The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria, Phage, and Growth Conditions
2.2. Generation of L. Monocytogenes Mutant Strain and Complementation Studies
2.3. Hemolytic, Growth, and Swimming Characteristics of the Strains
2.4. Transcriptome Analysis
2.5. Influence of Environmental Factors on Biofilm Formation
2.6. Adhesion and Invasion
2.7. Phage Susceptibility and Efficiency of Plating (EOP)
2.8. Adsorption and Growth Curve
2.9. Inhibition and Removal of Biofilms by L. monocytogenes Phage
2.10. Mitochondrial Membrane Potential and Reactive Oxygen Species (ROS) of Mutants NJ05-Δhly
2.11. Statistics and Reproducibility
3. Results
3.1. Construction of the Mutant L. monocytogenes Strain NJ05-Δhly
3.2. Transcriptomic Analysis of Differential Gene Expression
3.3. Upregulation of Genes Encoding Chemotaxis and Flagellar Assembly in the Mutant NJ05-Δhly
3.4. Reduction of Biofilm Formation in the Mutant NJ05-Δhly
3.5. Reduction of Adhesion and Invasion Rates in the Mutant NJ05-Δhly
3.6. Reduction in the EOP of L. monocytogenes After Infection with Mutant NJ05-Δhly
3.6.1. Reduction of EOP in the Mutant NJ05-Δhly
3.6.2. Enhanced Phage Adsorption and Lysis Activity on the LLO Mutant
3.7. Reduction in Phage-Mediated Biofilm Removal of the LLO Mutant
3.8. Mitigation of L. Monocytogenes-Induced Host Cell Damage by Phages
3.9. Mitigation of Adhesion and Invasion Abilities of NJ05-Δhly to Cells by Phages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Arana, A.; Dussurget, O.; Nikitas, G.; Sesto, N.; Guet-Revillet, H.; Balestrino, D.; Loh, E.; Gripenland, J.; Tiensuu, T.; Vaitkevicius, K.; et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009, 459, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Vital signs: Listeria illnesses, deaths, and outbreaks—United States, 2009–2011. Ann. Emer. Med. 2013, 62, 448–452. [Google Scholar] [CrossRef]
- Economic Research Service. Cost Estimates of Foodborne Illnesses. Available online: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses (accessed on 14 April 2025).
- Hua, Z.; Zhu, M.-J. Comprehensive strategies for controlling Listeria monocytogenes biofilms on food-contact surfaces. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13348. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rubio, L.; García, P.; Rodríguez, A.; Billington, C.; Hudson, J.A.; Martínez, B. Listeriaphages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. Int. J. Food Microbiol. 2015, 205, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Piercey, M.J.; Ells, T.C.; Macintosh, A.J.; Truelstrup Hansen, L. Variations in biofilm formation, desiccation resistance and benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada. Int. J. Food Microbiol. 2017, 257, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Barbuti, S.; Maggi, A.; Casoli, C. Antibiotic resistance in strains of Listeria spp. from meat products. Lett. Appl. Microbiol. 1992, 15, 56–58. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.S.; Raimundo, D.C.; Ferreira, T.P.; Moreno, A.M.; Hofer, E.; Reis, C.M.F.; Matté, G.R.; Matté, M.H. Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. J. Infect. Dev. Countr. 2014, 8, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.T.; Bao, H.D.; Yang, Z.; He, T.; Tian, Y.; Zhou, Y.; Pang, M.D.; Wang, R.; Zhang, H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of Listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol. 2021, 21, 327. [Google Scholar] [CrossRef] [PubMed]
- Grigore-Gurgu, L.; Bucur, F.I.; Mihalache, O.A.; Nicolau, A.I. Comprehensive review on the biocontrol of Listeria monocytogenes in food products. Foods 2024, 13, 734. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, M.; Wang, Y.; Yang, Z.; Ye, M.; Wu, L.; Bao, H.; Pang, M.; Zhou, Y.; Wang, R.; et al. Broad host range phage vB-LmoM-SH3-3 reduces the risk of Listeria contamination in two types of ready-to-eat food. Food Control 2020, 108, 106830. [Google Scholar] [CrossRef]
- Costa, P.; Pereira, C.; Barja, J.L.; Romalde, J.L.; Almeida, A. Enhancing bivalve depuration using a phage cocktail: An in vitro and in vivo study. Food Control 2025, 177, 111442. [Google Scholar] [CrossRef]
- Kim, J.-W.; Dutta, V.; Elhanafi, D.; Lee, S.; Osborne, J.A.; Kathariou, S. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl. Environ. Microbiol. 2012, 78, 1995–2004. [Google Scholar] [CrossRef]
- Spears, P.A.; Suyemoto, M.M.; Palermo, A.M.; Horton, J.R.; Hamrick, T.S.; Havell, E.A.; Orndorff, P.E. A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infect. Immun. 2008, 76, 4046–4054. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.L.; Fiedler, F.; Hodgson, D.A.; Kathariou, S. Transposon-induced mutations in two loci of Listeria monocytogenes serotype 1/2a result in phage resistance and lack of N-acetylglucosamine in the teichoic acid of the cell wall. Appl. Environ. Microbiol. 1999, 65, 4793–4798. [Google Scholar] [CrossRef] [PubMed]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Wałecka-Zacharska, E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front. Mol. Biosci. 2023, 10, 1161486. [Google Scholar] [CrossRef] [PubMed]
- Schnupf, P.; Portnoy, D.A. Listeriolysin O: A phagosome-specific lysin. Microbes Infect. 2007, 9, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Dramsi, S.; Cossart, P. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human hep-2 epithelial cell line. Infect. Immun. 2003, 71, 3614–3618. [Google Scholar] [CrossRef] [PubMed]
- Gekara, N.O.; Westphal, K.; Ma, B.; Rohde, M.; Groebe, L.; Weiss, S. The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol. 2007, 9, 2008–2021. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, J.L.; Berche, P.; Sansonetti, P. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 1986, 52, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Lety, M.-A.; Frehel, C.; Berche, P.; Charbit, A. Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes. Mol. Microbiol. 2002, 46, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.H.; Hu, L.; Lu, R.; Wu, L.T.; Bao, H.D.; Zhou, Y.; Wang, R.; Zhang, H. Effect of internalin InlJ of Listeria monocytogenes on phage sensitivity and biofilm formation. Food Sci. 2023, 44, 198–204, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Monk, I.R.; Gahan, C.G.M.; Hill, C. Tools for functional postgenomic analysis of Listeria monocytogenes. Appl. Environ. Microbiol. 2008, 74, 3921–3934. [Google Scholar] [CrossRef]
- Zhou, X.; Jiao, X. Molecular grouping and pathogenic analysis of Listeria monocytogenes of clinical and food origin. Food Control 2005, 16, 867–872. [Google Scholar] [CrossRef]
- Rouhi, A.; Azghandi, M.; Mortazavi, S.A.; Tabatabaei-Yazdi, F.; Vasiee, A. Exploring the anti-biofilm activity and suppression of virulence genes expression by Thanatin in Listeria monocytogenes. LWT 2024, 199, 116084. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Aziz, T.; Alharbi, M.; Cui, H.; Lin, L. Screening of E. coli O157:H7 AI-2 QS inhibitors and their inhibitory effect on biofilm formation in combination with disinfectants. Food Biosci. 2024, 58, 103821. [Google Scholar] [CrossRef]
- Zhang, H.; Bao, H.; Billington, C.; Hudson, J.A.; Wang, R. Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol. 2012, 31, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wu, L.; Zhu, M.; Yang, Z.; Pilar, G.; Bao, H.; Zhou, Y.; Wang, R.; Zhang, H. Non-coding RNA regulates phage sensitivity in Listeria monocytogenes. PLoS ONE 2021, 16, e0260768. [Google Scholar] [CrossRef] [PubMed]
- Belas, R. Biofilms, Flagella, and mchanosensing of surfaces by bacteria. Trends Microbiol. 2014, 22, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Fox, E.M.; Schmitz-Esser, S.; Coffey, A.; McAuliffe, O.; Jordan, K. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Front. Microbiol. 2014, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerdá, J.; Kühbacher, A.; Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold Spring Harb. Perspect. Med. 2012, 2, a010009. [Google Scholar] [CrossRef] [PubMed]
- Stavru, F.; Bouillaud, F.; Sartori, A.; Ricquier, D.; Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl. Acad. Sci. USA 2011, 108, 3612–3617. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Brenner, C.; Morselli, E.; Touat, Z.; Kroemer, G. Viral control of mitochondrial apoptosis. PLoS Pathog. 2008, 4, e1000018. [Google Scholar] [CrossRef] [PubMed]
- Rudel, T.; Kepp, O.; Kozjak-Pavlovic, V. Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat. Rev. Microbiol. 2010, 8, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Stavru, F.; Cossart, P. Listeria infection modulates mitochondrial dynamics. Commun. Integr. Biol. 2011, 4, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Arsenijevic, D.; Onuma, H.; Pecqueur, C.; Raimbault, S.; Manning, B.S.; Miroux, B.; Couplan, E.; Alves-Guerra, M.C.; Goubern, M.; Surwit, R.; et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 2000, 26, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Wong, C.; Chung, H.-J.; Yuk, H.-G. Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control 2019, 98, 200–208. [Google Scholar] [CrossRef]
- Nagasawa, R.; Sato, T.; Senpuku, H. Raffinose induces biofilm formation by streptococcus mutans in low concentrations of sucrose by increasing production of extracellular DNA and fructan. Appl. Environ. Microbiol. 2017, 83, e00869-17. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/oj/eng (accessed on 9 April 2025).
- Gutiérrez, D.; Rodríguez-Rubio, L.; Fernández, L.; Martínez, B.; Rodríguez, A.; García, P. Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in spanish dry-cured ham and food contact surfaces. Food Control 2017, 73, 1474–1482. [Google Scholar] [CrossRef]
- Chaturongakul, S.; Ounjai, P. Phage–host interplay: Examples from tailed phages and gram-negative bacterial pathogens. Front. Microbiol. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed]
- Wendlinger, G.; Loessner, M.J.; Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 1996, 142, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.L.; Rossmann, M.G. Structure and function of bacteriophage T4. Future Microbiol. 2014, 9, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [PubMed]
- Sumrall, E.T.; Schneider, S.R.; Boulos, S.; Loessner, M.J.; Shen, Y. Glucose decoration on wall teichoic acid is required for phage adsorption and InlB-mediated virulence in Listeria ivanovii. J. Bacteriol. 2021, 203, e0013621. [Google Scholar] [CrossRef]
- Sumrall, E.T.; Shen, Y.; Keller, A.P.; Rismondo, J.; Pavlou, M.; Eugster, M.R.; Boulos, S.; Disson, O.; Thouvenot, P.; Kilcher, S.; et al. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog. 2019, 15, e1008032. [Google Scholar] [CrossRef] [PubMed]
- Autret, N.; Dubail, I.; Trieu-Cuot, P.; Berche, P.; Charbit, A. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 2001, 69, 2054–2065. [Google Scholar] [CrossRef] [PubMed]
- Sabet, C.; Lecuit, M.; Cabanes, D.; Cossart, P.; Bierne, H. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 2005, 73, 6912–6922. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Feng, F.; Wang, L.; Feng, X.; Yin, X.; Luo, Q. Virulence Regulator PrfA is essential for biofilm formation in Listeria monocytogenes but not in Listeria innocua. Curr. Microbiol. 2011, 63, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Hengge, R. Principles of C-Di-GMP signalling in bacteria. Nat. Rev. Microbiol. 2009, 7, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, J.C.; Feldmüller, M.; Schneller, A.; Kilcher, S.; Burkolter, M.; Meile, S.; Pilhofer, M.; Schuppler, M.; Loessner, M.J. L-form conversion in gram-positive bacteria enables escape from phage infection. Nat. Microbiol. 2023, 8, 387–399. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer Sequence (5′-3′) | Product Length |
---|---|---|
hly-F1 | AAGTCCTAAGACGCCAATC | 1345 |
hly-R1 | TTACCGTTCTCCACCATTC | |
hly-F2 | GTGGAGGCATTAACATTTGT | 400 |
hly-R2 | CTATAGGTGGCTTAAACTTTGG | |
hly-F3 | TAACGACGATAAAGGGACAG | 1961/372 |
hly-R3 | GGCTTAAACTTTGGGATATGC |
Strain | Titer (PFU/mL) | EOP |
---|---|---|
NJ05 | (4.2 ± 0.02) × 108 | 1.0 |
NJ05-Δhly | (5.46 ± 0.01) × 106 | 0.013 |
NJ05-Δhly::hly | (3.83 ± 0.04) × 108 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Bai, M.; Tu, W.; Shen, Y.; Liu, J.; Yang, Z.; Bao, H.; Dong, Q.; Liu, Y.; Wang, R.; et al. The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect. Foods 2025, 14, 2554. https://doi.org/10.3390/foods14152554
Liu B, Bai M, Tu W, Shen Y, Liu J, Yang Z, Bao H, Dong Q, Liu Y, Wang R, et al. The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect. Foods. 2025; 14(15):2554. https://doi.org/10.3390/foods14152554
Chicago/Turabian StyleLiu, Banhong, Mei Bai, Wuxiang Tu, Yanbin Shen, Jingxin Liu, Zhenquan Yang, Hongduo Bao, Qingli Dong, Yangtai Liu, Ran Wang, and et al. 2025. "The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect" Foods 14, no. 15: 2554. https://doi.org/10.3390/foods14152554
APA StyleLiu, B., Bai, M., Tu, W., Shen, Y., Liu, J., Yang, Z., Bao, H., Dong, Q., Liu, Y., Wang, R., Zhang, H., & Hu, L. (2025). The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect. Foods, 14(15), 2554. https://doi.org/10.3390/foods14152554