Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = membraneless organelles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 547 KiB  
Article
Empirical Assessment of Sequence-Based Predictions of Intrinsically Disordered Regions Involved in Phase Separation
by Xuantai Wu, Kui Wang, Gang Hu and Lukasz Kurgan
Biomolecules 2025, 15(8), 1079; https://doi.org/10.3390/biom15081079 - 25 Jul 2025
Viewed by 392
Abstract
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the [...] Read more.
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the development of over 30 computational predictors. We focused on intrinsic disorder due to its fundamental role in related diseases, and because recent analysis has shown that phase separation can be accurately predicted for structured proteins. We evaluated eight representative amino acid-level predictors of phase separation, capable of identifying phase-separating IDRs, using a well-annotated, low-similarity test dataset under two complementary evaluation scenarios. Several methods generate accurate predictions in the easier scenario that includes both structured and disordered sequences. However, we demonstrate that modern disorder predictors perform equally well in this scenario by effectively differentiating phase-separating IDRs from structured regions. In the second, more challenging scenario—considering only predictions in disordered regions—disorder predictors underperform, and most phase separation predictors produce only modestly accurate results. Moreover, some predictors are broadly biased to classify disordered residues as phase-separating, which results in low predictive performance in this scenario. Finally, we recommend PSPHunter as the most accurate tool for identifying phase-separating IDRs in both scenarios. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics and Systems Biology Section)
Show Figures

Figure 1

67 pages, 4242 KiB  
Review
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
by Ayesha Zahid, Hazrat Ismail, Jennifer C. Wilson and I. Darren Grice
Vaccines 2025, 13(7), 767; https://doi.org/10.3390/vaccines13070767 - 20 Jul 2025
Viewed by 959
Abstract
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic [...] Read more.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Developing Vaccines)
Show Figures

Graphical abstract

36 pages, 6162 KiB  
Review
Biomolecule-Based Coacervation: Mechanisms, Applications, and Future Perspectives in Biomedical and Biotechnological Fields
by Dong Hyun Kim, Mi-Ran Ki, Da Yeon Chung and Seung Pil Pack
Biomolecules 2025, 15(6), 861; https://doi.org/10.3390/biom15060861 - 13 Jun 2025
Viewed by 1425
Abstract
Coacervate is a form of liquid–liquid phase separation (LLPS) in which a solution containing one or more charged components spontaneously separates into two immiscible liquid phases. Due to their ability to mimic membraneless cellular environments and their high biocompatibility, coacervates have found broad [...] Read more.
Coacervate is a form of liquid–liquid phase separation (LLPS) in which a solution containing one or more charged components spontaneously separates into two immiscible liquid phases. Due to their ability to mimic membraneless cellular environments and their high biocompatibility, coacervates have found broad applications across various fields of life sciences. This review provides a comprehensive overview of recent advances in biomolecule-based coacervation for biotechnological and biomedical applications. Encapsulation via biomolecule-based coacervation enables high encapsulation efficiency, enhanced stability, and the sustained release of cargos. In the field of tissue engineering, coacervates not only support cell adhesion and proliferation but also serve as printable bioinks with tunable rheological properties for 3D bioprinting. Moreover, biomolecule-based coacervates have been utilized to mimic membraneless organelles, serving as experimental models to understand the origin of life or investigate the mechanisms of biochemical compartmentalization. This review discusses the mechanisms of coacervation induced by various types of biomolecules, evaluates their respective advantages and limitations in applied contexts, and outlines future research directions. Given their modularity and biocompatibility, biomolecule-based coacervates are expected to play a pivotal role in next-generation therapeutic development and the construction of controlled tissue microenvironments, especially when integrated with emerging technologies. Full article
Show Figures

Figure 1

24 pages, 3589 KiB  
Review
Phase Separation: Orchestrating Biological Adaptations to Environmental Fluctuations
by Wenxiu Wang, Fangbing Han, Zhi Qi, Chunxia Yan, Bodan Su and Jin Wang
Int. J. Mol. Sci. 2025, 26(10), 4614; https://doi.org/10.3390/ijms26104614 - 12 May 2025
Viewed by 772
Abstract
Organisms have evolved various protective mechanisms to survive in complex and dynamic environments. Phase separation is a ubiquitous mechanism in plants, animals, and microorganisms. It facilitates the aggregation of biomolecules through weak interactions, forming membrane-less organelles that help organisms respond effectively to stress [...] Read more.
Organisms have evolved various protective mechanisms to survive in complex and dynamic environments. Phase separation is a ubiquitous mechanism in plants, animals, and microorganisms. It facilitates the aggregation of biomolecules through weak interactions, forming membrane-less organelles that help organisms respond effectively to stress signals. These biomolecular condensates include DNA, RNA, and proteins. Proteins are categorized into scaffold and client proteins, whose coordinated actions ensure the compartmentalization of cellular signals, thereby regulating various biological processes. Studies indicate that, in response to stress, phase separation modulates gene expression, signal transduction, cytoskeleton dynamics, and protein homeostasis, ensuring the precise spatiotemporal control of cellular functions. These insights underscore the crucial role of phase separation in maintaining cellular integrity and adaptability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

42 pages, 5006 KiB  
Review
Exploring Stressors: Impact on Cellular Organelles and Implications for Cellular Functions
by Zoofa Zayani, Arash Matinahmadi, Alireza Tavakolpournegari and Seyed Hesamoddin Bidooki
Stresses 2025, 5(2), 26; https://doi.org/10.3390/stresses5020026 - 4 Apr 2025
Cited by 1 | Viewed by 4182
Abstract
Cellular stressors have been demonstrated to exert a substantial influence on the functionality of organelles, thereby impacting cellular homeostasis and contributing to the development of disease pathogenesis. This review aims to examine the impact of diverse stressors, including environmental, chemical, biological, and physical [...] Read more.
Cellular stressors have been demonstrated to exert a substantial influence on the functionality of organelles, thereby impacting cellular homeostasis and contributing to the development of disease pathogenesis. This review aims to examine the impact of diverse stressors, including environmental, chemical, biological, and physical factors, on critical organelles such as the cell membrane, mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and membrane-less organelles. The intricate molecular mechanisms underlying cellular stress responses, encompassing oxidative stress, protein misfolding, and metabolic reprogramming, have the capacity to elicit adaptive responses or culminate in pathological conditions. The interplay between these stressors and organelle dysfunction has been implicated in a myriad of diseases, including neurodegenerative disorders, cancer, metabolic disorders, and immune-related pathologies. A comprehensive understanding of the mechanisms by which organelles respond to stress can offer valuable insights into the development of therapeutic strategies aimed at mitigating cellular damage. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

14 pages, 1803 KiB  
Article
Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity
by Amanda Piveta Schnepper, Agatha M. S. Kubo, Camila Moreira Pinto, Ramon Hernany Martins Gomes, Matheus Naia Fioretto, Luís Antonio Justulin, Aline M. M. Braz, Marjorie de Assis Golim, Rejane M. T. Grotto and Guilherme Targino Valente
Genes 2025, 16(2), 170; https://doi.org/10.3390/genes16020170 - 28 Jan 2025
Cited by 1 | Viewed by 2073
Abstract
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, [...] Read more.
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, we investigate whether the ethanol responsiveness of transcr_9136 and transcr_10027 and their role in ethanol stress are associated with protein biogenesis and membraneless organelle assembly. Methods: SEY6210 transcr_9136∆ and BY4742 transcr_10027∆ and their wild-type counterparts were subjected to their maximum ethanol-tolerant stress. The expression of the transcr_9136, transcr_10027, ILT1, RRP1, 27S, 25S, TIR3, and FAA3 genes was accessed by qPCR. The level of DCP1a, PABP, and eIF4E proteins was evaluated by Western blotting. Bioinformatics analyses allowed us to check whether transcr_9136 may regulate the expression of RRP1 and predict the interaction between transcr_10027 and Tel1p. The cell death rate of SEY6210 strains under control and ethanol stress conditions was assessed by flow cytometry. Finally, we evaluated the total protein yield of all strains analyzed. Results: The results demonstrated that transcr_9136 of SEY6210 seems to control the expression of RRP1 and 27S rRNA and reduce the general translation. Furthermore, transcr_9136 seems to act on cell membrane integrity. Transcr_10027 of BY4742 appears to inhibit processing body formation and induce a general translation level. Conclusions: This is the first report on the effect of lncRNAs on yeast protein synthesis and new mechanisms of stress-responsive lncRNAs in yeast, with potential industrial applications such as ethanol production. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4567 KiB  
Article
PML Nuclear Bodies and Cellular Senescence: A Comparative Study of Healthy and Premature Aging Syndrome Donors’ Cells
by Eugene Y. Smirnov, Sergey A. Silonov, Eva A. Shmidt, Aleksandra V. Nozdracheva, Nadezhda M. Pleskach, Mirya L. Kuranova, Anastasia A. Gavrilova, Anna E. Romanovich, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Cells 2024, 13(24), 2075; https://doi.org/10.3390/cells13242075 - 16 Dec 2024
Cited by 1 | Viewed by 1804
Abstract
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). [...] Read more.
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence. The fibroblasts were obtained from both healthy donors and donors with premature aging syndromes (ataxia-telangiectasia and Cockayne syndrome). Our data showed an increase in both the size and the number of PML-NBs, along with nuclear enlargement in senescent cells, suggesting these changes could serve as potential cellular aging markers. Bioinformatic analysis demonstrated that 30% of the proteins in the PML interactome and ~45% of the proteins in the PML-NB predicted proteome are directly associated with senescence and aging processes. These proteins are hypothesized to participate in post-translational modifications and protein sequestration within PML-NBs, thereby influencing transcription factor regulation, DNA damage response, and negative regulation of apoptosis. The findings confirm the significant role of PML-NBs in cellular aging processes and open new avenues for investigating senescence mechanisms and age-associated diseases. Full article
(This article belongs to the Special Issue Understanding Aging Mechanisms to Prevent Age-Related Diseases)
Show Figures

Graphical abstract

22 pages, 3160 KiB  
Review
Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles
by Jaewhan Kim and Chang-Hwa Song
Int. J. Mol. Sci. 2024, 25(23), 12950; https://doi.org/10.3390/ijms252312950 - 2 Dec 2024
Cited by 2 | Viewed by 2365
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid–liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles [...] Read more.
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid–liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection. Full article
Show Figures

Figure 1

15 pages, 1695 KiB  
Review
Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts
by Anastasia A. Gavrilova, Margarita V. Neklesova, Yuliya A. Zagryadskaya, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Biomolecules 2024, 14(10), 1333; https://doi.org/10.3390/biom14101333 - 20 Oct 2024
Cited by 2 | Viewed by 2711
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus’s multifunctionality is [...] Read more.
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus’s multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid–liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA). Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

31 pages, 5219 KiB  
Review
On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution
by Vladimir N. Uversky
Life 2024, 14(10), 1307; https://doi.org/10.3390/life14101307 - 15 Oct 2024
Cited by 6 | Viewed by 2469
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only [...] Read more.
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

25 pages, 788 KiB  
Review
Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy
by Xin Liu, Miaomiao Li and Sukyung Woo
Pharmaceutics 2024, 16(9), 1167; https://doi.org/10.3390/pharmaceutics16091167 - 4 Sep 2024
Cited by 3 | Viewed by 2715
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, [...] Read more.
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies. Full article
Show Figures

Figure 1

12 pages, 679 KiB  
Review
Exploring the Role of the Processing Body in Plant Abiotic Stress Response
by Zhehao Huang, Zhi Xu, Xiuqing Liu, Gangmin Chen, Chensi Hu, Menglu Chen and Yun Liu
Curr. Issues Mol. Biol. 2024, 46(9), 9844-9855; https://doi.org/10.3390/cimb46090585 - 4 Sep 2024
Cited by 1 | Viewed by 2342
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with [...] Read more.
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 3452 KiB  
Article
Behavior of Assembled Promyelocytic Leukemia Nuclear Bodies upon Asymmetric Division in Mouse Oocytes
by Osamu Udagawa, Ayaka Kato-Udagawa and Seishiro Hirano
Int. J. Mol. Sci. 2024, 25(16), 8656; https://doi.org/10.3390/ijms25168656 - 8 Aug 2024
Cited by 1 | Viewed by 1067
Abstract
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are core–shell-type membrane-less organelles typically found in the nucleus of mammalian somatic cells but are absent in mouse oocytes. Here, we deliberately induced the assembly of PML-NBs by injecting mRNA encoding human PML protein (hPML VI -sfGFP) [...] Read more.
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are core–shell-type membrane-less organelles typically found in the nucleus of mammalian somatic cells but are absent in mouse oocytes. Here, we deliberately induced the assembly of PML-NBs by injecting mRNA encoding human PML protein (hPML VI -sfGFP) into oocytes and investigated their impact on fertilization in which oocyte/embryos undergo multiple types of stresses. Following nuclear membrane breakdown, preassembled hPML VI -sfGFP mRNA-derived PML-NBs (hmdPML-NBs) persisted in the cytoplasm of oocytes, forming less-soluble debris, particularly under stress. Parthenogenetic embryos that successfully formed pronuclei were capable of removing preassembled hmdPML-NBs from the cytoplasm while forming new hmdPML-NBs in the pronucleus. These observations highlight the beneficial aspect of the PML-NB-free nucleoplasmic environment and suggest that the ability to eliminate unnecessary materials in the cytoplasm of metaphase oocytes serves as a potential indicator of the oocyte quality. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Late Oogenesis and Early Embryogenesis)
Show Figures

Figure 1

19 pages, 9577 KiB  
Article
Arabidopsis thaliana MYC2 and MYC3 Are Involved in Ethylene-Regulated Hypocotyl Growth as Negative Regulators
by Yuke Li, Ying Cheng, Fan Wei, Yingxiao Liu, Ruojia Zhu, Pingxia Zhao, Jing Zhang, Chengbin Xiang, Erfang Kang and Zhonglin Shang
Int. J. Mol. Sci. 2024, 25(15), 8022; https://doi.org/10.3390/ijms25158022 - 23 Jul 2024
Cited by 6 | Viewed by 1574
Abstract
The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl [...] Read more.
The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1’s promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress. Full article
(This article belongs to the Collection Advances in Plant Cell and Organism Development)
Show Figures

Figure 1

19 pages, 5114 KiB  
Review
Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly
by Sarah L. Nichols, Cyril Haller, Alexander Borodavka and Sarah M. Esstman
Viruses 2024, 16(6), 814; https://doi.org/10.3390/v16060814 - 21 May 2024
Cited by 3 | Viewed by 2914
Abstract
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection [...] Read more.
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA–RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2’s associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field. Full article
(This article belongs to the Special Issue Rotaviruses and Rotavirus Vaccines)
Show Figures

Figure 1

Back to TopTop