Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = membrane lytic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3377 KiB  
Article
The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect
by Banhong Liu, Mei Bai, Wuxiang Tu, Yanbin Shen, Jingxin Liu, Zhenquan Yang, Hongduo Bao, Qingli Dong, Yangtai Liu, Ran Wang, Hui Zhang and Liangbing Hu
Foods 2025, 14(15), 2554; https://doi.org/10.3390/foods14152554 - 22 Jul 2025
Viewed by 293
Abstract
Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food-processing facilities for years. Although phages can control L. monocytogenes during food production, phage-resistant bacterial subpopulations can regrow in phage-treated environments. In this study, an L. monocytogenes hly defective strain, NJ05-Δ [...] Read more.
Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food-processing facilities for years. Although phages can control L. monocytogenes during food production, phage-resistant bacterial subpopulations can regrow in phage-treated environments. In this study, an L. monocytogenes hly defective strain, NJ05-Δhly, was produced, which considerably regulated the interactions between L. monocytogenes and phages. Specifically, we observed a 76.92-fold decrease in the efficiency of plating of the defective strain following infection with the Listeria phage vB-LmoM-NJ05. The lytic effect was notably diminished at multiplicities of infection of 1 and 10. Furthermore, the inactivation of LLO impaired biofilm formation, which was completely suppressed and eliminated following treatment with 108 PFU/mL of phage. Additionally, phages protected cells from mitochondrial membrane damage and the accumulation of mitochondrial reactive oxygen species induced by L. monocytogenes invasion. Transcriptomic analysis confirmed these findings, revealing the significant downregulation of genes associated with phage sensitivity, pathogenicity, biofilm formation, and motility in L. monocytogenes. These results underscore the vital role of LLO in regulating the pathogenicity, phage susceptibility, and biofilm formation of L. monocytogenes. These observations highlight the important role of virulence factors in phage applications and provide insights into the potential use of phages for developing biosanitizers. Full article
(This article belongs to the Special Issue Biofilm Formation and Control in the Food Industry)
Show Figures

Figure 1

28 pages, 5232 KiB  
Article
Evaluation of the Synergistic Activity of Antimicrobial Peptidomimetics or Colistin Sulphate with Conventional Antifungals Against Yeasts of Medical Importance
by Shyam Kumar Mishra, Rajesh Kuppusamy, Christina Nguyen, Jennifer Doeur, Harleen Atwal, Samuel Attard, Kristian Sørensen, Jennifer S. Lin, Edgar H. H. Wong, Alex Hui, Annelise E. Barron, Naresh Kumar and Mark Willcox
J. Fungi 2025, 11(5), 370; https://doi.org/10.3390/jof11050370 - 12 May 2025
Viewed by 1400
Abstract
With rising multidrug-resistant yeast pathogens, conventional antifungals are becoming less effective, urging the need for adjuvants that enhance their activity at lower doses. This study evaluated the synergistic activity of antimicrobial peptidomimetics (TM8 and RK758) or colistin sulphate in combination with conventional antifungals [...] Read more.
With rising multidrug-resistant yeast pathogens, conventional antifungals are becoming less effective, urging the need for adjuvants that enhance their activity at lower doses. This study evaluated the synergistic activity of antimicrobial peptidomimetics (TM8 and RK758) or colistin sulphate in combination with conventional antifungals against Candida albicans, C. tropicalis, C. parapsilosis, Meyerozyma guilliermondii, Nakaseomyces glabratus, Pichia kudriavzevii and Kluyveromyces marxianus, and Candidozyma auris using the checkerboard microdilution test. RK758 was synergistic with fluconazole in 78% of isolates, with the remaining 22% of isolates still showing partial synergy; it showed synergy with amphotericin B in 56% of isolates, and with caspofungin, 78% of isolates exhibited either synergy or partial synergy. TM8 showed synergy with fluconazole in 44% (with partial synergy in another 44%) of isolates, with amphotericin B in 67% of isolates, and with caspofungin in 44% (with partial synergy in another 44%) of isolates. Colistin with fluconazole or caspofungin exhibited synergy or partial synergy in 56% of the isolates. No antagonism was observed in any of the combinations. Additionally, a time-kill assay further demonstrated synergistic activity between fluconazole and TM8 or RK758. The effects of these peptidomimetics on cell membrane integrity were demonstrated in an ergosterol binding assay, supported by SYTOX Green and cellular leakage assays, both indicating a lytic effect. These results suggest that peptidomimetics can synergise with conventional antifungals, offering a potential strategy for combination therapy against yeast infections. The membrane lytic activity of the peptidomimetics likely plays a role in their synergistic interaction with antifungals, thereby enhancing the antimicrobial activities of both compounds at sub-MIC levels. Full article
(This article belongs to the Special Issue Alternative Therapeutic Approaches of Candida Infections, 4th Edition)
Show Figures

Figure 1

11 pages, 2623 KiB  
Article
Structural Analysis of PlyKp104, a Novel Phage Endoysin
by Jung-Min Choi
Crystals 2025, 15(5), 448; https://doi.org/10.3390/cryst15050448 - 9 May 2025
Viewed by 368
Abstract
Antibiotic resistance has emerged as a critical global public health challenge, prompting increased interest in non-antibiotic antimicrobial strategies such as bacteriophage-derived endolysins. Although endolysins possess strong lytic potential, their application to Gram-negative bacteria remains limited due to the outer membrane barrier. PlyKp104 is [...] Read more.
Antibiotic resistance has emerged as a critical global public health challenge, prompting increased interest in non-antibiotic antimicrobial strategies such as bacteriophage-derived endolysins. Although endolysins possess strong lytic potential, their application to Gram-negative bacteria remains limited due to the outer membrane barrier. PlyKp104 is a recently identified phage-derived endolysin that exhibits lytic activity against Gram-negative bacteria without the aid of membrane permeabilizers. In this study, the crystal structure of PlyKp104 was determined at a resolution of 1.85 Å. PlyKp104 consists solely of a catalytic SLT domain, and structure-based analysis revealed a putative active site and key structural features associated with substrate binding. Comparative analysis with homologous structures suggested that PlyKp104 belongs to lytic transglycosylase family 1. B-factor analysis and hydrophobic interaction mapping indicated that the domain exhibits high structural stability, supported by conserved hydrophobic residues clustered in motifs I and II. During structure determination, an unidentified electron density was consistently observed near a neutral, hydrophobic surface region. Its shape and environment suggest the presence of a lipid-like molecule, implying a potential lipid-binding site. These findings provide structural insight into PlyKp104 and contribute to the understanding of endolysin mechanisms against Gram-negative bacteria, with implications for future protein engineering efforts. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

18 pages, 3327 KiB  
Article
Highlighting the Potential of LyeTx I, a Peptide Derived from the Venom of the Spider Lycosa erythrognatha, as a Potential Prototype for the Development of a New Antimicrobial Against Carbapenem-Resistant Klebsiella pneumoniae
by William Gustavo Lima, Amanda Souza Félix, Felipe Rocha da Silva Santos, Fernanda de Lima Tana, Amanda Neves de Souza, Rodrigo Moreira Verly and Maria Elena de Lima
Pharmaceuticals 2025, 18(5), 679; https://doi.org/10.3390/ph18050679 - 2 May 2025
Viewed by 505
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a multidrug-resistant (MDR) gram-negative bacterium frequently involved in hospital-acquired pneumonia. The infection caused by this superbug has spread quickly in health centers worldwide, leading to high mortality rates. Due to this emerging scenario, the World Health [...] Read more.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a multidrug-resistant (MDR) gram-negative bacterium frequently involved in hospital-acquired pneumonia. The infection caused by this superbug has spread quickly in health centers worldwide, leading to high mortality rates. Due to this emerging scenario, the World Health Organization has categorized CRKP as the highest-priority species for the development of new compounds. In this context, antimicrobial peptides (AMPs) stand out as prototypes for alternative antimicrobials against superbugs, including CRKP. Objectives: We aimed to describe the antibacterial effect of an AMP (LyeTx I), derived from the venom of the spider Lycosa erythrognatha, against CRKP in vitro and in a murine pneumonia model. Results: LyeTx I showed antibacterial effects against all the CRKP clinical isolates tested, with a minimum inhibitory concentration (MIC) range of 2–8 µM and a minimum bactericidal concentration (MBC) range of 2–16 µM. The microbial anionic membrane was the primary target of LyeTx I, which acts by displacing divalent cations bound to this structure in a manner similar to that of polymyxins. Notably, LyeTx I displayed significant lytic activity against mimetic membranes, indicating its potential to disrupt bacterial cell integrity. In in vivo assays, the LyeTx I peptide proved to be safe at a dose of 10 mg/kg. In addition, intraperitoneal use of LyeTx I reduced the bacterial load and inflammation in the lungs of animals infected with a hypervirulent strain of CRKP. Conclusions: These results indicate that LyeTx I is a potential prototype for the development of new antibacterials against MDR species, such as CRKP. Full article
(This article belongs to the Special Issue Development of Antibacterial Drugs to Combat Drug-Resistant Bacteria)
Show Figures

Graphical abstract

20 pages, 3205 KiB  
Article
Hsa-miR-7974 Suppresses Epstein-Barr Virus Reactivation by Directly Targeting BZLF1 and BRLF1
by Haotian Li, Hui Wang, Jiao Wang, Xuexin Lu, Jieqiong Zhang, Mingming Wang, Dongbo Yu, Ying Li and Shiwen Wang
Viruses 2025, 17(5), 594; https://doi.org/10.3390/v17050594 - 23 Apr 2025
Viewed by 649
Abstract
Epstein-Barr virus (EBV) reactivation, a key factor in Epstein-Barr virus (EBV)-associated malignancies, is regulated by specific cellular microRNAs (miRNAs). This study investigated the role of Hsa-miR-7974 (miR-7974) in this process. miRNA sequencing revealed significant downregulation of miR-7974 in reactivated EBV-positive cell lines (Raji [...] Read more.
Epstein-Barr virus (EBV) reactivation, a key factor in Epstein-Barr virus (EBV)-associated malignancies, is regulated by specific cellular microRNAs (miRNAs). This study investigated the role of Hsa-miR-7974 (miR-7974) in this process. miRNA sequencing revealed significant downregulation of miR-7974 in reactivated EBV-positive cell lines (Raji and C666-1). Bioinformatics prediction and dual-luciferase assays confirmed the direct targeting of the EBV immediate-early gene BRLF1 by miR-7974. Furthermore, miR-7974 mimics suppressed, whereas inhibitors increased, the expression of key EBV lytic genes (BZLF1, BRLF1, and BMRF1) and the viral load, as validated by RT-qPCR. Bioinformatics analyses revealed the involvement of miR-7974 in cellular pathways such as membrane dynamics and signal transduction (MAPK, NF-κB, and IL-10), and its association with Hodgkin’s lymphoma, leukemia, and nasopharyngeal neoplasms. These findings establish that miR-7974 functions as a crucial negative regulator of EBV reactivation by directly targeting BRLF1, highlighting its potential significance in the pathogenesis of EBV-associated malignancies. Full article
(This article belongs to the Special Issue EBV and Disease: New Perspectives in the Post COVID-19 Era)
Show Figures

Figure 1

30 pages, 4043 KiB  
Review
Phage Endolysins as Promising and Effective Candidates for Use Against Uropathogenic Escherichia coli
by Wojciech Wesołowski, Aleksandra Łukasiak, Sylwia Bloch, Kaja Kuligowska, Julia Neumann, Natalia Lewandowska, Emilia Węglińska, Grzegorz Węgrzyn and Bożena Nejman-Faleńczyk
Viruses 2025, 17(4), 560; https://doi.org/10.3390/v17040560 - 13 Apr 2025
Cited by 1 | Viewed by 968
Abstract
The presented in silico and phylogenetic analysis of putative endolysins potentially produced by phages infecting uropathogenic Escherichia coli (UPEC) demonstrates their remarkable diversity. These proteins exhibit significant variations in sequence length, molecular weight, isoelectric point, and stability, as well as diverse functional domains [...] Read more.
The presented in silico and phylogenetic analysis of putative endolysins potentially produced by phages infecting uropathogenic Escherichia coli (UPEC) demonstrates their remarkable diversity. These proteins exhibit significant variations in sequence length, molecular weight, isoelectric point, and stability, as well as diverse functional domains determining their enzymatic activity, including lysin, lysozyme, hydrolase, amidase, and peptidase functions. Due to their predicted lytic properties, endolysins hold great promise in combating UPEC bacteria, including those within biofilms, which are often highly resistant to conventional treatments. Despite their potential, several challenges hinder the full utilization of endolysins. These include the relatively small number of identified proteins, challenges in the annotation process, and the scarcity of studies evaluating their efficacy in vitro and in vivo against Gram-negative bacteria. In this work, we emphasize these challenges while also underlining the potential of endolysins as an effective tool against UPEC infections. Their effectiveness could be significantly enhanced when combined with agents that disrupt the outer membrane of these bacteria, making them a promising alternative or complement to existing antimicrobial strategies. Further research is necessary to fully explore their therapeutic potential. Full article
(This article belongs to the Special Issue Bacteriophages and Biofilms 2.0)
Show Figures

Figure 1

22 pages, 3502 KiB  
Article
Protective Vaccination of Mice Against Blood-Stage Malaria Impacts Hepatic Expression of Genes Encoding Acute-Phase Proteins and IL-6 Family Members
by Frank Wunderlich, Daniela Gerovska, Denis Delic and Marcos J. Araúzo-Bravo
Int. J. Mol. Sci. 2025, 26(7), 3173; https://doi.org/10.3390/ijms26073173 - 29 Mar 2025
Viewed by 641
Abstract
In response to vaccination and/or infectious agents, the liver produces acute-phase proteins (APPs) driven by IL-6, which circulate in blood plasma as components of the humoral innate defense. This study investigates the liver of mice for possible effects of protective vaccination against primary [...] Read more.
In response to vaccination and/or infectious agents, the liver produces acute-phase proteins (APPs) driven by IL-6, which circulate in blood plasma as components of the humoral innate defense. This study investigates the liver of mice for possible effects of protective vaccination against primary blood-stage infections of Plasmodium chabaudi malaria on the expression of genes encoding APPs and IL-6 family members. Female Balb/c mice were vaccinated with a non-infectious vaccine prior to challenge with 106 P. chabaudi-infected erythrocytes, resulting in about 80% survival of otherwise lethal infections. Gene expression microarrays were used to determine the relative transcript levels of genes in the livers of vaccinated and unvaccinated mice on days 0, 1, 4, 8, and 11 p.i. (post infectionem). Vaccination induced significant (p-value < 0.05) differences in the expression of malaria-responsive genes toward the end of crisis on day 11 p.i., when mice recovered from infections. These genes include Saa4, Apcs, Cp, and Crp, encoding APPs described to inhibitorily interact with parasitic blood stages; the genes F2, F7, F8, F9, F10, and F13b, and Plg, Plat, and Serpina5, encoding proteins balancing coagulation vs. fibrinolysis dysregulated by malaria, respectively; the genes Hc, C8a, C8b, C8g, and C9, encoding components of lytic complement membrane attack complex (MAC); and Cfh, Cfi, and C4bp, encoding complement-regulatory proteins. Vaccination accelerated, albeit differently, the malaria-induced activation of all three complement pathways, evidenced as higher transcript levels of C1qa, C1qb, C1qc, Fcna, Cfp, C3, Cfh, C8a, and C9 on day 4 p.i., C1ra, C1s, and C2 on day 1 p.i., and Serping1, encoding the multifunctional protease inhibitor C1INH, on day 0 p.i. Protective vaccination may also accelerate downregulation of the malaria-promoting lethality of IL-6 trans-signaling, which may contribute to an overall accelerated recovery of mice from otherwise lethal blood-stage malaria. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 8973 KiB  
Article
Anti-Toxoplasma and Antioxidant Activity of a Terpene and Methyl-Ester-Rich Subfraction from Pleopeltis crassinervata
by Jhony Anacleto-Santos, Ricardo Mondragón-Flores, Perla Yolanda López-Camacho, María Isabel Rivera-Vivanco, Teresa de Jesús López-Pérez, Brenda Casarrubias-Tabares, Mónica Mondragón-Castelán, Sirenia González-Pozos, Fernando Calzada, Elisa Vega-Ávila and Norma Rivera-Fernández
Antioxidants 2025, 14(3), 342; https://doi.org/10.3390/antiox14030342 - 14 Mar 2025
Cited by 1 | Viewed by 852
Abstract
Pleopeltis crassinervata has demonstrated antimicrobial effects, including anti-Toxoplasma activity, which has been attributed to the presence of compounds such as terpenes and fatty acid methyl esters. In this study, the effects of P. crassinervata hexane subfraction one (Hsf1) on the Toxoplasma gondii [...] Read more.
Pleopeltis crassinervata has demonstrated antimicrobial effects, including anti-Toxoplasma activity, which has been attributed to the presence of compounds such as terpenes and fatty acid methyl esters. In this study, the effects of P. crassinervata hexane subfraction one (Hsf1) on the Toxoplasma gondii tachyzoite ultrastructure were evaluated using TEM and SEM, and lytic cycle processes such as adhesion, invasion, and proliferation were evaluated using phase-contrast microscopy. Additionally, the antioxidant capacity of the subfraction and its main compounds (phytol and hexadecenoic acid methyl ester) were determined as well as their effects on parasite viability. Hsf1 exhibited a dose-dependent inhibitory effect on the lytic process at a concentration of 47.2 µg/mL. Among the eighteen compounds identified in this subfraction, six were evaluated, of which two (phytol and hexadecanoic acid methyl ester) significantly reduced the viability of T. gondii to 0.11% and 16.6%, respectively, at a concentration of 100 µg/mL. Additionally, Hsf1 demonstrated an antioxidant capacity of 30% as assessed using the ORAC method. The two active compounds also exhibited antioxidant properties, with antioxidant capacities of 13.33% and 33% for hexadecanoic acid methyl ester and phytol, respectively, at concentrations up to 15.4 mg/mL. Hsf1 showed membrane damage and conoid extrusion in T. gondii tachyzoites, suggesting direct interference with the lytic cycle of the parasite. These findings underscore the therapeutic potential of Hsf1 as a promising tool for controlling infections caused by T. gondii, thereby providing an alternative in the search for new antiparasitic agents. However, further research is required to determine the in vivo pharmacological effects and properties of these compounds with potential anti-Toxoplasma activity. Full article
Show Figures

Figure 1

26 pages, 2630 KiB  
Review
NINJ1 in Cell Death and Ferroptosis: Implications for Tumor Invasion and Metastasis
by Ssu-Yu Chen, Ing-Luen Shyu and Jen-Tsan Chi
Cancers 2025, 17(5), 800; https://doi.org/10.3390/cancers17050800 - 26 Feb 2025
Viewed by 2398
Abstract
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a [...] Read more.
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a multifunctional protein mediating plasma membrane rupture (PMR) in several lytic cell death processes, including apoptosis, necroptosis, and pyroptosis. However, its role in ferroptosis—an iron-dependent form of lytic cell death characterized by lipid peroxidation—remained unclear until 2024. Ferroptosis is a tumor suppression mechanism that may be particularly relevant to detached and metastatic cancer cells. This review explores the role of NINJ1 in tumor invasion and metastasis, focusing on its regulation of ferroptosis via a non-canonical mechanism distinct from other cell deaths. We discuss the process of ferroptosis and its implications for cancer invasion and metastasis. Furthermore, we review recent studies highlighting the diverse roles of NINJ1 in ferroptosis regulation, including its canonical function in PMR and its non-canonical function of modulating intracellular levels of glutathione (GSH) and coenzyme A (CoA) via interaction with xCT anti-porter. Given that ferroptosis has been associated with tumor suppression, metastasis, the elimination of treatment-resistant cancer cells, and tumor dormancy, NINJ1′s modulation of ferroptosis presents a promising therapeutic target for inhibiting metastasis. Understanding the dual role of NINJ1 in promoting or restraining ferroptosis depending on cellular context could open avenues for novel anti-cancer strategies to enhance ferroptotic vulnerability in metastatic tumors. Full article
(This article belongs to the Special Issue Cell Biology of Cancer Invasion)
Show Figures

Figure 1

15 pages, 2592 KiB  
Article
Characterization of the Activities of Vorinostat Against Toxoplasma gondii
by Ting Zeng, Chun-Xue Zhou, Dai-Ang Liu, Xiao-Yan Zhao, Xu-Dian An, Zhi-Rong Liu, Hong-Nan Qu, Bing Han and Huai-Yu Zhou
Int. J. Mol. Sci. 2025, 26(2), 795; https://doi.org/10.3390/ijms26020795 - 18 Jan 2025
Viewed by 913
Abstract
Toxoplasma gondii is a globally widespread pathogen of significant veterinary and medical importance, causing abortion or congenital disease in humans and other warm-blooded animals. Nevertheless, the current treatment options are restricted and sometimes result in toxic side effects. Hence, it is essential to [...] Read more.
Toxoplasma gondii is a globally widespread pathogen of significant veterinary and medical importance, causing abortion or congenital disease in humans and other warm-blooded animals. Nevertheless, the current treatment options are restricted and sometimes result in toxic side effects. Hence, it is essential to discover drugs that demonstrate potent anti-Toxoplasma activity. Herein, we found that vorinostat, a pan-HDAC inhibitor, exhibited an IC50 value of 260.1 nM against the T. gondii RH strain and a selectivity index (SI) > 800 with respect to HFF cells. Vorinostat disrupted the entire lytic cycle of T. gondii in vitro. Proteome analysis indicated that vorinostat remarkably perturbed the protein expression of T. gondii, and proteins involved in “DNA replication” and “membrane” were significantly dysregulated. Furthermore, we found that vorinostat significantly enhanced ROS production and induced parasite apoptosis. Importantly, vorinostat could prolong survival in a murine model. Our findings reveal that vorinostat is effective against T. gondii both in vitro and in vivo, suggesting its potential as a therapeutic option for human toxoplasmosis. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 5886 KiB  
Article
Interference of Celastrol with Cell Wall Synthesis and Biofilm Formation in Staphylococcus epidermidis
by Leandro de León Guerra, Nayely Padilla Montaño and Laila Moujir
Antibiotics 2025, 14(1), 26; https://doi.org/10.3390/antibiotics14010026 - 3 Jan 2025
Cited by 1 | Viewed by 1246
Abstract
Background: The emergence of antibiotic-resistant bacteria, including Staphylococcus epidermidis, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. Objectives: This study [...] Read more.
Background: The emergence of antibiotic-resistant bacteria, including Staphylococcus epidermidis, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. Objectives: This study aims to evaluate the antibacterial effects, mechanism of action, and antibiofilm activity of celastrol against S. epidermidis, an emerging opportunistic pathogen. Methods: To investigate the mechanism of action of celastrol, its antibacterial activity was evaluated by determining the time–kill curves, assessing macromolecular synthesis, and analysing its impact on the stability and functionality of the bacterial cell membrane. Additionally, its effect on biofilm formation and disruption was examined. Results: Celastrol exhibited significant antibacterial activity with a minimal inhibitory concentration (MIC) of 0.31 μg/mL and minimal bactericidal concentration (MBC) of 15 μg/mL, which is superior to conventional antibiotics used as control. Time–kill assays revealed a concentration-dependent bactericidal effect, with a shift from bacteriostatic activity at lower concentrations to bactericidal and lytic effect at higher concentrations. Celastrol inhibited cell wall biosynthesis by blocking the incorporation of N-acetylglucosamine (NAG) into peptidoglycan. In contrast, the cytoplasmic membrane was only affected at higher concentrations of the compound or after prolonged exposure times. Additionally, celastrol was able to disrupt biofilm formation at concentrations of 0.9 μg/mL and to eradicate pre-formed biofilms at 7.5 μg/mL in S. epidermidis. Conclusions: Celastrol exhibits significant antibacterial and antibiofilm activities against S. epidermidis, with a primary action on cell wall synthesis. Its efficacy in disrupting the formation of biofilms and pre-formed biofilms suggests its potential as a therapeutic agent for infections caused by biofilm-forming S. epidermidis resistant to conventional treatments. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Graphical abstract

28 pages, 3756 KiB  
Review
Unveiling the Emerging Role of Extracellular Vesicle–Inflammasomes in Hyperoxia-Induced Neonatal Lung and Brain Injury
by Karen Young, Merline Benny, Augusto Schmidt and Shu Wu
Cells 2024, 13(24), 2094; https://doi.org/10.3390/cells13242094 - 18 Dec 2024
Cited by 1 | Viewed by 2091
Abstract
Extremely premature infants are at significant risk for developing bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI). Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently unknown how BPD contributes to brain injury and long-term NDI in pre-term infants. Extracellular vesicles [...] Read more.
Extremely premature infants are at significant risk for developing bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI). Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently unknown how BPD contributes to brain injury and long-term NDI in pre-term infants. Extracellular vesicles (EVs) are small, membrane-bound structures released from cells into the surrounding environment. EVs are involved in inter-organ communication in diverse pathological processes. Inflammasomes are large, multiprotein complexes that are part of the innate immune system and are responsible for triggering inflammatory responses and cell death. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly and activating inflammatory caspase-1. Activated caspase-1 cleaves gasdermin D (GSDMD) to release a 30 kD N-terminal domain that can form membrane pores, leading to lytic cell death, also known as pyroptosis. Activated caspase-1 can also cleave pro-IL-1β and pro-IL-18 to their active forms, which can be rapidly released through the GSDMD pores to induce inflammation. Recent evidence has emerged that activation of inflammasomes is associated with neonatal lung and brain injury, and inhibition of inflammasomes reduces hyperoxia-induced neonatal lung and brain injury. Additionally, multiple studies have demonstrated that hyperoxia stimulates the release of lung-derived EVs that contain inflammasome cargos. Adoptive transfer of these EVs into the circulation of normal neonatal mice and rats induces brain inflammatory injury. This review focuses on EV–inflammasomes’ roles in mediating lung-to-brain crosstalk via EV-dependent and EV-independent mechanisms critical in BPD, brain injury, and NDI pathogenesis. EV–inflammasomes will be discussed as potential therapeutic targets for neonatal lung and brain injury. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

8 pages, 3068 KiB  
Article
Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor
by Tibor Farkas and Zeinab R. Aboezz
Viruses 2024, 16(12), 1849; https://doi.org/10.3390/v16121849 - 28 Nov 2024
Cited by 2 | Viewed by 966
Abstract
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in [...] Read more.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze–thawed and titrated on LLC-MK2 monolayers. This raised the question of whether ReCV infection in rCHO cells is persistent and whether non-enveloped progeny virions are released from the infected cells. Here, we used the rCHO-CAR+ cell line and a CAR and sialic acid-dependent recovirus strain (FT7) and found that these cells were persistently infected, and infectious virus was continuously produced and released into the culture without showing any visible cell damage. Viral capsid protein and replication intermediate double-stranded RNA (dsRNA) were detectable in almost all cells for at least 12 passages. We suspect a fully exosomal viral exit mechanism without a lytic cycle in these cells. rCHO cell may provide a valuable system for ReCV production (producer cell line) and serve as a model for investigating enteric calicivirus non-lytic viral exit mechanisms and the properties of the released, most likely membrane-cloaked, infectious progeny virions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 4027 KiB  
Article
Outer Membrane Vesicles Formed by Clinical Proteus mirabilis Strains May Be Incorporated into the Outer Membrane of Other P. mirabilis Cells and Demonstrate Lytic Properties
by Dominika Szczerbiec, Sława Glińska, Justyna Kamińska and Dominika Drzewiecka
Molecules 2024, 29(20), 4836; https://doi.org/10.3390/molecules29204836 - 12 Oct 2024
Viewed by 1368
Abstract
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient’s cells, which may enable the transfer of substances with lytic properties. Due to [...] Read more.
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient’s cells, which may enable the transfer of substances with lytic properties. Due to the scarce information regarding the OMVs produced by Proteus mirabilis, the aim of this study was to test the blebbing abilities of the clinical P. mirabilis O77 and O78 strains and to determine the blebs’ interactions with bacterial cells, including their possible bactericidal activities. The production of OMVs was visualised by Transmission electron microscopy (TEM). The presence of OMVs in the obtained samples as well as the phenomenon of OMV fusion to recipient cells were confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA) and Western blotting assays. The bacteriolytic activity of the OMVs was examined against P. mirabilis clinical strains and reference Staphylococcus aureus and Escherichia coli strains. It was shown that each of the two tested P. mirabilis strains could produce OMVs which were able to fuse into the cells of the other strain. The lytic properties of the O78 OMVs against another P. mirabilis O78 strain were also demonstrated. This promising result may help in the future to better understand the mechanisms of the pathogenesis and to treat the infections caused by P. mirabilis. Full article
Show Figures

Graphical abstract

13 pages, 2866 KiB  
Article
Comparative Properties of Helical and Linear Amphipathicity of Peptides Composed of Arginine, Tryptophan, and Valine
by Jessie Klousnitzer, Wenyu Xiang, Vania M. Polynice and Berthony Deslouches
Antibiotics 2024, 13(10), 954; https://doi.org/10.3390/antibiotics13100954 - 11 Oct 2024
Cited by 1 | Viewed by 1570
Abstract
Background: The persistence of antibiotic resistance has incited a strong interest in the discovery of agents with novel antimicrobial mechanisms. The direct killing of multidrug-resistant bacteria by cationic antimicrobial peptides (AMPs) underscores their importance in the fight against infections associated with antibiotic resistance. [...] Read more.
Background: The persistence of antibiotic resistance has incited a strong interest in the discovery of agents with novel antimicrobial mechanisms. The direct killing of multidrug-resistant bacteria by cationic antimicrobial peptides (AMPs) underscores their importance in the fight against infections associated with antibiotic resistance. Despite a vast body of AMP literature demonstrating a plurality in structural classes, AMP engineering has been largely skewed toward peptides with idealized amphipathic helices (H-amphipathic). In contrast to helical amphipathicity, we designed a series of peptides that display the amphipathic motifs in the primary structure. We previously developed a rational framework for designing AMP libraries of H-amphipathic peptides consisting of Arg, Trp, and Val (H-RWV, with a confirmed helicity up to 88% in the presence of membrane lipids) tested against the most common MDR organisms. Methods: In this study, we re-engineered one of the series of the H-RWV peptides (8, 10, 12, 14, and 16 residues in length) to display the amphipathicity in the primary structure by side-by-side (linear) alignment of the cationic and hydrophobic residues into the 2 separate linear amphipathic (L-amphipathic) motifs. We compared the 2 series of peptides for antibacterial activity, red blood cell (RBC) lysis, killing and membrane-perturbation properties. Results: The L-RWV peptides achieved the highest antibacterial activity at a minimum length of 12 residues (L-RWV12, minimum optimal length or MOL) with the lowest mean MIC of 3–4 µM, whereas the MOL for the H-RWV series was reached at 16 residues (H-RWV16). Overall, H-RWV16 displayed the lowest mean MIC at 2 µM but higher levels of RBC lysis (25–30%), while the L-RWV series displayed minor RBC lytic effects at the test concentrations. Interestingly, when the S. aureus strain SA719 was chosen because of its susceptibility to most of the peptides, none of the L-RWV peptides demonstrated a high level of membrane perturbation determined by propidium iodide incorporation measured by flow cytometry, with <50% PI incorporation for the L-RWV peptides. By contrast, most H-RWV peptides displayed almost up to 100% PI incorporation. The results suggest that membrane perturbation is not the primary killing mechanism of the L-amphipathic RWV peptides, in contrast to the H-RWV peptides. Conclusions: Taken together, the data indicate that both types of amphipathicity may provide different ideal pharmacological properties that deserve further investigation. Full article
Show Figures

Figure 1

Back to TopTop