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Abstract: In response to the global climate crisis, the Nova Scotia Department of Lands and Forestry is
using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and associated methodolo-
gies to assess the carbon dynamics of the provincial forestry sector. The CBM-CFS3 bases simulations
on a range of studies and national forest inventory plots to predict carbon dynamics using mer-
chantable volume yield curves. Nova Scotia has also maintained thousands of permanent forest
sample plots (PSPs) for decades, offering the opportunity to develop empirical, province-specific
carbon models. This study used PSP tree measurements and allometric equations to compute plot-
level forest carbon models from the PSP dataset and compared their output to that of the CBM-CFS3
model. The PSP-based models were stratified into five forest types and predict the carbon for seven
carbon pools as a function of the plot age. Predictions with the PSP- and CBM-CFS3 models were
compared to observed PSP data at the plot level and compared against each other at the stand and
landscape level. At the plot level, the PSP-derived models predicted carbon closer to the observed
data than the CBM-CFS3 model, the extent of over- or under-estimation depending on the carbon
pool and forest type. At the stand scale, the CBM-CFS3 model predicted forest carbon to within
3.1–17.6% of the PSP method on average. Differences in predictions between the CBM-CFS3 and
PSP models decreased to within 2.4% of the PSP-based models at the landscape level. Thus, the
implications of using one method over the other decrease as the prediction scale increases from stand
to landscape level, and the implications fluctuate as a function of the forest type and age.

Keywords: forest carbon stocks; allometric equations; empirical models; mechanistic models; scale;
CBM-CFS3

1. Introduction

Forests are excellent for carbon sequestration, but this requires having suitable mon-
itoring and modelling approaches to predict current and future carbon stocks in forests
and their response to management [1]. Usually, carbon models use sampling data, and
their accuracy and precision, therefore, depend on the availability and quality of repre-
sentative data. The United Nations Intergovernmental Panel on Climate Change (IPCC)
guidelines define three levels of data, i.e., coarse (Tier 1) and higher resolution (Tiers 2
and 3) for national greenhouse gas inventories [2]. Tier 1 data are often based on global
or continental averages and can be a starting point for regions with little existing data or
scientific resources [3]. The IPCC protocol recommends using national and regional data
wherever possible to increase reporting accuracy.

Carbon enters the forest ecosystem through photosynthesis and comprises approxi-
mately half the dry weight of biomass [4]. Tree biomass (recorded as dry weight per unit
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area) is calculated as the product of a material’s volume and specific density and is corre-
lated to external tree dimensions such as diameter at breast height (DBH) and height [5].
Further published research has related these measures to the biomass allocation within five
major tree compartments [6] (Figure 1). Stem volume, which generally holds around 60%
of a mature tree’s above-ground biomass, is generally predicted with the highest accuracy
by allometric equations [2,7,8]. For the other tree compartments, the biomass prediction
accuracy decreases with the size of the compartment, i.e., the biomass of smaller branches
is predicted with less accuracy than large branches, and foliage, small branches, and fine
root biomass prediction accuracy is often the lowest [7]. Below-ground biomass (roots) can
contain between 20% and 40% of total tree biomass in temperate and boreal forests [9] but is
more difficult to estimate due to a data scarcity because of the difficulty of measuring root
systems and their growth over time for individual trees [9,10]. As a result, below-ground
biomass is often estimated at stand level rather than at the individual tree level [4,11].
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As biomass dies, stored carbon transfers into necromass and eventually to soil and
atmospheric pools. Necromass is dead organic matter (DOM), which the IPCC separates
into dead wood and litter [12]. Dead wood accumulates as trees die (snags) or shed
large branches, known as coarse woody debris (CWD). Litter consists of discarded small
branches, discarded foliage, as well as decomposing dead roots and coarse woody debris
that do not yet constitute soil. Volume can be estimated from individual snag and CWD
diameter measurements in a similar way to living trees, but volumes must be adjusted to
account for structural losses and decomposition [13]. The United States Department of
Agriculture (USDA) has computed density reduction and structural loss factors for all tree
compartments considered in the CBM-CFS3 as a function of species and stage of decay [14].

The Canadian Forest Service (CFS) developed the Carbon Budget Model of the Cana-
dian Forest Sector (CBM-CFS3) to predict and track forest carbon dynamics [15]. While
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the CBM-CFS3 model incorporates some province- and region-specific adjustability, it still
relies heavily on national assumptions in simulations. This is why it would be interesting
to develop province-specific empirical carbon models to estimate forest carbon pools using
permanent sample plot (PSP) data.

This study aims to produce province-specific empirical models of carbon stocks using
PSP tree and CWD measurements and individual tree biomass equations. The models are
fitted using data from thousands of sample plots that the Nova Scotia Department of Lands
and Forestry (NSDLF) maintains to measure forest growth over time [16]. The estimates
produced by these empirical models are then compared to the ones computed with the
CBM-CFS3 model. This study does not quantify the accuracy of each carbon estimation
method. It instead discusses the implications of using one method over the other for stand-
and landscape-level carbon estimation. Such a project will provide the province of Nova
Scotia with a localized tool for forest carbon estimation and a better understanding of how
the CBM-CFS3 performs for carbon estimation in the province.

2. Materials and Methods
2.1. Study Area

Nova Scotia is an Atlantic Canadian province with 4,189,000 ha of forested land,
35.2% of which being owned by the province [17]. Nova Scotia falls within the Atlantic
Maritime ecozone [18], with an average annual precipitation of 1350 mm/year and an
average temperature of 6.4 ◦C [19]. The forest is predominantly an Acadian Forest type
with Maritime Boreal forests in the coastal and highland regions of the province [20]. Over
half of the forest is classified as “softwood” (SW) (≥75% coniferous trees by volume), and
around 75% of the forest has a softwood component, comprised mainly of spruce (Picea
spp.) and balsam fir (Abies balsamea (L.) Mill.) [17] (Figure 2). Less than 20% of the forest is
under “hardwood” (HW) classification (≥75% deciduous species by volume), of which red
and sugar maples (Acer rubrum L. and Acer saccharum Marsh., respectively) and birch (Betula
spp.) have the highest representation. The remainder is classified as mixedwood (MW)
(<75% softwood or hardwood species) [17]. Within these functional groups, provincial
forests are further classified by forest communities that depend on species composition
and tolerance to shade. “Intolerant” species require relatively high light levels to establish
and therefore typically colonize early in forest succession (Betula papyrifera Marsh. Populus
spp., etc.), whereas “tolerant” species can establish in low-light conditions, often in mature
forests as a climax species (Acer saccharum, Betula alleghaniensis Britton., Tsuga canadensis
(L.) Carrière., Picea rubens Sargent., etc.) [21].
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Figure 2. Location of Nova Scotia in Northeastern North America, and dominant tree genus types.
Map publicly available and generated by Canada’s National Forest Inventory [22].
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2.2. Permanent Sample Plot Measurement

Nova Scotia has a total of 3250 PSPs. 1760 of them were established by 1970 and the
remainder between 1998 and 2002 [23]. They are circular plots with an 11.35 m radius, thus
covering 400 m2 (0.04 ha) each. Trees in the plots are measured on a five-year rotation
for metrics including species, diameter at breast height (DBH), height, and condition of
all trees >9 cm DBH; coarse woody debris (CWD); count of tree species ≤9 cm DBH by
species; and various other site characteristics. Saplings are measured as a count by species
of all trees in three DBH classes between 3.1 and 9 cm. Average stand age is determined by
coring three trees of a representative basal area (BA) [17]. A 10 m2 subplot is assessed for
stem density and for mean height of woody vegetation by species, which includes trees
<1.3 m tall and woody shrubs [23]. Both standing dead trees and coarse woody debris are
recorded with a hardwood or softwood designation, diameter, and decay class, with CWD
being collected using the Line Intersect Method (LIM) [24].

2.3. PSP Measurement Processing
2.3.1. Carbon Calculation from PSP Data

Several methods and equations were used to estimate the various CBM-CFS3 carbon
pools from the PSP measurements (Figure 3). All the data processing was completed using
R software Version 1.3.1093 [25] and Microsoft (R Core Team: Redmond, WA, USA) Excel
version 16.0.13328.20210 [26]. The most recent Nova Scotia PSP data were accessed from the
provincial archives, spanning 1965–2019 for living tree measurements and 1998–2019 for
coarse woody debris and snag measurements [16]. Using Lambert et al. [6]’s species-specific
equations, tree compartment oven-dry biomass was computed from DBH measurements
of every tree on every plot (>750,000 individual measurements). Species that did not have
a specific equation were reassigned as hardwood or softwood and computed using those
generalized equations. The sum of compartment biomass equaled the total above-ground
tree biomass, which was used to estimate below-ground (root) biomass using Li et al. [27]’s
relationships. Tree biomass measurements (metric tonnes) along with merchantable volume
measurements (m3) were summed at the plot level and scaled to per-ha levels.
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Tree compartment biomass was first compiled in IPCC-recognized pools to compare
measurements against published literature. To assess potential differences in carbon
content between forest stand types, plots were assigned a functional group based on the
percentage of hardwood or softwood volumes. Plots that contained <75% HW or SW
volume by species were assigned a mixedwood functional group [17]. The biomass pools
were then multiplied by 0.5 to compute carbon content [1] and then arranged to emulate
those pools estimated by the CBM-CFS3 (Figure 3). For the “Merchantable Volume + Bark”
(Merch + Bark) pool, the volume of tree tops and stumps were discounted from the total
measurement and added to the “Other Volume + Bark” (Other + Bark) pool as per the
CBM-CFS3 modelling approach [1] using a Nova Scotia-specific factor of 0.95 [15].

Standing dead tree necromass was calculated from snag measurements using the DBH-
based allometric equations and the same scale-up approach. The foliage compartment
was subtracted from the total above-ground necromass calculation for dead trees. Coarse
woody debris was recorded in the PSPs using the LIM [24] and converted to necromass
using the LIM protocol [28]. The USDA species-specific decay reduction and structural
loss factors [14] were used to correct the necromass of dead trees and CWD based on
their recorded decay level. Nova Scotia uses a three-class decay classification system for
standing dead and CWD, which were assigned to their equivalent USDA decay class based
on the closest class description (Appendix A Table A1).

Forest Communities

Forest community was chosen as the stratifying variable due to its landscape-level scal-
ability and its ability to differentiate between stands of provincially important tree species
and varying carbon accumulation dynamics. Communities were previously delineated us-
ing ariel photo interpretation [29]. Communities were selected to explore variance between
groups of different species composition, as species exhibit differences in growth dynamics,
nutrient regimes, litter, and turnover rates, all of which can affect their carbon dynamics [2].
We chose for this analysis the five most prevalent and significant forest communities in the
province, which are comprised of two hardwood-dominated, two softwood-dominated,
and one mixed wood forest communities (Table 1). The hardwood functional groups are
“HTHw” and “HIHw”, representing tolerant and intolerant hardwood-dominated plots,
respectively. Together they account for around 80% of hardwood-dominated plots and
cover almost 20% of the Nova Scotia land base. The mixedwood forest community (“MIH-
wSH”) is comprised of intolerant hardwoods and softwood species. It is the largest mixed
wood community and covers almost 20% of the entire PSP dataset. Finally, the softwood
functional groups are “SrSbSDom” and “SbFDom” and consist of mostly spruce (red (Picea
rubens Sargent.) and black (Picea mariana [Miller] Britton.)) and balsam fir, respectively, both
of which are commercially important and cover a substantial portion of the province. Red
and black spruce are the province’s largest single forest community, and balsam fir is the
third most prevalent softwood species. All other softwood forest communities represent
<3% of provincial plots. Combined, the selected forest communities make up almost 67%
of the PSP data (Table 1).

Table 1. Breakdown of PSPs by the forest communities used in the analysis (all available plots with both biomass and
necromass measurements, after age- and forest community-related omission).

Functional Group Forest Community Description Number of PSP
Records Used

% of
Functional Group % of PSP Dataset

Hardwood
HTHw Tolerant HW dominated 533 40.3 8.4

HIHw Intolerant HW
dominated 531 42.5 8.8

Mixedwood MIHwSH Intolerant HW and
Softwood dominated 1081 51.6 18.2

Softwood
SrSbDom Red and Black Spruce

dominated 1423 53.4 23.4

SbFDom Balsam fir dominated 450 17.8 7.8
Total 4018 66.7
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Age

Age is a recent addition to the PSP measurement methods, so some older plots do
not have an age recording, and some newer plots were missing this recording. To address
this, age was back-calculated for all plots based on their most recent age measurement.
This was only computed until the plot had a 30% or greater drop in the basal area between
successive measurements, at which point the age and forest community were no longer
considered accurate, and the older plot measurements were removed from the analysis.
Thirty percent is the minimum change in basal area for a stand-altering harvest under
Nova Scotia harvest criteria [21]. A change in basal area of this magnitude may therefore
indicate a harvest or disturbance that could reset the age or alter the forest community of
the stand.

A visual breakdown of the PSP dataset shows a relatively similar distribution of
functional groups within age classes except in the 1–20 year age class (Figure 4), indicating
biomass was calculated from plots of similar age distributions for each functional group.
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2.4. Empirical Model Development

With plots stratified by forest community and assigned an age, 4018 plot measurements
were made available for evaluating all relevant CBM-CFS3 carbon pools. Because the Merch
+ Bark, Other + Bark, Foliage, and Root pools only require living tree data, these individual
curves were fit from the entire dataset (1965–2019), totaling over 10,000 plot measurements
after age- and community-based omissions. Random subsets of these data were set aside
before curve fitting to be used for calculating bias and uncertainty [30]. Datasets were
randomly partitioned to produce a subset with a minimum of 100 plots, requiring a < 22%
reduction of the least prevalent forest community (balsam fir plots, n = 450) and as little as
7% of the highest represented forest community (SrSbSDom plots, n = 1423).

For these analyses, it was assumed that carbon (t/ha) could be estimated from the
stand age (years). Curves were fit with a non-linear least squares (NLS) regression, using
R’s nls function [31] to fit the relationship between age (independent variable) and carbon
content (dependent variable) for the seven plot-level carbon pools across the five forest
communities, resulting in 35 individual relationships produced from the PSP data. The best
relationship was the one with the lowest Residual Standard Error. As in many other studies
describing tree growth and ecological relationships [32], the scatterplot distributions show
a curve shape that can be fitted using either a logistic (1) or power (2) function as follows:

Logistic: Carboni = β1i/(β2i + exp(−β0iX)) + ε, (1)

Power: Carboni = β0i ∗ (Xˆβ1i) + ε, (2)
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where: Carbon is the estimated carbon content in t/ha; i is the pool number (i = 1, 2, 3, 4, 5,
6, 7); β0, β1, and β2 are regression parameters that are estimated for each pool; X is the
plot age in years; exp is the base of natural logarithms; and ε is an additive error term.

The merchantable volume yield curve was calculated for each plot using a logistic
function for each forest community (HIHw, HTHw, MIHwSH, SrSbSDom, SbFDom) as
follows:

MerchVoli = β1i/(β2i + exp(−β0iX)) + ε (3)

where: MerchVol is the merchantable volume of the plot in cubic meters; i is the forest
community (i = 1, 2, 3, 4, 5); β0, β1, and β2 are regression parameters that are estimated for
each community; X is the plot age in years; exp is the base of natural logarithms, and ε is
an additive error term.

2.5. Carbon Budget Model of the Canadian Forest Sector

The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) uses yield
curves relating merchantable volume and stand age to predict past and current carbon
stocks and project future stocks as they respond to forest growth and disturbance [33]. It
uses equations developed by Boudewyn et al. [34] that describe the stand-level relationship
between merchantable volume, age, and above-ground biomass for >60 North American
tree species. Boudewyn et al. [34]’s equations relied largely on allometric biomass equations
developed by Lambert et al. [6] to estimate the biomass of individual tree compartments
based on (a) DBH or (b) DBH and height measurements made on CFS forest plot trees.
These equations were calculated for 33 individual Canadian tree species, hardwood, and
softwood groupings, as well as all combined species. Equations were fit with data from over
8600 destructive tree samples across Canada, about 20% of which were from the Atlantic
provinces. Expansion factors are used to predict non-merchantable biomass in small trees
and in non-merchantable components of merchantable trees in the CBM-CFS3 [1]. Below-
ground biomass is calculated from the above-ground estimations using Li et al. [27]’s
equations, developed from >600 pairs of below- and above-ground biomass measurements
from boreal and cold temperate regions.

At every timestep in a CBM-CFS3 simulation, portions of biomass fluctuate between
several necromass pools to simulate structure loss/mortality and decomposition. The
necromass pools pertinent to this study are “snags” (dead, standing trees) and Medium
Dead Organic Matter (Medium DOM) which includes downed dead trees (equivalent to
Nova Scotia’s CWD pool) [1]. Temperature-dependent decomposition and transfer rates
were compiled from numerous published estimates and National Forest Inventory (NFI)
ground plots [15,35].

2.6. CBM-CFS3 Estimations

The CBM-CFS3 simulates many site factors such as disturbance regimes and harvest
cycles. This analysis only required the CBM-CFS3 carbon estimation curves computed as a
function of the plot age for each forest community. To produce the CBM-CFS3 estimates, we
used the CBM-CFS3′s underlying equations (Boudewyn et al. [34] and the same scale-up
factors and transfer rates) to compute the carbon pools as an accumulation over time [1,15].

To initiate CWD pools (referred to as the Medium DOM pool in the CBM-CFS3) at
year zero, the CBM-CFS3 runs multiple stand life cycles with CWD carbon levels set
to increasingly larger values until a “quasi-equilibrium” state is achieved between two
consecutive life cycles (see details in [1]). For this analysis, the initial CWD level was
set using the equivalent PSP-derived equation at age = zero. Once set, the CBM-CFS3
script estimated carbon as a function of the plot age for each carbon pool under each forest
community using only the community-specific merchantable volume curves derived from
the PSP measurements.
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2.7. PSP Model vs. CBM-CFS3 Estimation Comparison
2.7.1. Pool and Plot-Level Comparison

The CBM-CFS3 estimations (hereafter referred to as the “CBM” method) were com-
pared directly to the empirically derived curves (hereafter referred to as the “PSP” method,
curves, or models). The estimations were assessed for uncertainty by calculating their ab-
solute bias and deviation (Root Mean Square Error or RMSE) from the independent subset
of data. Uncertainty was compared between pools and between computation methods
using the percentages of the mean, i.e., %RMSE (RMSE/mean of observations) and %Bias
(Bias/mean of observations). Indeed, %RMSE indicates which method best resembles the
independent PSP measurements (i.e., the observations) [36].

2.7.2. Stand and Landscape-Level Comparison

To assess the implications of choosing one method over the other, the plot-level carbon
pool estimations were aggregated to the stand level and estimated over the range of stand
ages (1–150 years). The absolute (t/ha) and relative (%) difference of the CBM-CFS3 carbon
estimations against PSP carbon estimations were calculated as the mean difference across
the age range. The relative difference in carbon estimation was calculated by dividing the
absolute difference (CBM estimation—PSP estimation) by the PSP estimation and displayed
over the range of plot ages (1–150 years).

Finally, to assess differences between computation methods at the landscape level,
following Hennigar et al. [37], a hypothetical 150 ha land base was built containing an even
mix of the forest communities used in this analysis. Four age structures were considered:
(a) an even mix of the forest communities across all age classes; (b) one skewed towards
younger age classes; (c) one skewed towards older age classes; and (d) a scenario in a
“natural” age structure, i.e., similar to the Nova Scotia forest [17] (Figure 5a–d). The even-
aged landscape (a) can indicate if relative differences between PSP and CBM estimations
are reduced from the stand to the landscape level, while scenarios (b) and (c) can display
any age-dependent discrepancies in mean absolute carbon estimation. Scenario (d) will
show how the models react to a landscape with a natural age structure, where the highest
percentage of volume is in middle-aged stands.
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Figure 5. Hypothetical 150 ha forest with an even level of the five forest communities, under four
age structures: (a) even-aged; (b) young forest; (c) old forest; (d) “natural” forest. The land base is
shown in five-year age steps, but the analysis used 150 age classes (ages 1–150).

3. Results
3.1. Empirical Model Development

Tree biomass compartments and other plot-level biomass measurements (snags and
CWD) were aggregated into CBM-CFS3-recognized pools and separated into the five forest
communities. Non-linear least squares regressions were used to fit the relationship between
these biomasses and the age (X) (Table 2). Of the 35 individual- carbon pool models, 29 were
best represented (lowest Residual Standard Error) by a logistic function and six by a power
function. The same method was then used to fit the plot-level merchantable volume
measurements to age for each forest community (Table 3).

Table 2. Coefficients and residual standard errors for the regressions relating forest carbon to age for each forest community
as a function of the carbon pool (n = 4018).

Forest
Community

Carbon Pool
Function (*) β0 β1 β2 RSE (t/ha)i Description

HIHw

1 Merch + Bark 1 0.0436 9.524 0.139 17.20
2 Other + Bark 2 7.0415 0.216 - 7.73
3 Coarse roots 1 0.0476 2.6 0.171 4.23
4 Fine roots 1 0.0958 0.272 0.152 0.69
5 Foliage 2 0.864 0.350 - 1.72
6 Snags 1 0.0246 1.422 0.0891 5.20
7 CWD 1 0.0734 −4.345 −1.597 3.06

HTHw

1 Merch + Bark 1 0.0485 16.0533 0.234 16.90
2 Other + Bark 2 9.33 0.214 - 7.15
3 Coarse roots 1 0.0814 2.524 0.193 3.58
4 Fine roots 1 0.1357 0.234 0.145 0.54
5 Foliage 1 0.0893 1.719 0.527 1.40
6 Snags 2 0.468 0.569 - 5.02
7 CWD 1 0.0167 2.580 0.337 4.15
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Table 2. Cont.

Forest
Community

Carbon Pool
Function (*) β0 β1 β2 RSE (t/ha)i Description

MIHwSH

1 Merch + Bark 1 0.0612 7.668 0.166 17.23
2 Other + Bark 1 0.153 4.383 0.308 6.60
3 Coarse roots 1 0.0706 1.625 0.147 4.16
4 Fine roots 1 0.119 0.146 0.0886 0.64
5 Foliage 1 0.112 0.948 0.222 1.81
6 Snags 1 0.0329 3.383 0.445 4.67
7 CWD 2 5.613 −0.12 - 3.83

SrSbSDom

1 Merch + Bark 1 0.099 2.934 0.0973 17.91
2 Other + Bark 1 0.129 4.637 0.425 5.85
3 Coarse roots 1 0.0973 0.711 0.0944 4.57
4 Fine roots 1 0.125 0.136 0.102 0.69
5 Foliage 1 0.110 0.803 0.201 1.98
6 Snags 1 0.0378 6.628 1.136 4.90
7 CWD 1 0.0493 −4.614 −1.557 3.84

SbFDom

1 Merch + Bark 1 0.123 1.343 0.0452 12.60
2 Other + Bark 1 0.188 1.702 0.135 6.77
3 Coarse roots 1 0.126 0.319 0.0434 3.18
4 Fine roots 1 0.159 0.0401 0.0268 0.695
5 Foliage 1 0.166 0.320 0.0607 2.40
6 Snags 2 2.691 0.169 - 4.67
7 CWD 1 −0.0017 1.102 −0.835 5.01

(*) (1): Carboni = β1i/(β2i + exp(−β0iX)) + ε and (2): Carboni = β0i ∗ (Xˆβ1i) + εwhere (X) = plot age.

Table 3. Coefficients and residual standard errors (RSE) for the logistic function relating the mer-
chantable volume with age for each forest community (n = 4018).

Forest
Community β0 β1 β2 RSE (m3/ha)

HIHw 0.03562 28.0787 0.1002 57.5
HTHw 0.0524 28.6933 0.1582 52.2

MIHwSH 0.06097 18.8199 0.1232 61.6
SrSbSDom 0.09794 6.132 0.05929 71.6
SbFDom 0.1281 2.9188 0.0313 46.5

Comparison of Estimations against Independent Observations

Plot-level carbon was then estimated for each forest community as a function of age
with the CBM method and the PSP-derived merchantable volume curves and compared
against the estimations of the PSP method. Both PSP- and CBM-derived curves were
statistically contrasted against the independent PSP datasets (n = 100 per forest community)
to assess their congruence with observed data. Bias and Root Mean Square Error (RMSE)
totals for all compartments are provided in Appendix B (Tables A2 and A3). As shown in
Figure 6, the RMSE revealed that the highest average error from the observed data was
for the Merch + Bark pool, where CBM estimations had an RMSE between 15.9 t/ha for
the SbFDom forest community and 24.7 t/ha for the SrSbSDom forest community, while
the PSP method estimations had an RMSE between 14.1 and 23.3 t/ha for the same forest
communities. The lowest RMSE was usually found in the Fine Root pool, where CBM
estimates were on average between 0.7 and 0.8 t/ha different than the observed data and
PSP estimations were between 0.5 and 0.8 t/ha different. In all cases, the PSP method had a
lower or equal RMSE (and therefore, higher or equal congruence to observed data) than the
CBM method, with methods having an equal RMSE in the HTHw (Foliage pool), SbFDom
(Fine Root pool), and SrSbSDom (Other + Bark and CWD pools) forest communities.
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Figure 6. Root Mean Square Error (RMSE) of both estimation methods against an independent PSP
dataset (n = 100 per community), by forest community and carbon pool.

The Percent RMSE (%RMSE) indicated that the greatest deviation from observed data
as a percentage of mean pool carbon was consistently in the CWD and Snag carbon pools
(Figure 7), where the highest %RMSE for the PSP method was 126.6% and 123.4% and for
the CBM method 132.6% and 125.7%, respectively. For both methods, these extremes were
recorded in the HTHw and HIHw forest communities, respectively. In all other pools, the
PSP method predicted carbon to within 50% or less of the observed mean except in the
SrSbSDom forest community, where the %RMSE was 70.3%, 57.2%, and 74.5% for Merch
+ Bark, Other + Bark, and Coarse Root pools, respectively. The SrSbSDom Other + Bark
and CWD pools were the only instances of the CBM method having a lower %RMSE and
therefore higher congruence with observed data than the PSP method: 57.1% vs. 57.2% in
Other + Bark respectively, and 104.5% vs. 106.4% in CWD, respectively. In cases where
the CBM method has a lower %RMSE, the %RMSE is relatively similar to that of the PSP
method, the greatest difference being 1.9%. There are several cases where the PSP method
has a %RMSE more than 10% closer to observed data than the CBM method, so taken
together, the PSP-derived estimates are more congruent with the observed data.

The bias of the PSP and CBM estimations was computed from the independent,
observed data and contrasted between the methods. Bias indicates the level of over-
(positive bias) or under- (negative bias) estimation of the models compared to the observed
data. Higher bias is shown by a greater distance from zero. When compared to the observed
PSP data, the PSP method estimated carbon with a lower bias (closer to zero) than the CBM
method in all pools except HTHw Foliage, SbFDom Fine Root, and SrSbSDom Fine Roots
(where bias was equal between the methods), as well as in the SbFDom Coarse Root and
SrSbSDom Other + Bark and CWD pools (where the PSP method had greater bias than
CBM estimations) (Figure 8). Bias was always positive in the Merch + Bark pool, with
the PSP average bias ranging between 0.3 to 5.2 t/ha and the CBM average estimations
between 1.7 to 9.5 t/ha greater than the observed mean in the HTHw and SrSbSDom forest
communities, respectively. In the hardwood and mixed wood forest communities, the CBM
method consistently has the highest bias and, therefore, less congruence with the observed
data. The CBM method is more likely to overestimate Foliage, Snag, and CWD carbon in
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the mixed wood and softwood forest communities and more likely to underestimate Coarse
and Fine Root carbon in the mixed wood and hardwood forest communities (Figure 8).
Several pools show positive bias by one method and negative bias by the other.
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Figure 8. Bias of PSP- and CBM-derived estimations of pool-level carbon when compared to an
independent, observed PSP dataset (n = 100 per community) by forest community and carbon pool.

Percent bias (%Bias) shows the model bias as a percentage of the observed mean. It
allows normalizes the bias for direct comparison between the pools. It shows that the PSP
method was more congruent with observations as a percentage of total pool carbon than
the CBM method. The PSP method only has one instance of bias >20%: in the SrSbSDom
CWD pool, where its predictions are 22% less (negative bias) than the mean observed
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carbon in that pool (Figure 9). More than half of the CBM estimations have greater than
20% bias (both positive and negative) compared to the observed means, with seven pools
being predicted with >40% bias: HTHw Snag (−61%); MIHwSH Other + Bark (46.9%), and
Foliage (47.6%); SbFDom Other + Bark (−42.4%), Foliage (55%), and Snag (45.9%); and
SrSbSDom Foliage (53.9%).
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Figure 9. %Bias of PSP- and CBM-derived estimations of pool-level carbon when compared to an
independent, observed PSP dataset (n = 100 per forest community), by forest community and carbon
pool.

The PSP method estimates tend to be greater than the observed data (positive %Bias)
but consistently underestimate the CWD pool across all forest communities (negative
%Bias) (Figure 9). The CBM estimates had greater %Bias than PSP estimates in all cases
except HTHw (Foliage), SbFDom (Coarse Root), and SrSbSDom (Other + Bark) pools. The
CBM estimates were more likely to under-predict carbon when compared to the observed
data (negative %Bias), especially in the hardwood and mixed wood forest communities,
and tend to overpredict (positive %Bias) Foliage, Snag, and CWD in the mixed wood and
softwood forest communities.

3.2. Stand-Level Method Comparison

Aggregating plot-level carbon estimations to the stand scale revealed differences in
method estimation based on forest community and age. Estimation methods have relatively
stable congruence after the approximate age of 50, remaining more consistent (±<15%) for
the rest of the estimation period (Figure 10). In the youngest stands, the hardwood and
mixed wood forest communities are overestimated by the CBM-CFS3 (positive relative
difference) when compared to the PSP method, with congruence increasing with age. The
carbon in these three forest communities was initially overestimated by the CBM method by
between 40–55%, a difference that gradually decreases and stabilizes to <20%. The softwood
communities had a more complicated congruence pattern over time. The difference in
CBM carbon estimation in the SbFDom community initially increased from near zero
to a 24% overestimation around age twelve, at which point the difference decreases,
becomes negative (CBM begins underestimating carbon compared to the PSP method),
then gradually increased again to become consistent at a near-zero difference around age
50 (Figure 10). In the SrSbSDom community, the CBM method underestimated carbon
by over 40% at age one compared to PSP estimates, a difference that converges on zero,
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diverges, then converges again to less than −20% around age 50, and steadies at <10% as
stands near age 90.
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Figure 10. Relative difference (CBM–SP/PSP ∗ 100) in stand-level carbon estimation between CBM
and PSP methods for each forest community, over stand age.

When mean differences were compared over the entire length of the simulation (the
mean over 150 years), the equations were most similar in predicting SbFDom at the stand
level (mean difference of −2.2 t/ha) and least congruent when predicting spruce stands
(SrSbSDom, mean difference of −8.4 t/ha) (Table 4). The relative difference ranged from
−3.1% to −17.6%, again in the SbFDom and SrSbSDom forest communities, respectively.
Mean CBM estimates were higher than PSP estimates in all hardwood and mixed wood
stand types (indicated by positive differences), whereas carbon predictions in softwood
stands were lower using the CBM method (negative differences) (Table 4).

Table 4. Mean differences in carbon estimation at the stand level between CBM and PSP estimation
methods (CBM–PSP) for the total stand-level carbon estimation over 150 years.

Forest
Community Mean Difference (t/ha) Mean Relative

Difference (%)

HIHw 8.0 10.3
HTHw 3.3 3.4

MIHwSH 7.7 11.9
SrSbSDom −8.4 −17.6
SbFDom −2.2 −3.1

3.3. Landscape-Level Method Comparison

At the landscape level, the absolute difference in carbon estimation varied over time
depending on the age class structure, with the CBM method overestimating carbon in the
youngest and oldest stands and underestimating stands aged 20–70 across all age-structure
scenarios (Figure 11). The CBM method overestimated carbon in young stands to a greater
extent in the young-skewed scenario (b) and in older stands in the old-skewed forest (c),
with the difference in even (a) and natural (d) scenarios generally falling in between (b)
and (c) across most age classes.
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Figure 11. Absolute difference between CBM and PSP methods (CBM-PSP) for the landscape carbon
estimation in the case of four scenarios: (a) even stand ages across the landscape; (b) young-skewed;
(c) old-skewed; (d) natural age distribution.

When aggregated to the landscape level, relative differences in estimation between
PSP and CBM methods were reduced. The CBM method overestimated (positive % differ-
ence) landscape-level carbon by 26% at age one when compared to the PSP estimations
(Figure 12). The differences are quickly reduced as the stand age, becoming near zero by
age 20, at which point the CBM estimations become less than the PSP estimations, nearing
7% less by age 30. Congruence increases again after age 30, nearing zero around age 70.
The CBM overestimates again for the remainder of the planning horizon, estimating 6.3%
more carbon on the landscape by age 150 (Figure 12).
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Figure 12. Relative difference ((CBM-PSP)/PSP ∗ 100) in carbon estimation between PSP and CBM
computation methods when aggregated to the landscape level, with even levels of forest communities
in a 150-ha forest simulated over 150 years.

When the mean carbon estimation over the entire planning horizon was compared,
the scenario with even-aged stands (Scenario a) had a mean difference of 8.4 t/ha of carbon,
meaning the CBM method estimated 2.4% more carbon on the landscape than the PSP
method (Table 5). The relative difference remained the same for the young, old, and natural
forest scenarios (scenarios b, c, and d respectively), but scenarios b and d have a lower
difference in actual carbon estimated on the landscape (5 t/ha) and scenario c had a higher
mean estimation difference (11.8 t/ha) (Table 5).
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Table 5. Landscape-level comparison between CBM and PSP computation methods: CBM-PSP
difference in total landscape-level carbon estimation over 150 years, in a 150-ha hypothetical forest
with (a) even amounts of the five forest communities across all ages and (b), (c), (d) varying levels of
stand age classes.

Scenario Forest Structure Mean Difference
(t/ha)

Mean Relative
Difference (%)

a Even age structure 8.4 2.4
b Young forest 5.0 2.4
c Old forest 11.8 2.4
d Natural forest 5.0 2.4

4. Discussion

This study calculated localized carbon estimation models from PSP tree measurements
and compared them to estimations of the CBM-CFS3 at the plot, stand, and landscape
levels. Results indicate that the implications of using the localized, PSP-derived models
over the CBM-CFS3 method change depending on (a) the scale at which the estimations are
being made; (b) the carbon pools being estimated (when estimating at the compartment-
or plot-scale), and (c) the age and species composition of the stand or landscape to be
estimated. Most empirical models are calculated at the compartment and plot level, where
measurements are taken, while carbon projects and planning initiatives are often estimated
at the stand or landscape level as these projects require large areas to be feasible [38]. Our
results indicate that the national-scale CBM-CFS3 has utility even at fine spatial scales and
suggest that the localized PSP-derived models behave reasonably when scaled up to the
landscape level. The implications of altering other variables are discussed in the context of
each scale.

4.1. Tree and Plot-Level Biomass

The Merch + Bark pool showed the highest levels of total RMSE and bias when
compared to the observed PSP dataset, which was expected as this is the largest carbon pool.
The %RMSE and %Bias results were better indicators of estimation congruence to observed
data when comparing between carbon pools. These results suggest the PSP-derived carbon
estimation curves better reflect the observed Nova Scotia PSP forest measurements than the
CBM estimates as they generally have a lower %RMSE at the pool level. Several pools are
predicted by the CBM method with a lower %RMSE than the PSP curves. Researchers can
consider this when the goal is to estimate these carbon pools in isolation for pool-specific
research.

The highest error for both methods occurred in the Snag and CWD estimates, which
could result from fewer data or more variability within these pools as they have only been
measured in PSPs since the late 1990s. It is also likely be influenced by the difference
in estimation methods for these two necromass pools. In both methods, merchantable
volume, foliage, and root biomass pools were directly estimated by the same equations
and expansion factors, whereas the CBM-CFS3 estimations of CWD relied on additional
biomass turnover rates and litterfall assumptions [1] and are being compared to models
derived from direct PSP measurements of this pool. Moreover, the spin-up and initiation
of carbon storage values in necromass pools in CBM-CFS3 based on assumed disturbance
histories are highly influential on CWD and snag dynamics.

Bias indicates the extent to which the estimation methods over- or underpredict pool-
level carbon when compared to the observed data, so these results can be considered when
choosing a method to estimate individual carbon pools in isolation. Overestimation of car-
bon can have negative environmental and financial consequences, and carbon accounting
protocols generally require conservative estimates or discounted pay-outs proportional
to the uncertainty [4]. Although the PSP method has %Bias closer to zero in most pools,
it may be more appropriate to use the CBM method when the CBM method has negative
%Bias and the PSP method has positive %Bias avoid overestimation.
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The error of estimation (RMSE) was calculated against the independent observed
dataset, but other types of error propagate in the calculation process. These include the
estimation error of individual models used to estimate carbon (e.g., allometric equations,
carbon fraction calculation, and above- to below-ground extrapolation) and sampling error.
To fully understand the quality of the empirical carbon estimation models produced in this
analysis, a full investigation of errors in the calculation process should be conducted to
determine how it affects the final output.

4.2. Stand- and Landscape-Level Comparison

Carbon estimation between methods was least congruent in young stands, with
estimations becoming more congruent with advancing stand age. This could be caused by
fewer observations [39] or higher structural variability in young stands. Several studies
suggest compartment-level models can be “forced through the origin” (Carbon = zero at
Age = zero) to better reflect “real-world” conditions of living biomass [40]. This study
chose instead to use the functions that best fit the PSP dataset across all year ranges in
order to compute the best-fitting model for the overall age range. When a natural plot
is harvested or disturbed to the extent that age is reset to zero, it could contain varying
regeneration and/or retention levels. Disturbance can leave debris and different soil
conditions depending on type and intensity, all of which can affect stand development [41].
Thus, forcing functions through the origin may be more acceptable for planted stands
with better-defined starting age. As shown, differences at the compartment- and plot-level
were reduced when scaled up. The Nova Scotia State of the Forest report [17] states that
most provincial forest plots are in 40–80-year-old age classes, and results suggest that
increasing the proportion of these age classes in the analysis would increase the congruence
of estimations.

The SrSbSDom (spruce-dominated) forest community had the most pronounced esti-
mation differences, with the CBM-CFS3 underestimating spruce stand carbon by 30%–40%
in stands aged <20 years and by >17% overall when compared to the PSP curves (Figure 10
and Table 4). Just like in Nova Scotia, the Canadian national forest is spruce-dominated [42].
Most of these spruce stands reside in the boreal and western regions, so CBM-CFS3 spruce
assumptions that are based on the national inventory may be biased away from the unique
Acadian spruce forests that are dominated by red spruce on zonal sites. Even those as-
sumptions based on specific Atlantic Maritime Ecozone information would include New
Brunswick, an inland spruce-dominated forest that is physically closer to the boreal for-
est [15]. As this is one of the predominant forest communities in Nova Scotia, these results
should be considered when modelling spruce stands and is an area where the CBM-CFS3
could benefit from more Acadian forest-specific empirical data.

Mean relative differences between forest communities suggest that, over the 150-year
planning horizon, the CBM method overestimates hardwood and mixed wood community
types and underestimates softwood community types when compared to the PSP method
(Table 4). The Nova Scotia landscape consists of over 50% softwood stand types, with
increasing levels of hardwood stands every year [17]. Stand-level analysis suggests that
increasing levels of young spruce stands in the analysis will cause the CBM-CFS3 estima-
tions to become less congruent with PSP curves, and if combined with the full breadth
of stand ages, will make the CBM method more likely to underestimate landscape-level
carbon by comparison. Increased levels of young stands of hardwood and mixedwood
forest communities will make the CBM method more likely to overestimate carbon when
compared to the PSP method.

At the landscape level, the mean absolute difference is lowest in the young-skewed
and natural landscapes (5.0 t/ha, Table 5) because the lower ages (<70 years) have a mixture
of over-and under-predictions (Figure 11) that result in a more balanced mean. The old-
skewed forest has the highest mean difference because the differences are exclusively >0
over the age of 70, with no negatives to counteract the positives. The CBM-CFS3 predicts
landscape-level carbon to within 2.4% of the localized PSP models, which is relatively
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close when compared to the plot and stand-level analysis. This result aligns with various
studies that found increasing the spatial scale of models can reduce the uncertainty of their
individual structures [43]. Implications for forest research and management consequently
depend on the activity scale. For landscape-level management planning (such as provincial
wood supply or provincial carbon reporting), results would be comparable between the
CBM and the PSP method, the latter being 2.4% more conservative. When estimating
carbon at the compartment, plot, or stand level for research or smaller reporting initiatives,
more consideration is needed when choosing one method over the other. The PSP method
generally showed more congruence to observed data, but if conservative estimations are
required (as they often are for carbon markets), the CBM method may be more appropriate
for predicting the plot-level carbon pools where it displayed negative bias.

4.3. Further Considerations

Results also suggest areas of focus to improve data collection regimes for carbon
modeling purposes. In most cases, the CBM-CFS3 estimated individual carbon pools with
less agreement to observed Nova Scotia PSP data when compared to the PSP-derived
curves. The inclusion of more Nova Scotia-specific plot data could therefore improve
CBM-CFS3 algorithms for the area (as well as improving the local PSP-derived curves),
most notably in pools with higher %RMSE and %Bias such as the Snag and CWD pools
(Figures 7 and 9 respectively) and in stand types/ages with low estimation congruence
between methods (such as young SrSbSDom stands). In addition, some areas of uncertainty
were identified as follows:

• The 50% carbon assumption. The CBM-CFS3 assumes a 50% carbon ratio to oven-
dried biomass, consequently used in this analysis. This general rule is not valid
when looking at individual tree tissues or individual species, as softwood trees often
contain slightly greater than 50% carbon content and hardwood species slightly below
50% [44]. Local estimations could therefore be improved if species- and tissue-specific
carbon ratios were used.

• Forest community classification. The use of remote sensing data (i.e., aerial photogra-
phy) to classify forest communities was chosen as this is how the NSDLF classifies
stands for management planning. As the PSP data offers a breakdown of species
composition for every plot, it would be possible to classify stands based on the percent
composition of species, which could reduce the error associated with remotely- sensed
classification. Moreover, the Boudewyn et al. [34] equations rely on a single leading
species to be used when converting merchantable volume to biomass at the stand
level, which may further explain some of the differences in the results of this study.
Forest community was a broad enough classification to maintain large sample sizes
post-stratification. Other variables considered included land capability, which is often
used in forest models as an indicator of site quality. The land capability was not used
here as it is a derivative of age, and therefore could be confounding in this analysis
where age is necessary to compare against CBM-CFS3 output. It would also further
reduce sample sizes between groups. Site index or other types of site-describing vari-
ables that influence forest growth and yield were not included in this analysis, which
is a limitation of this study and an area for future research. However, the reason for
not having the site in the regression analysis was because this study aimed to compare
empirical models to the CBM-CFS3 model at multiple scales as parsimoniously as
possible. The purpose was not to develop the most accurate predictions and yield
curves for carbon or merchantable volume. This was also why merchantable volume
curves were developed from the same PSP data as were used for carbon and the
existing NSDLF yield curves (which include several site metrics) were not used.

• Age. Age is a subjective variable to assess natural forests, especially in more mature
or uneven-aged stands, but it is necessary in this analysis for CBM-CFS3 comparison.
This analysis assumes forest stands are a uniform age when actual forest stands can
contain several cohorts of trees and variable mortality. Forest plots can be difficult
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to assign an age to; they can maintain different levels of regeneration even after
disturbance or harvest resets the age to zero. A protocol should be established to apply
these methods to stands of varying successional stages. Moreover, Nova Scotia is
moving towards a model of forestry that relies more on partial harvests with multi/all-
aged silviculture systems, which will further challenge the prominent use of stand
age in forest (and forest carbon) modelling.

5. Conclusions

This analysis did not intend to identify one method of carbon estimation as superior
but rather to compare the methods and offer insight into their differences. As shown here,
the implications of using one method over the other change depending on the scale and
specific variables to be estimated and the desired function of the results. In most cases, the
locally derived carbon estimation models performed with more congruence to observed
data than the CBM method at the plot scale, but the underestimation of the CBM-CFS3
may be desirable when estimating the environmental benefits of a carbon project. At the
landscape level, the CBM-CFS3 predicted carbon to be within 2.4% of the local models.

The differences in estimation highlight the importance of assessing large generic
models with local data. The similarities demonstrate the utility of large-scale models even
in some smaller localized settings while simultaneously improving our understanding of
the local model performance when scaled up, where results indicate a similar performance
to the nationally accepted CBM-CFS3. This difference across scales and variables can
offer researchers some insight when selecting a method for specific modeling applications
and can reveal opportunities to improve the function of both the local models and the
CBM-CFS3.
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Appendix A. Decay Classes

Table A1. Nova Scotia (NS) decay class number and description for standing dead or snags and coarse woody debris (CWD) [45] and their equivalent USDA classes [14] *. This Table was
created for this study, the text is a direct quotation from the Nova Scotia Department of Lands and Forestry [45] and USDA Forest Service [14].

Nova Scotia USDA

Number Snags CWD Number Snags CWD

1 Recently Dead. Branches and
twigs intact, bark on.

Bark on, hard bole, round, twigs
and branches present and

supporting log partially off the
ground.

1

All limbs and branches are present; the top
of the crown is still present; all bark

remains; sapwood is intact, with minimal
decay; heartwood is sound and hard.

Sound, freshly fallen, intact logs with no rot, no
conks present indicating a lack of decay, original

wood color, no invading roots, fine twigs attached
with tight bark.

2

Moderate decay. Dead for a
number of years, shedding fine
twigs and branches, bark loose
and flaking, fairly sound/wind

firm, bole has signs of decay/rot
in sapwood or heartwood that

was sound at the time of
mortality.

Bark flaking, mostly hard bole
(little decay), round, few branch

stubs, flat on the ground.
3

Only limb stubs exist; the top is broken; a
variable amount of bark remains; sapwood

is sloughing; heartwood has advanced
decay in upper bole and is beginning at the

base.

Heartwood is still sound with piece supporting its
own weight, sapwood can be pulled apart by hand
or is missing, wood color is the reddish-brown or

original color, roots may be invading sapwood, only
branch stubs are remaining which cannot be pulled

out of the log.

3
Advanced Decay. Decay/rot in
bole is advanced, most of the

bark being flaking off or absent,
the stability is declining.

Bark mostly gone, soft bole, oval,
sinking into the ground.

4

Few or no limb stubs remain; the top is
broken; a variable amount of bark remains;

sapwood is sloughing; heartwood has
advanced decay at the base and is

sloughing in the upper bole.

Heartwood is rotten with pieces unable to support
own weight, rotten portions of the piece are soft
and/or blocky in appearance, a metal pin can be
pushed into heartwood, wood color is reddish or

light brown, invading roots may be found
throughout the log, branch stubs can be pulled out.

5

No evidence of branches remains; the top is
broken; <20 percent of the bark remains;

sapwood is gone; heartwood is sloughing
throughout.

There is no remaining structural integrity to the
piece with a lack of circular shape as rot spreads out
across the ground, the rotten texture is soft and can
become powder when dry, wood color is red-brown

to dark brown, invading roots are present
throughout, branch stubs and pitch pockets have

usually rotten down.

* Nova Scotia Decay Class 3 is equivalent to both USDA Class 4 and 5, so NS Class 3 necromass records were corrected using the average coefficients between USDA Class 4 and 5.



Forests 2021, 12, 1235 21 of 24

Appendix B. Root Mean Square Error and Bias

Table A2. Root Mean Square Error (RMSE) and Percent RMSE of both estimation methods against an independent PSP dataset (n = 100 per community) by forest community and
carbon pool.

Forest Community Carbon Pool
RMSE (t/ha) % RMSE

PSP CBM PSP CBM

HIHw Merch + Bark 19.3 21 48.1 52.4
Other + Bark 7.2 9.4 44.2 57.7
Coarse Roots 4.6 5.1 45.2 50.6

Fine Roots 0.5 0.8 34.6 49.3
Foliage 1.7 2.2 48.9 61.7
Snags 4.9 5.0 123.4 125.7
CWD 2.3 2.5 85.7 93.6

HTHw Merch + Bark 16.3 16.4 27.9 28.1
Other + Bark 6.0 6.7 26.3 29.3
Coarse Roots 3.6 5.0 28.8 40.0

Fine Roots 0.5 0.7 33.6 45.8
Foliage 1.4 1.4 42.1 43.2
Snags 4.5 5.2 98.3 115.3
CWD 4.7 4.9 126.6 132.6

MIHwSH Merch + Bark 17.1 18.0 46.7 48.9
Other + Bark 7.2 10.3 47.1 67.1
Coarse Roots 4.2 5.3 45.7 57.7

Fine Roots 0.7 0.8 45.0 54.4
Foliage 2.0 2.9 47.2 67.5
Snags 4.6 4.8 80.5 83.5
CWD 4.4 4.5 111.4 113.2

SbFDom Merch + Bark 14.1 15.9 48.3 54.6
Other + Bark 5.9 7.9 48.6 64.8
Coarse Roots 3.5 3.4 48.2 46.0

Fine Roots 0.8 0.8 50.2 51.6
Foliage 2.5 3.9 48.4 73.9
Snags 4.2 4.9 77.9 89.4
CWD 3.7 3.8 93.9 95.5

SrSbSDom Merch + Bark 23.3 24.7 70.3 74.3
Other + Bark 6.5 6.5 57.2 57.1
Coarse Roots 6.3 6.5 74.5 76.1

Fine Roots 0.7 0.7 48.4 49.6
Foliage 2.4 3.3 52.8 74.3
Snags 4.0 4.4 78.2 86.7
CWD 2.7 2.7 106.4 104.5
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Table A3. Bias and Percent Bias of both estimation methods against an independent PSP dataset
(n = 100 per community), by forest community and carbon pool.

Forest Community Carbon Pool
Bias % Bias

PSP CBM PSP CBM

HIHw Merch + Bark 2.9 9.0 7.2 22.4
Other + Bark 0.4 −5.8 2.2 −35.8
Coarse Roots 0.7 −2.1 6.7 −20.7

Fine Roots 0.1 −0.4 5.0 −23.1
Foliage 0.2 1.3 6.6 36.3
Snags 0.0 −0.1 0.0 −2.6
CWD −0.3 −1.0 −11.2 −39.2

HTHw Merch + Bark 0.3 1.7 0.4 2.9
Other + Bark −0.4 1.8 −1.8 7.9
Coarse Roots 0.0 −3.4 −0.1 −27.1

Fine Roots 0.0 −0.5 −2.7 −30.3
Foliage 0.1 0.1 2.7 2.4
Snags −0.7 −2.8 −16.1 −61.0
CWD −0.4 −0.7 −9.7 −18.8

MIHwSH Merch + Bark 1.2 5.2 3.2 14.2
Other + Bark 1.5 −7.2 9.6 −46.9
Coarse Roots 0.2 −3.3 2.6 −36.0

Fine Roots 0.0 −0.4 2.1 −27.7
Foliage 0.3 2.1 7.4 47.6
Snags 0.3 1.3 4.7 23.0
CWD 0.4 1.0 11.1 24.9

SbFDom Merch + Bark 4.2 8.4 14.4 29.0
Other + Bark 0.2 −5.1 1.4 −42.4
Coarse Roots 1.1 0.0 15.1 0.5

Fine Roots 0.1 −0.1 8.9 −9.7
Foliage 0.4 2.9 8.2 55.0
Snags 2.5 5.7 45.9
CWD 1.0 −12.4 25.2

SrSbSDom Merch + Bark 5.2 9.5 15.7 28.7
Other + Bark 0.6 0.5 5.5 4.3
Coarse Roots 1.5 2 17.9 23.5

Fine Roots 0.2 −0.2 11.1 −15.2
Foliage 0.6 2.4 14.4 53.9
Snags −0.2 1.8 −4.9 36.0
CWD −0.6 0.4 −22.5 16.4
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