Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = membrane progesterone receptor (mPR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1759 KiB  
Article
Membrane Progesterone Receptor Beta Regulates the Decidualization of Endometrial Stromal Cells in Women with Endometriosis
by Dora Maria Velázquez-Hernández, Edgar Ricardo Vázquez-Martínez, Oliver Cruz-Orozco, José Roberto Silvestri-Tomassoni, Brenda Sánchez-Ramírez, Andrea Olguín-Ortega, Luis F. Escobar-Ponce, Mauricio Rodríguez-Dorantes and Ignacio Camacho-Arroyo
Int. J. Mol. Sci. 2025, 26(15), 7297; https://doi.org/10.3390/ijms26157297 - 28 Jul 2025
Viewed by 276
Abstract
Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterus, leading to dyspareunia, chronic pelvic pain, dysuria, and infertility. The latter has been related to implantation failure associated with alterations in decidualization, a process regulated by sex hormones such [...] Read more.
Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterus, leading to dyspareunia, chronic pelvic pain, dysuria, and infertility. The latter has been related to implantation failure associated with alterations in decidualization, a process regulated by sex hormones such as progesterone. Membrane progesterone receptor β (mPRβ) exhibits a lower expression in endometriotic tissues than in normal endometrial ones. However, the role of mPRβ in decidualization is unknown. This work aimed to investigate whether mPRβ plays a role in the decidualization of endometrial stromal cells (ESCs) derived from women with and without endometriosis. The mPR agonist OrgOD-2 induced the gene expression of key decidualization markers (insulin-like growth factor binding protein 1, prolactin, transcription factor heart and neural crest derivatives-expressed transcript 2, and fork-head transcription factor) in healthy ESCs, eutopic (uterine cavity), and ectopic (outside of the uterine cavity) ESCs from women with endometriosis. Notably, the expression of the decidualization markers was lower in endometriotic cells than in healthy endometrial ones. An siRNA mediated knockdown of mPRβ reduced the expression of decidualization-associated genes in ESCs treated with a decidualization stimuli, regardless of whether cells were derived from healthy women or those with endometriosis. Our data suggest that progesterone, through mPRβ activation, regulates the decidualization process in endometrial stromal cells from women with and without endometriosis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 720 KiB  
Article
Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
by Cynthia Pimpie, Anne Schninzler, Marc Pocard, Véronique Baud and Martine Perrot-Applanat
Biomedicines 2025, 13(8), 1815; https://doi.org/10.3390/biomedicines13081815 - 24 Jul 2025
Viewed by 360
Abstract
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and [...] Read more.
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and non-Asian cohorts. The intestinal-subtype GC has declined over the past 50 years. In contrast to the intestinal-subtype adenocarcinoma, the incidence of diffuse-subtype GC, often associated with poor overall survival, has constantly increased in the USA and Europe. The aim of this study was to analyze the expression and clinical significance of steroid hormone receptors, two membrane-bound receptors (ERRγ and GPER), and several genes involved in epigenetic alterations. The findings may contribute to revealing events driving tumorigenesis and may aid prognosis. Methods: Using mRNA from diffuse and intestinal GC tumor samples, the expression level of 11 genes, including those coding for sex hormone receptors (estrogen receptors ERα and ERβ), progesterone receptor (PR) and androgen receptor (AR), and the putative relevant ERRγ and GPER receptor were determined by RT-qPCR. Results: In diffuse GC, the expression of ERα, ERβ, PR and AR differed from their expression in the intestinal subtype. The expression of ERα and ERβ was strongly increased in the diffuse subtype compared to the intestinal subtype (×1.90, p = 0.001 and ×2.68, p = 0.002, respectively). Overexpression of ERα and ERβ was observed in diffuse GC (15 and 42%, respectively). The expression levels of PR and AR were strongly decreased in the intestinal subtype as compared to diffuse GC (×0.48, p = 0.005 and ×0.25, p = 0.003, respectively; 37.5% and 56% underexpression). ERα, ERβ, PR and AR showed notable differences for clinicopathological correlation in the diffuse and intestinal GC. A significant decrease of ERα, ERβ, PR and AR in intestinal GC correlated with the absence of lymphatic invasion and lower TNM (I-II). In diffuse GC, among the hormone receptors, increases of ERs and PR mainly correlated with expression of growth factors and receptors (IGF1, FGF7 and FGFR1), and with genes involved in epithelial-mesenchymal transition (VIM and ZEB2) or cell migration (MMP2). Our results also report the strong decreased expression of ERRγ and GPER (two receptors that bind estrogen or xenoestrogens) in diffuse and intestinal subtypes. Conclusions: Our study identified new target genes, namely hormone receptors and membrane receptors (ERRγ and GPER), whose expression is associated with an aggressive phenotype of diffuse GC, and revealed the importance of epigenetic factors (EZH2, HOTAIR, H19 and DNMT1) in gastric cancers. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

27 pages, 1432 KiB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Viewed by 917
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

12 pages, 2142 KiB  
Article
Enhancing Progestin Therapy with a Glucagon-Like Peptide 1 Agonist for the Conservative Management of Endometrial Cancer
by Andrea R. Hagemann, Ian S. Hagemann, David G. Mutch, Eric J. Devor, Paige K. Malmrose, Yuping Zhang, Abigail M. Morrison, Kristina W. Thiel and Kimberly K. Leslie
Cancers 2025, 17(4), 598; https://doi.org/10.3390/cancers17040598 - 10 Feb 2025
Viewed by 1851
Abstract
Objective: Obesity is a major risk factor for endometrial cancer. In addition to hormone therapy with progestins, glucagon like peptide-1 receptor (GLP-1R) agonists such as semaglutide may be helpful to achieve weight loss during conservative treatment of endometrial hyperplasia or cancer. Methods: We [...] Read more.
Objective: Obesity is a major risk factor for endometrial cancer. In addition to hormone therapy with progestins, glucagon like peptide-1 receptor (GLP-1R) agonists such as semaglutide may be helpful to achieve weight loss during conservative treatment of endometrial hyperplasia or cancer. Methods: We theorized that the combination of semaglutide and the progestin levonorgestrel would be useful as a novel treatment or prevention regimen and tested this hypothesis using endometrial cancer cell lines and patient-derived organoids (PDOs). Results: Hec50, KLE, and Ishikawa endometrial cancer cells express GLP-1R, as determined by both qPCR and Western blotting, and GLP-1R agonist treatment induces GLP-1R mRNA transcription through positive feedback mechanisms in cell models. PDOs from six individuals with grade 1 endometrial carcinomas were treated with progesterone, levonorgestrel, semaglutide, or levonorgestrel + semaglutide. Multiple models demonstrated a significant reduction in viability in response to combinatorial treatment, and the effect was noted in models from both PR high- and PR low-expressing tumors. Most interesting was the induction not only of the membrane GLP-1R with treatment, but also the significant upregulation of nuclear and membrane progesterone receptors—PR and PGRMC1/2, respectively—indicating a potential positive feedback loop between semaglutide and progestins such as levonorgestrel. Conclusion: In summary, we identify synergistic molecular cross-talk between the GLP-1R and steroid hormone receptor pathways, with the potential to enhance the anticancer activity of levonorgestrel when combined with semaglutide. Full article
(This article belongs to the Special Issue Gynecologic Cancer: Risk Factors, Interception and Prevention)
Show Figures

Figure 1

25 pages, 5696 KiB  
Article
Whole-Genome Omics Elucidates the Role of CCM1 and Progesterone in Cerebral Cavernous Malformations within CmPn Networks
by Jacob Croft, Brian Grajeda, Liyuan Gao, Johnathan Abou-Fadel, Ahmed Badr, Victor Sheng and Jun Zhang
Diagnostics 2024, 14(17), 1895; https://doi.org/10.3390/diagnostics14171895 - 28 Aug 2024
Cited by 1 | Viewed by 1262
Abstract
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood–brain barrier (BBB), leading to fatal [...] Read more.
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood–brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs. Full article
(This article belongs to the Special Issue Vascular Malformations: Diagnosis and Management)
Show Figures

Figure 1

12 pages, 2699 KiB  
Article
Sex Differences in the Brain Transcriptomes of Adult Blue Gourami Fish (Trichogaster trichopterus)
by Gad Degani and Ari Meerson
Fishes 2024, 9(7), 287; https://doi.org/10.3390/fishes9070287 - 18 Jul 2024
Cited by 1 | Viewed by 1372
Abstract
Blue gourami (gourami, Trichogaster trichopterus) is a model for labyrinth fishes (Anabantoidei) adapted to partial air breathing. Its reproductive endocrinology has been extensively studied, and transcriptomic sex differences in the gonads were described. Nevertheless, sex differences in gene expression in non-gonadal tissues [...] Read more.
Blue gourami (gourami, Trichogaster trichopterus) is a model for labyrinth fishes (Anabantoidei) adapted to partial air breathing. Its reproductive endocrinology has been extensively studied, and transcriptomic sex differences in the gonads were described. Nevertheless, sex differences in gene expression in non-gonadal tissues ostensibly affected by the sex-specific hormonal balance, e.g., the brain, are unknown. To assess such differences, we used bulk RNA-seq to assemble and compare polyA+ transcriptomes between whole brains of four adult male and five adult female gourami, in addition to other tissues (three dorsal fin and five ovary samples) from the same female group. While all nine brain transcriptomes clustered together relative to the other tissues, they showed separation according to sex. A total of 3568 genes were differentially expressed between male and female brains; of these, 1962 and 1606 showed lower and higher expression in males, respectively. Male brains showed stronger down-regulation of specific genes, which included hormone receptors, e.g., pituitary adenylate cyclase-activating polypeptide receptor (pacap-r1). Among the genes with lower expression in male brains, multiple pathways essential to brain function were over-represented, including GABA, acetylcholine and glutamate receptor signaling, calcium and potassium transmembrane transport, and neurogenesis. In contrast, genes with higher expression in male brains showed no significant over-representation of brain-specific functions. To measure the mRNA levels of specific hormone receptors known from prior studies to regulate reproductive function and behavior in gourami and to validate RNA-seq results for these specific genes, we performed RT-qPCR for five receptors, pacap-r1, gonadotropin-releasing hormone 2 receptor (gnrh2r), kisspeptin receptor 1 (gpαr1/kiss1), insulin-like growth factor 1 receptor (igf1r), and membrane progesterone receptor 1 (mpr1), in the brain RNA sample groups. Of these, pacap-r1 showed a significant, three-fold down-regulation, while gpαr1/kiss1 showed a significant two-fold down-regulation in male vs. female gourami brains. Our results are novel in describing the suppression of brain function-related gene expression in male, as compared to female, gourami brains. Further research is needed to assess the behavioral significance of this effect and its prevalence in other vertebrate groups. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

16 pages, 1829 KiB  
Article
The Effect of Progestins on Cytokine Production in the Peripheral Blood Mononuclear Cells of Menopausal Women and Their Luminol-Dependent Chemiluminescence
by Tatiana I. Pavlik, Nikolay L. Shimanovsky, Olga A. Zemlyanaya and Tatiana A. Fedotcheva
Molecules 2023, 28(11), 4354; https://doi.org/10.3390/molecules28114354 - 26 May 2023
Cited by 3 | Viewed by 2746
Abstract
Steroid hormones are the key regulators of inflammatory and autoimmune processes. The role of steroid hormones is mostly inhibitory in these processes. The expression of IL-6, TNFα, and IL-1β, as markers of inflammation, and TGFβ, as a marker of fibrosis, could be useful [...] Read more.
Steroid hormones are the key regulators of inflammatory and autoimmune processes. The role of steroid hormones is mostly inhibitory in these processes. The expression of IL-6, TNFα, and IL-1β, as markers of inflammation, and TGFβ, as a marker of fibrosis, could be useful tools to predict the response of an individual’s immune system to the different progestins suitable for the treatment of menopausal inflammatory disorders, including endometriosis. In this study, the progestins P4 and MPA, as well as the novel progestin gestobutanoyl (GB), which possess potent anti-inflammatory properties towards endometriosis, were studied at a fixed concentration of 10 µM. Their influence on the production of the above cytokines in PHA-stimulated peripheral blood mononuclear cells (PBMCs) during 24 h incubation was evaluated by ELISA. It was found that synthetic progestins stimulated the production of IL-1β, IL-6, and TNFα and inhibited TGFβ production, while P4 inhibited IL-6 (33% inhibition) and did not influence TGFβ production. In the MTT-viability test, P4 also decreased PHA-stimulated PBMC viability by 28% during 24 h incubation, but MPA and GB did not have any inhibitory or stimulatory effects. The luminol-dependent chemiluminescence (LDC) assay revealed the anti-inflammatory and antioxidant properties of all the tested progestins, as well as some other steroid hormones and their antagonists: cortisol, dexamethasone, testosterone, estradiol, cyproterone, and tamoxifen. Of these, tamoxifen showed the most pronounced effect on the oxidation capacity of PBMC but not on that of dexamethasone, as was expected. Collectively, these data demonstrate that PBMCs from menopausal women respond differently to P4 and synthetic progestins, most likely due to distinct actions via various steroid receptors. It is not only the progestin affinity to nuclear progesterone receptors (PR), androgen receptors, glucocorticoid receptors, or estrogen receptors that is important for the immune response, but also the membrane PR or other nongenomic structures in immune cells. Full article
(This article belongs to the Special Issue Molecular Targets for Anti-inflammatory Therapy)
Show Figures

Figure 1

19 pages, 893 KiB  
Review
CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier
by Revathi Gnanasekaran, Justin Aickareth, Majd Hawwar, Nickolas Sanchez, Jacob Croft and Jun Zhang
J. Pers. Med. 2023, 13(5), 751; https://doi.org/10.3390/jpm13050751 - 28 Apr 2023
Cited by 5 | Viewed by 3225
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood–brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) [...] Read more.
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood–brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood–brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood–brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs). Full article
Show Figures

Graphical abstract

29 pages, 10037 KiB  
Article
Key Members of the CmPn as Biomarkers Distinguish Histological and Immune Subtypes of Hepatic Cancers
by Johnathan Abou-Fadel, Victoria Reid, Alexander Le, Jacob Croft and Jun Zhang
Diagnostics 2023, 13(6), 1012; https://doi.org/10.3390/diagnostics13061012 - 7 Mar 2023
Cited by 3 | Viewed by 2774
Abstract
Liver cancer, comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a leading cause of cancer-related deaths worldwide. The liver is a primary metabolic organ for progesterone (PRG) and PRG exerts its effects through classic nuclear PRG receptors (nPRs) and non-classic membrane PRG receptors [...] Read more.
Liver cancer, comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a leading cause of cancer-related deaths worldwide. The liver is a primary metabolic organ for progesterone (PRG) and PRG exerts its effects through classic nuclear PRG receptors (nPRs) and non-classic membrane PRG receptors (mPRs) or a combination of both. Previous studies have shown that the CCM signaling complex (CSC) couples both nPRs and mPRs to form the CmPn (CSC-mPR-PRG-nPR) signaling network, which is involved in multiple cellular signaling pathways, including tumorigenesis of various cancers. Despite advances in treatment, 5-year survival rates for liver cancer patients remain low, largely due to the chemoresistant nature of HCCs. The lack of sensitive and specific biomarkers for liver cancer diagnosis and prognosis emphasizes the need for identifying new potential biomarkers. We propose the potential use of CmPn members’ expression data as prognostic biomarkers or biomarker signatures for the major types of hepatic cancer, including HCCs and CCAs, as well as rare subtypes such as undifferentiated pleomorphic sarcoma (UPS) and hepatic angiosarcoma (HAS). In this study, we investigated the CmPn network through RNAseq data and immunofluorescence techniques to measure alterations to key cancer pathways during liver tumorigenesis. Our findings reveal significant differential expression of multiple CmPn members, including CCM1, PAQR7, PGRMC1, and nPRs, in both HCCs and CCAs, highlighting the crucial roles of mPRs, nPRs, and CSC signaling during liver tumorigenesis. These key members of the CmPn network may serve as potential biomarkers for the diagnosis and prognosis of liver cancer subtypes, including rare subtypes. Full article
(This article belongs to the Special Issue Measurements and Standards for Cancer Biomarkers in Clinical Testing)
Show Figures

Graphical abstract

16 pages, 3504 KiB  
Article
Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors
by Alessandro Sammarco, Chiara Gomiero, Giorgia Beffagna, Laura Cavicchioli, Silvia Ferro, Silvia Michieletto, Enrico Orvieto, Marco Patruno and Valentina Zappulli
Animals 2023, 13(5), 878; https://doi.org/10.3390/ani13050878 - 28 Feb 2023
Cited by 10 | Viewed by 2863
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans [...] Read more.
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs. Full article
Show Figures

Figure 1

15 pages, 685 KiB  
Review
Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions
by Justin Aickareth, Majd Hawwar, Nickolas Sanchez, Revathi Gnanasekaran and Jun Zhang
Membranes 2023, 13(3), 260; https://doi.org/10.3390/membranes13030260 - 22 Feb 2023
Cited by 11 | Viewed by 4274
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig [...] Read more.
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors. Full article
Show Figures

Figure 1

21 pages, 4172 KiB  
Review
Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer
by Carmen J. Zamora-Sánchez and Ignacio Camacho-Arroyo
Int. J. Mol. Sci. 2023, 24(1), 560; https://doi.org/10.3390/ijms24010560 - 29 Dec 2022
Cited by 11 | Viewed by 7029
Abstract
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and [...] Read more.
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Mexico)
Show Figures

Figure 1

13 pages, 693 KiB  
Review
Zinc’s Association with the CmPn/CmP Signaling Network in Breast Cancer Tumorigenesis
by Mellisa Renteria, Ofek Belkin, Justin Aickareth, David Jang, Majd Hawwar and Jun Zhang
Biomolecules 2022, 12(11), 1672; https://doi.org/10.3390/biom12111672 - 11 Nov 2022
Cited by 9 | Viewed by 2473
Abstract
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences [...] Read more.
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences of zinc dysregulation are poorly understood. In this review, we detailed cellular zinc regulation/dysregulation under the influence of varying levels of sex steroids and breast cancer tumorigenesis to try to better understand the intricate relationship between these factors based on our current understanding of the CmPn/CmP signaling network. We also made some efforts to propose a relationship between zinc signaling and the CmPn/CmP signaling network. Full article
(This article belongs to the Special Issue Zinc in Health and Disease Conditions)
Show Figures

Figure 1

33 pages, 6833 KiB  
Article
mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB)
by Johnathan Abou-Fadel, Xiaoting Jiang, Akhil Padarti, Dinesh G. Goswami, Mark Smith, Brian Grajeda, Muaz Bhalli, Alexander Le, Wendy E. Walker and Jun Zhang
Int. J. Mol. Sci. 2022, 23(17), 9684; https://doi.org/10.3390/ijms23179684 - 26 Aug 2022
Cited by 13 | Viewed by 2881
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption [...] Read more.
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

15 pages, 1126 KiB  
Review
Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics
by Peter Thomas
Cells 2022, 11(11), 1785; https://doi.org/10.3390/cells11111785 - 30 May 2022
Cited by 56 | Viewed by 5570
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation [...] Read more.
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors. Full article
(This article belongs to the Special Issue Progesterone Receptor Signaling)
Show Figures

Figure 1

Back to TopTop