Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = membraneless condensates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 547 KiB  
Article
Empirical Assessment of Sequence-Based Predictions of Intrinsically Disordered Regions Involved in Phase Separation
by Xuantai Wu, Kui Wang, Gang Hu and Lukasz Kurgan
Biomolecules 2025, 15(8), 1079; https://doi.org/10.3390/biom15081079 - 25 Jul 2025
Viewed by 382
Abstract
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the [...] Read more.
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the development of over 30 computational predictors. We focused on intrinsic disorder due to its fundamental role in related diseases, and because recent analysis has shown that phase separation can be accurately predicted for structured proteins. We evaluated eight representative amino acid-level predictors of phase separation, capable of identifying phase-separating IDRs, using a well-annotated, low-similarity test dataset under two complementary evaluation scenarios. Several methods generate accurate predictions in the easier scenario that includes both structured and disordered sequences. However, we demonstrate that modern disorder predictors perform equally well in this scenario by effectively differentiating phase-separating IDRs from structured regions. In the second, more challenging scenario—considering only predictions in disordered regions—disorder predictors underperform, and most phase separation predictors produce only modestly accurate results. Moreover, some predictors are broadly biased to classify disordered residues as phase-separating, which results in low predictive performance in this scenario. Finally, we recommend PSPHunter as the most accurate tool for identifying phase-separating IDRs in both scenarios. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics and Systems Biology Section)
Show Figures

Figure 1

21 pages, 6134 KiB  
Article
Temperature and WNK-SPAK/OSR1 Kinases Dynamically Regulate Antiviral Human GFP-MxA Biomolecular Condensates in Oral Cancer Cells
by Pravin B. Sehgal, Huijuan Yuan and Susan V. DiSenso-Browne
Cells 2025, 14(13), 947; https://doi.org/10.3390/cells14130947 - 20 Jun 2025
Viewed by 506
Abstract
Phase-separated membraneless biomolecular condensates in the cytoplasm and nucleus are now recognized to play a major role in modulating diverse functions in mammalian cells, and contribute to cancer pathogenesis through dysregulated function of condensates of transcription factors such as STAT3 and fusion oncoproteins. [...] Read more.
Phase-separated membraneless biomolecular condensates in the cytoplasm and nucleus are now recognized to play a major role in modulating diverse functions in mammalian cells, and contribute to cancer pathogenesis through dysregulated function of condensates of transcription factors such as STAT3 and fusion oncoproteins. Oral cancer, the sixth most prevalent malignancy worldwide, in the absence of overt causes such as tobacco or alcohol, most frequently occurs in a U-shaped zone (floor of mouth, side of tongue, anterior fauces and retromolar region) reflecting the path of liquid transit through the mouth. The cellular basis for this “high-risk” zone and the biochemical mechanisms used by oral cells to combat repetitive tonicity and temperature stresses are incompletely understood. We had previously observed that at 37 °C, in OECM1 oral carcinoma cells, cytoplasmic condensates of antiviral human GFP-MxA GTPase disassembled within 1–2 min of exposure of cells to saliva-like one-third hypotonicity, and underwent “spontaneous” reassembly in the next 5–7 min. Moreover, hypotonic beverages (water, tea, coffee), investigated at 37 °C, triggered this condensate cycling. In the present studies we investigated whether this process was temperature sensitive, representative of cold vs. warm drinks. We observed a slowing of this cycle at 5 °C, and speeding up at 50 °C. The involvement in this disassembly/reassembly process of WNK-SPAK/OSR1 serine-threonine kinase pathway, best studied for regulation of water and Na, K and Cl influx and efflux in kidney tubule cells, was evaluated by us in oral cells using pathway inhibitors WNK463, WNK-IN-11 and closantel. The pan-WNK inhibitor WNK463 inhibited hypotonicity-driven condensate disassembly, while the SPAK/OSR1 inhibitor closantel markedly slowed reassembly. Unexpectedly, the WNK1-selective inhibitor (WNK-IN-11), triggered a dramatic and rapid (within 1 h) spheroid to fibril transition of GFP-MxA condensates in live cells, but without affecting MxA antiviral function. The new data suggest a novel hypothesis for the anatomic localization of oral cancer in the U-shaped “high-risk” zone in the mouth: dysfunction of biomolecular condensates in oral cells along the beverage transit pathway through the mouth due to repetitive tonicity and temperature stresses that might underlie a prooncogenic progression. Full article
(This article belongs to the Special Issue Biomolecular Condensates in Oncology and Immunology)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Age-Related Increases in PDE11A4 Protein Expression Trigger Liquid–Liquid Phase Separation (LLPS) of the Enzyme That Can Be Reversed by PDE11A4 Small Molecule Inhibitors
by Elvis Amurrio, Janvi H. Patel, Marie Danaher, Madison Goodwin, Porschderek Kargbo, Eliska Klimentova, Sonia Lin and Michy P. Kelly
Cells 2025, 14(12), 897; https://doi.org/10.3390/cells14120897 - 13 Jun 2025
Viewed by 1003
Abstract
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in [...] Read more.
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in PDE11A4 protein ectopically accumulate in spherical clusters that group together in the brain to form linear filamentous patterns termed “PDE11A4 ghost axons”. The biophysical/physiochemical mechanisms underlying this age-related clustering are not known. Here, we determine if age-related clustering of PDE11A4 reflects liquid–liquid phase separation (LLPS; biomolecular condensation), and if PDE11A inhibitors can reverse this LLPS. We show human and mouse PDE11A4 exhibit several LLPS-promoting sequence features, including intrinsically disordered regions, non-covalent pi–pi interactions, and prion-like domains that were particularly enriched in the N-terminal regulatory region. Further, multiple bioinformatic tools predict PDE11A4 undergoes LLPS. Consistent with these predictions, aging-like PDE11A4 clusters in HT22 hippocampal neuronal cells were membraneless spherical droplets that progressively fuse over time in a concentration-dependent manner. Deletion of the N-terminal intrinsically disordered region prevented PDE11A4 LLPS despite equal protein expression between WT and mutant constructs. 1,6-hexanediol, along with tadalafil and BC11-38 that inhibit PDE11A4, reversed PDE11A4 LLPS in HT22 hippocampal neuronal cells. Interestingly, PDE11A4 inhibitors reverse PDE11A4 LLPS independently of increasing cAMP/cGMP levels via catalytic inhibition. Importantly, orally dosed tadalafil reduced PDE11A4 ghost axons in old mouse ventral hippocampus by 50%. Thus, PDE11A4 exhibits the four defining criteria of LLPS, and PDE11A inhibitors reverse this age-related phenotype both in vitro and in vivo. Full article
Show Figures

Figure 1

24 pages, 3589 KiB  
Review
Phase Separation: Orchestrating Biological Adaptations to Environmental Fluctuations
by Wenxiu Wang, Fangbing Han, Zhi Qi, Chunxia Yan, Bodan Su and Jin Wang
Int. J. Mol. Sci. 2025, 26(10), 4614; https://doi.org/10.3390/ijms26104614 - 12 May 2025
Viewed by 765
Abstract
Organisms have evolved various protective mechanisms to survive in complex and dynamic environments. Phase separation is a ubiquitous mechanism in plants, animals, and microorganisms. It facilitates the aggregation of biomolecules through weak interactions, forming membrane-less organelles that help organisms respond effectively to stress [...] Read more.
Organisms have evolved various protective mechanisms to survive in complex and dynamic environments. Phase separation is a ubiquitous mechanism in plants, animals, and microorganisms. It facilitates the aggregation of biomolecules through weak interactions, forming membrane-less organelles that help organisms respond effectively to stress signals. These biomolecular condensates include DNA, RNA, and proteins. Proteins are categorized into scaffold and client proteins, whose coordinated actions ensure the compartmentalization of cellular signals, thereby regulating various biological processes. Studies indicate that, in response to stress, phase separation modulates gene expression, signal transduction, cytoskeleton dynamics, and protein homeostasis, ensuring the precise spatiotemporal control of cellular functions. These insights underscore the crucial role of phase separation in maintaining cellular integrity and adaptability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 1366 KiB  
Article
Electrostatic Effects on Tau Nanocondensates
by Phoebe S. Tsoi, Lathan Lucas, Derek Rhoades, Josephine C. Ferreon and Allan Chris M. Ferreon
Biomolecules 2025, 15(3), 406; https://doi.org/10.3390/biom15030406 - 12 Mar 2025
Cited by 1 | Viewed by 730
Abstract
Biomolecular condensates (BMCs) are membrane-less protein compartments with physiological and pathological relevance. The formation of BMCs is driven by a process known as liquid–liquid phase separation (LLPS), a field that has largely focused on the study of micron-sized condensates. However, there have been [...] Read more.
Biomolecular condensates (BMCs) are membrane-less protein compartments with physiological and pathological relevance. The formation of BMCs is driven by a process known as liquid–liquid phase separation (LLPS), a field that has largely focused on the study of micron-sized condensates. However, there have been recent studies showing that proteins that undergo LLPS also form nanometer-sized condensates. These nanometer-sized condensates, or nanocondensates, are distinct from microcondensates and potentially exhibit more relevance in cell biology. The field of nanocondensate research is in its infancy, with limited biophysical studies of these structures. Here, we studied condensate formation and dissolution of wild-type and disease-linked (hyperphosphorylated and missense mutated) Tau. We investigated the effects of solution condition modulation on nanocondensate formation and dissolution, and observed that Tau condensation is strongly regulated by electrostatic forces and less affected by hydrophobic disruption. We observed that all three Tau variants studied shared condensate formation properties when in solution conditions with the same ionic strength. However, hyperphosphorylated and missense-mutated Tau exhibited higher resistance to dissolution compared to wild-type Tau. This study uncovers additional distinctions between different types of condensates, which provides further insight into the distinctions between physiological and pathological condensates. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

14 pages, 4325 KiB  
Article
Dynamic Localization of Paraspeckle Components under Osmotic Stress
by Aysegul Yucel-Polat, Danae Campos-Melo, Asieh Alikhah and Michael J. Strong
Non-Coding RNA 2024, 10(2), 23; https://doi.org/10.3390/ncrna10020023 - 12 Apr 2024
Cited by 1 | Viewed by 2649
Abstract
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the [...] Read more.
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

19 pages, 4503 KiB  
Article
Oral Antiviral Defense: Saliva- and Beverage-like Hypotonicity Dynamically Regulate Formation of Membraneless Biomolecular Condensates of Antiviral Human MxA in Oral Epithelial Cells
by Pravin B. Sehgal, Huijuan Yuan, Anthony Centone and Susan V. DiSenso-Browne
Cells 2024, 13(7), 590; https://doi.org/10.3390/cells13070590 - 28 Mar 2024
Cited by 1 | Viewed by 1856
Abstract
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and [...] Read more.
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and pH by the drinks we imbibe (e.g., hypotonic: water, tea, and coffee; hypertonic: assorted fruit juices, and red wines). In the mouth, the broad-spectrum antiviral mediator MxA (a dynamin-family large GTPase) is constitutively expressed in healthy periodontal tissues and induced by Type III interferons (e.g., IFN-λ1/IL-29). Endogenously induced human MxA and exogenously expressed human GFP-MxA formed membraneless biomolecular condensates in the cytoplasm of oral carcinoma cells (OECM1 cell line). These condensates likely represent storage granules in equilibrium with antivirally active dispersed MxA. Remarkably, cytoplasmic MxA condensates were exquisitely sensitive sensors of hypotonicity—the condensates in oral epithelium disassembled within 1–2 min of exposure of cells to saliva-like one-third hypotonicity, and spontaneously reassembled in the next 4–7 min. Water, tea, and coffee enhanced this disassembly. Fluorescence changes in OECM1 cells preloaded with calcein-AM (a reporter of cytosolic “macromolecular crowding”) confirmed that this process involved macromolecular uncrowding and subsequent recrowding secondary to changes in cell volume. However, hypertonicity had little effect on MxA condensates. The spontaneous reassembly of GFP-MxA condensates in oral epithelial cells, even under continuous saliva-like hypotonicity, was slowed by the protein-phosphatase-inhibitor cyclosporin A (CsA) and by the K-channel-blocker tetraethylammonium chloride (TEA); this is suggestive of the involvement of the volume-sensitive WNK kinase-protein phosphatase (PTP)-K-Cl cotransporter (KCC) pathway in the regulated volume decrease (RVD) during condensate reassembly in oral cells. The present study identifies a novel subcellular consequence of hypotonic stress in oral epithelial cells, in terms of the rapid and dynamic changes in the structure of one class of phase-separated biomolecular condensates in the cytoplasm—the antiviral MxA condensates. More generally, the data raise the possibility that hypotonicity-driven stresses likely affect other intracellular functions involving liquid–liquid phase separation (LLPS) in cells of the oral mucosa. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Immunity to Infectious Viruses)
Show Figures

Figure 1

19 pages, 4318 KiB  
Review
PML Body Biogenesis: A Delicate Balance of Interactions
by Sergey A. Silonov, Eugene Y. Smirnov, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Int. J. Mol. Sci. 2023, 24(23), 16702; https://doi.org/10.3390/ijms242316702 - 24 Nov 2023
Cited by 5 | Viewed by 2744
Abstract
PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family—promyelocytic leukemia protein (PML). It is known that [...] Read more.
PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family—promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1263 KiB  
Review
Liquid–Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases
by Ziyang Cai, Shuai Mei, Li Zhou, Xiaozhu Ma, Qidamugai Wuyun, Jiangtao Yan and Hu Ding
Int. J. Mol. Sci. 2023, 24(20), 15418; https://doi.org/10.3390/ijms242015418 - 21 Oct 2023
Cited by 5 | Viewed by 4740
Abstract
Liquid–liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and [...] Read more.
Liquid–liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1226 KiB  
Review
Liquid–Liquid Phase Separation and Protective Protein Aggregates in Bacteria
by Dorota Kuczyńska-Wiśnik, Karolina Stojowska-Swędrzyńska and Ewa Laskowska
Molecules 2023, 28(18), 6582; https://doi.org/10.3390/molecules28186582 - 12 Sep 2023
Cited by 7 | Viewed by 3880
Abstract
Liquid–liquid phase separation (LLPS) and the formation of membraneless organelles (MLOs) contribute to the spatiotemporal organization of various physiological processes in the cell. These phenomena have been studied and characterized mainly in eukaryotic cells. However, increasing evidence indicates that LLPS-driven protein condensation may [...] Read more.
Liquid–liquid phase separation (LLPS) and the formation of membraneless organelles (MLOs) contribute to the spatiotemporal organization of various physiological processes in the cell. These phenomena have been studied and characterized mainly in eukaryotic cells. However, increasing evidence indicates that LLPS-driven protein condensation may also occur in prokaryotes. Recent studies indicate that aggregates formed during proteotoxic stresses may also play the role of MLOs and increase the fitness of bacteria under stress. The beneficial effect of aggregates may result from the sequestration and protection of proteins against irreversible inactivation or degradation, activation of the protein quality control system and induction of dormancy. The most common stress that bacteria encounter in the natural environment is water loss. Therefore, in this review, we focus on protein aggregates formed in E. coli upon desiccation–rehydration stress. In silico analyses suggest that various mechanisms and interactions are responsible for their formation, including LLPS, disordered sequences and aggregation-prone regions. These data support findings that intrinsically disordered proteins and LLPS may contribute to desiccation tolerance not only in eukaryotic cells but also in bacteria. LLPS-driven aggregation may be a strategy used by pathogens to survive antibiotic treatment and desiccation stress in the hospital environment. Full article
Show Figures

Figure 1

12 pages, 3750 KiB  
Article
Spontaneous Confinement of mRNA Molecules at Biomolecular Condensate Boundaries
by Rebecca T. Perelman, Andreas Schmidt, Umar Khan and Nils G. Walter
Cells 2023, 12(18), 2250; https://doi.org/10.3390/cells12182250 - 11 Sep 2023
Cited by 1 | Viewed by 1833
Abstract
Cellular biomolecular condensates, termed ribonucleoprotein (RNP) granules, are often enriched in messenger RNA (mRNA) molecules relative to the surrounding cytoplasm. Yet, the spatial localization and diffusion of mRNAs in close proximity to phase separated RNP granules are not well understood. In this study, [...] Read more.
Cellular biomolecular condensates, termed ribonucleoprotein (RNP) granules, are often enriched in messenger RNA (mRNA) molecules relative to the surrounding cytoplasm. Yet, the spatial localization and diffusion of mRNAs in close proximity to phase separated RNP granules are not well understood. In this study, we performed single-molecule fluorescence imaging experiments of mRNAs in live cells in the presence of two types of RNP granules, stress granules (SGs) and processing bodies (PBs), which are distinct in their molecular composition and function. We developed a photobleaching- and noise-corrected colocalization imaging algorithm that was employed to determine the accurate positions of individual mRNAs relative to the granule’s boundaries. We found that mRNAs are often localized at granule boundaries, an observation consistent with recently published data. We suggest that mRNA molecules become spontaneously confined at the RNP granule boundary similar to the adsorption of polymer molecules at liquid–liquid interfaces, which is observed in various technological and biological processes. We also suggest that this confinement could be due to a combination of intermolecular interactions associated with, first, the screening of a portion of the RNP granule interface by the polymer and, second, electrostatic interactions due to a strong electric field induced by a Donnan potential generated across the thin interface. Full article
Show Figures

Graphical abstract

6 pages, 375 KiB  
Editorial
Biological Liquid–Liquid Phase Separation, Biomolecular Condensates, and Membraneless Organelles: Now You See Me, Now You Don’t
by Vladimir N. Uversky
Int. J. Mol. Sci. 2023, 24(17), 13150; https://doi.org/10.3390/ijms241713150 - 24 Aug 2023
Cited by 5 | Viewed by 3391
Abstract
Liquid–liquid phase separation (LLPS, also known as biomolecular condensation) and the related biogenesis of various membraneless organelles (MLOs) and biomolecular condensates (BMCs) are now considered fundamental molecular mechanisms governing the spatiotemporal organization of the intracellular space [...] Full article
Show Figures

Figure 1

7 pages, 2588 KiB  
Communication
Light-Induced Condensates Show Accumulation-Prone and Less Dynamic Properties in the Nucleus Compared to the Cytoplasm
by Yuta Hamada and Akira Kitamura
Spectrosc. J. 2023, 1(2), 65-71; https://doi.org/10.3390/spectroscj1020006 - 10 Jul 2023
Viewed by 1618
Abstract
Biomolecular condensates, including membraneless organelles, are ubiquitously observed in subcellular compartments. However, the accumulation and dynamic properties of arbitrarily induced condensates remain elusive. Here, we show the size, amount, and dynamic properties of subcellular condensates using various fluorescence spectroscopic imaging analyses. Spatial image [...] Read more.
Biomolecular condensates, including membraneless organelles, are ubiquitously observed in subcellular compartments. However, the accumulation and dynamic properties of arbitrarily induced condensates remain elusive. Here, we show the size, amount, and dynamic properties of subcellular condensates using various fluorescence spectroscopic imaging analyses. Spatial image correlation spectroscopy showed that the size of blue-light-induced condensates of cryptochrome 2-derived oligomerization tag (CRY2olig) tagged with a red fluorescent protein in the nucleus was not different from that in the cytoplasm. Fluorescence intensity measurements showed that the condensates in the nucleus were more prone to accumulation than those in the cytoplasm. Single-particle tracking analysis showed that the condensates in the nucleus are predisposed to have stationary dynamics compared to those in the cytoplasm. Therefore, the subcellular compartment may, in part, affect the characteristics of self-recruitment of biomolecules in the condensates and their movement property. Full article
Show Figures

Graphical abstract

28 pages, 11034 KiB  
Article
Nucleolar- and Nuclear-Stress-Induced Membrane-Less Organelles: A Proteome Analysis through the Prism of Liquid–Liquid Phase Separation
by Yakov I. Mokin, Anastasia A. Gavrilova, Anna S. Fefilova, Irina M. Kuznetsova, Konstantin K. Turoverov, Vladimir N. Uversky and Alexander V. Fonin
Int. J. Mol. Sci. 2023, 24(13), 11007; https://doi.org/10.3390/ijms241311007 - 2 Jul 2023
Cited by 10 | Viewed by 2401
Abstract
Radical changes in the idea of the organization of intracellular space that occurred in the early 2010s made it possible to consider the formation and functioning of so-called membrane-less organelles (MLOs) based on a single physical principle: the liquid–liquid phase separation (LLPS) of [...] Read more.
Radical changes in the idea of the organization of intracellular space that occurred in the early 2010s made it possible to consider the formation and functioning of so-called membrane-less organelles (MLOs) based on a single physical principle: the liquid–liquid phase separation (LLPS) of biopolymers. Weak non-specific inter- and intramolecular interactions of disordered polymers, primarily intrinsically disordered proteins, and RNA, play a central role in the initiation and regulation of these processes. On the other hand, in some cases, the “maturation” of MLOs can be accompanied by a “liquid–gel” phase transition, where other types of interactions can play a significant role in the reorganization of their structure. In this work, we conducted a bioinformatics analysis of the propensity of the proteomes of two membrane-less organelles, formed in response to stress in the same compartment, for spontaneous phase separation and examined their intrinsic disorder predispositions. These MLOs, amyloid bodies (A-bodies) formed in the response to acidosis and heat shock and nuclear stress bodies (nSBs), are characterized by a partially overlapping composition, but show different functional activities and morphologies. We show that the proteomes of these biocondensates are differently enriched in proteins, and many have high potential for spontaneous LLPS that correlates with the different morphology and function of these organelles. The results of these analyses allowed us to evaluate the role of weak interactions in the formation and functioning of these important organelles. Full article
Show Figures

Figure 1

16 pages, 2386 KiB  
Review
G-Quadruplexes in Nuclear Biomolecular Condensates
by Iuliia Pavlova, Mikhail Iudin, Anastasiya Surdina, Vjacheslav Severov and Anna Varizhuk
Genes 2023, 14(5), 1076; https://doi.org/10.3390/genes14051076 - 13 May 2023
Cited by 10 | Viewed by 3967
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, [...] Read more.
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates. Full article
Show Figures

Figure 1

Back to TopTop