural change were developed using 491 tree-list measurements and 146 stand-level summaries obtained from 98 remeasured permanent sample plots situated within 21 geographically separated plantation-based initial spacing and thinning experiments distributed throughout southern and north-central Ontario. Computationally, the red pine SSDMM and associated algorithmic analogue (1) produced mathematically compatible stem and end-product volume estimates, (2) accounted for density-dependent as well as density-independent mortality losses, response delay following thinning and genetic worth effects, (3) enabled end-users to specify merchantability standards (log and pole dimensions), product degrade factors and cost profiles, and (4) addressed climate change impacts on rotational yield outcomes by geo-referencing RCP-specific effects on stand dynamical processes via the deployment of a climate-driven biophysical site-based height-age model. In summary, the provision of the red pine SSDMM and its unique ability to account for locale-specific climate change effects on crop planning forecasts inclusive of utility pole production, should be of consequential utility as the complexities of silvicultural decision-making intensify during the Anthropocene. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 2321 KiB  
Article
Emulating Succession of Boreal Mixedwood Forests in Alberta Using Understory Protection Harvesting
by Ivan Bjelanovic, Phil Comeau, Sharon Meredith and Brian Roth
Forests 2022, 13(4), 533; https://doi.org/10.3390/f13040533 - 30 Mar 2022
Cited by 2 | Viewed by 2567
Abstract
Understory protection harvesting is a form of partial cutting that can be used in aspen (Populus tremuloides Michx.)-dominated stands that have understories of white spruce (Picea glauca (Moench) Voss). This practice involves removing 75% to 85% of the merchantable aspen while [...] Read more.
Understory protection harvesting is a form of partial cutting that can be used in aspen (Populus tremuloides Michx.)-dominated stands that have understories of white spruce (Picea glauca (Moench) Voss). This practice involves removing 75% to 85% of the merchantable aspen while minimizing damage to the advance spruce regeneration, in addition to leaving 15% to 25% of the aspen standing to reduce potential windthrow of the spruce understory. In this paper, we summarize results from 18 stands measured 10 to 12 years after understory protection harvest. Diameter growth of spruce increased during the first five years after harvest while height growth increased during the second five-year period (5 to 10 or 7 to 12 years after release). Consistent with other studies, mortality rates of aspen trees ≥7.1 cm DBH (diameter breast height, 1.3 m) averaged 45.0% over the 10–12 year period following harvesting. Spruce mortality averaged 27.5% over the same 10–12 year period. Substantial aspen regeneration was evident across most harvested blocks, with aspen sapling densities 10–12 years from harvest being higher in removal (14,637 stems⋅ha−1) than in buffer areas (6686 stems⋅ha−1) and in extraction trails (7654 stems⋅ha−1). Spruce sapling (>1.3 m height and <4 cm DBH) densities averaged 1140 stems⋅ha−1 in removal areas at ages 10–12, with these trees likely being present as seedlings at the time of harvest. Mixedwood Growth Model projections indicate merchantable volumes averaging 168 m3⋅ha−1 (conifer) and 106 m3⋅ha−1 (deciduous) 70 years from harvest, resulting in MAI (mean annual increment) for this period averaging 2.0 m3⋅ha−1⋅y−1 with MAI for a full 150-year rotation of approximately 2.5 m3⋅ha−1⋅y−1. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2847 KiB  
Article
Total and Merchantable Volume Equations for 25 Commercial Tree Species Grown in Canada and the Northeastern United States
by Mahadev Sharma
Forests 2021, 12(9), 1270; https://doi.org/10.3390/f12091270 - 17 Sep 2021
Cited by 6 | Viewed by 4831
Abstract
Accurate estimates of tree bole volume are fundamental to sustainable forest management. Total inside and outside bark and merchantable volume equations were developed for 25 major commercial tree species grown in natural stands in eastern and central Canada and the northeastern United States. [...] Read more.
Accurate estimates of tree bole volume are fundamental to sustainable forest management. Total inside and outside bark and merchantable volume equations were developed for 25 major commercial tree species grown in natural stands in eastern and central Canada and the northeastern United States. Data used to develop these equations was collected from 9647 trees sampled from natural stands across the study area. The number of trees sampled varied among species. Jack pine (Pinus banksiana Lamb.) had the most observations (1648 trees) and American basswood (Tilia americana) and red oak (Quercus rubra L.) had the fewest (28 trees each). Two mathematically consistent volume equations (dimensionally compatible and combined variable) were fitted to inside and outside bark and merchantable tree volume data from these tree species. The final volume equation was selected based on fit statistics, predictive accuracy, and logical consistency. Its predictive accuracy was compared with a volume equation previously developed by Honer. Both (total and merchantable) volume equations were fitted using a nonlinear mixed-effects modelling approach. However, random effects were significant for total volumes for only four tree species. A weight (power function) was used to address heteroscedasticity in the data. The modified form of the dimensionally compatible volume equation outperformed the combined variable volume equation in terms of fit statistics and predictive accuracy and was selected as the total inside and outside bark and merchantable volume equations for all tree species. This equation produced logically consistent estimates of total and merchantable volumes and was more accurate than that previously developed by Honer to estimate volumes for most of the tree species used in this study. This new equation can be used to estimate total inside and outside bark and merchantable volumes of major commercial tree species in eastern and central Canada and the northeastern United States. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 7406 KiB  
Article
Comparison between Empirical Models and the CBM-CFS3 Carbon Budget Model to Predict Carbon Stocks and Yields in Nova Scotia Forests
by Jason Heffner, James Steenberg and Brigitte Leblon
Forests 2021, 12(9), 1235; https://doi.org/10.3390/f12091235 - 11 Sep 2021
Cited by 8 | Viewed by 4016
Abstract
In response to the global climate crisis, the Nova Scotia Department of Lands and Forestry is using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and associated methodologies to assess the carbon dynamics of the provincial forestry sector. The CBM-CFS3 bases [...] Read more.
In response to the global climate crisis, the Nova Scotia Department of Lands and Forestry is using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and associated methodologies to assess the carbon dynamics of the provincial forestry sector. The CBM-CFS3 bases simulations on a range of studies and national forest inventory plots to predict carbon dynamics using merchantable volume yield curves. Nova Scotia has also maintained thousands of permanent forest sample plots (PSPs) for decades, offering the opportunity to develop empirical, province-specific carbon models. This study used PSP tree measurements and allometric equations to compute plot-level forest carbon models from the PSP dataset and compared their output to that of the CBM-CFS3 model. The PSP-based models were stratified into five forest types and predict the carbon for seven carbon pools as a function of the plot age. Predictions with the PSP- and CBM-CFS3 models were compared to observed PSP data at the plot level and compared against each other at the stand and landscape level. At the plot level, the PSP-derived models predicted carbon closer to the observed data than the CBM-CFS3 model, the extent of over- or under-estimation depending on the carbon pool and forest type. At the stand scale, the CBM-CFS3 model predicted forest carbon to within 3.1–17.6% of the PSP method on average. Differences in predictions between the CBM-CFS3 and PSP models decreased to within 2.4% of the PSP-based models at the landscape level. Thus, the implications of using one method over the other decrease as the prediction scale increases from stand to landscape level, and the implications fluctuate as a function of the forest type and age. Full article
(This article belongs to the Special Issue Simulation Models of the Dynamics of Forest Ecosystems)
Show Figures

Figure 1

13 pages, 2124 KiB  
Article
Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand
by Krzysztof Leszczyński, Arkadiusz Stańczykiewicz, Dariusz Kulak, Grzegorz Szewczyk and Paweł Tylek
Forests 2021, 12(7), 870; https://doi.org/10.3390/f12070870 - 30 Jun 2021
Cited by 11 | Viewed by 2924
Abstract
The aim of the present work was to estimate the productivity and costs of timber harvesting and forwarding during the first commercial thinning of a Scots pine stand. Three harvesting models were introduced and compared: narrow trail, wide access trail, and schematic extraction. [...] Read more.
The aim of the present work was to estimate the productivity and costs of timber harvesting and forwarding during the first commercial thinning of a Scots pine stand. Three harvesting models were introduced and compared: narrow trail, wide access trail, and schematic extraction. The analyzed harvesting equipment consisted of a track mini-excavator (34 kW) with a stroke harvester head (gripping range 4–30 cm), and a farm tractor coupled to a logging trailer with a hydraulic crane. Merchantable timber (roundwood with a minimum diameter of 5 cm inside bark) was harvested from a 25-year-old planted Scots pine stand growing on a grid of 1.4 m × 1.8 m. The study showed the productivity of the mini-harvester ranged from 3.09 to 3.47 m3/PMH15 (productive machine hours plus 15 min), and that of the forwarding equipment to be 4.07 m3/PMH15. The analyzed model of productivity as a function of tree volume and thinning intensity was statistically significant, but the intensity parameter was significant only on plots located along wide access trails (3.7 m) and insignificant on plots located along narrow access trails (2.5 m). The distance between trees was not found to be significant. The calculated net machine costs for the forwarding equipment and track mini-harvester were EUR 36.12 and 52.47 per PMH, respectively. An increase in the usage rate of the harvesting equipment to 80% would reduce the harvesting and forwarding costs to EUR 22.07/m3. Full article
(This article belongs to the Special Issue Forestry Production Process Automation and Robotization)
Show Figures

Figure 1

11 pages, 1709 KiB  
Article
Opportunities and Challenges for Intensive Silviculture in Alberta, Canada
by Bradley D. Pinno, Kazi L. Hossain, Ted Gooding and Victor J. Lieffers
Forests 2021, 12(6), 791; https://doi.org/10.3390/f12060791 - 16 Jun 2021
Cited by 14 | Viewed by 3952
Abstract
Intensive silviculture is practiced in many parts of the world but is rare in the public forests of western Canada. Here, we make the argument that intensive silviculture could be justified in Alberta but has not been implemented due to philosophies and policy [...] Read more.
Intensive silviculture is practiced in many parts of the world but is rare in the public forests of western Canada. Here, we make the argument that intensive silviculture could be justified in Alberta but has not been implemented due to philosophies and policy decisions by foresters from government, industry and academia. These include adherence to long rotations, management goals that are aimed at sustained total volume yield rather than economic value, limitations in the types of stands that are allowed to be regenerated and models that do not include intensive silviculture options. In Mixedwood Growth Model projections, we demonstrate the potential of intensive silviculture that includes combinations of selecting good sites and thinning to produce merchantable stands by age 50 compared to the standard rotation age of 80 with basic silviculture. There could be even more gains if forest level constraints in timber flow were removed due to the increased growth of regenerating stands. Finally, we examine the attitude and policy changes that we believe are necessary for adoption of more intensive silviculture systems on parts of Alberta’s forest landbase. Full article
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Precommercial Thinning Increases Spruce Yields in Boreal Mixedwoods in Alberta, Canada
by Ivan Bjelanovic, Phil Comeau, Sharon Meredith and Brian Roth
Forests 2021, 12(4), 412; https://doi.org/10.3390/f12040412 - 30 Mar 2021
Cited by 11 | Viewed by 3132
Abstract
A few studies in young mixedwood stands demonstrate that precommercial thinning of aspen at early ages can improve the growth of spruce and increase stand resilience to drought. However, information on tree and stand responses to thinning in older mixedwood stands is lacking. [...] Read more.
A few studies in young mixedwood stands demonstrate that precommercial thinning of aspen at early ages can improve the growth of spruce and increase stand resilience to drought. However, information on tree and stand responses to thinning in older mixedwood stands is lacking. To address this need, a study was initiated in 2008 in Alberta, Canada in 14 boreal mixedwood stands (seven each at ages 17 and 22). This study investigated growth responses following thinning of aspen to five densities (0, 1000, 2500, 5000 stems ha−1 and unthinned (control)). Measurements were collected in the year of establishment, and three and eight years later. Mortality of aspen in the unthinned plots was greater than in the thinned plots which were not significantly different amongst each other. Eight years following treatment, aspen diameter was positively influenced by thinning, while there was no effect on aspen height. The density of aspen had no significant effect on the survival of planted spruce. Spruce height and diameter growth increased with both aspen thinning intensity and time since treatment. Differentiation among treatments in spruce diameter growth was evident three years from treatment, while differentiation in height was not significant until eight years following treatment. Yield projections using two growth models (Mixedwood Growth Model (MGM) and Growth and Yield Projection System (GYPSY)) were initialized using data from the year eight re-measurements. Results indicate that heavy precommercial aspen thinning (to ~1000 aspen crop trees ha−1) can result in an increase in conifer merchantable volume without reducing aspen volume at the time of harvest. However, light to moderate thinning (to ~2500 aspen stems ha−1 or higher), is unlikely to result in gains in either deciduous or conifer merchantable harvest volume over those of unthinned stands. Full article
(This article belongs to the Special Issue Silviculture and Management of Boreal Forests)
Show Figures

Figure 1

19 pages, 1544 KiB  
Article
Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries?
by Thomas P. Sullivan, Druscilla S. Sullivan, Pontus M. F. Lindgren, Douglas B. Ransome and Walt Klenner
Forests 2021, 12(4), 388; https://doi.org/10.3390/f12040388 - 25 Mar 2021
Cited by 5 | Viewed by 2499
Abstract
There is a demand for more progressive restoration directives to regenerate forest ecosystems impacted by harvesting, wildfire, insect outbreaks, and mineral resource extraction. Forest restoration may take many decades and even centuries without active silvicultural intervention to grow large trees that provide suitable [...] Read more.
There is a demand for more progressive restoration directives to regenerate forest ecosystems impacted by harvesting, wildfire, insect outbreaks, and mineral resource extraction. Forest restoration may take many decades and even centuries without active silvicultural intervention to grow large trees that provide suitable habitat for various wildlife species. We tested the hypotheses (H) that, compared with unmanaged (unthinned and old-growth) stands, large-scale precommercial thinning (heavy thinning to <500 stems/ha) of young lodgepole pine (Pinus contorta var. latifolia), at 20–25 years post-treatment, would enhance: (H1) the architecture of large overstory trees (e.g., diameter, height, and crown dimensions); (H2) mean (i) total abundance and species diversity of forest-floor small mammals, (ii) abundance of tree squirrels; and (H3) relative habitat use by mule deer (Odocoileus hemionus). There were three levels of thinning with mean densities of crop trees/ha: 353 (low), 712 (medium) and 1288 (high), an unthinned, and old-growth stand replicated at three areas in south-central British Columbia, Canada. Mammal abundance and habitat use were measured during the period 2013 to 2015. Mean diameter of crop trees was significantly different among stands with the low-density, medium-density, and old-growth stands having diameters larger than the high-density and unthinned stands. Mean height of crop trees was highest in the old-growth stands. Mean crown volume of crop trees was significantly different among stands with the low-density stands 2.1 to 5.8 times higher than the high-density, unthinned, and old-growth stands, and hence partial support for H1. Mean total abundance of forest-floor small mammals was significantly different among stands with the low-density and old-growth stands 1.9 to 2.4 times higher than the other three treatment stands. Mean abundances per stand of the red squirrel (Tamiasciurus hudsonicus) (range of 4.8 to 12.0) and the northern flying squirrel (Glaucomys sabrinus) (range of 3.2 to 4.3) were similar among stands. Mean relative habitat use by mule deer was similar among stands, but variable with counts of pellet-groups/ha in the thinned stands were 3.8 to 4.2 and 2.1 to 2.3 times higher than the unthinned and old-growth stands, respectively. Thus, mean total abundance of forest-floor small mammals of H2 was supported, but species diversity and abundance of tree squirrels was not. Enhanced relative habitat use by mule deer (H3) was not supported. To our knowledge, this is the first concurrent measurement of several mammal species in heavily thinned, unthinned, and old-growth forest across three replicate study areas at 20–25 years post-treatment. Although not all mammal responses were significant, there was a strong indication that restored forests via heavy thinning (<500 trees/ha) produced large overstory trees (at least for diameter and crown dimensions) in stands 33 to 42 years old. Comparable old-growth stands, albeit with crop trees of greater height and merchantable volume, ranged from 120 to 167 years of age. Restored forests with large trees capable of supporting at least these mammal species may be achieved in decades rather than centuries. Full article
Show Figures

Figure 1

Back to TopTop