Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,014)

Search Parameters:
Keywords = medical artificial intelligence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1055 KiB  
Article
Artificial Intelligence and Hysteroscopy: A Multicentric Study on Automated Classification of Pleomorphic Lesions
by Miguel Mascarenhas, Carla Peixoto, Ricardo Freire, Joao Cavaco Gomes, Pedro Cardoso, Inês Castro, Miguel Martins, Francisco Mendes, Joana Mota, Maria João Almeida, Fabiana Silva, Luis Gutierres, Bruno Mendes, João Ferreira, Teresa Mascarenhas and Rosa Zulmira
Cancers 2025, 17(15), 2559; https://doi.org/10.3390/cancers17152559 (registering DOI) - 3 Aug 2025
Abstract
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial [...] Read more.
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial polyps. Methods: A multicenter dataset (n = 3) comprising 65 hysteroscopies was used, yielding 33,239 frames and 37,512 annotated objects. Still frames were extracted from full-length videos and annotated for the presence of histologically confirmed polyps. A YOLOv1-based object detection model was used with a 70–20–10 split for training, validation, and testing. Primary performance metrics included recall, precision, and mean average precision at an intersection over union (IoU) ≥ 0.50 (mAP50). Frame-level classification metrics were also computed to evaluate clinical applicability. Results: The model achieved a recall of 0.96 and precision of 0.95 for polyp detection, with a mAP50 of 0.98. At the frame level, mean recall was 0.75, precision 0.98, and F1 score 0.82, confirming high detection and classification performance. Conclusions: This study presents a CNN trained on multicenter, real-world data that detects and classifies polyps simultaneously with high diagnostic and localization performance, supported by explainable AI features that enhance its clinical integration and technological readiness. Although currently limited to binary classification, this study demonstrates the feasibility and potential of AI to reduce diagnostic subjectivity and inter-observer variability in hysteroscopy. Future work will focus on expanding the model’s capabilities to classify a broader range of endometrial pathologies, enhance generalizability, and validate performance in real-time clinical settings. Full article
Show Figures

Figure 1

13 pages, 371 KiB  
Review
Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility
by Fabio Massimo Sciarra, Giovanni Caivano, Antonino Cacioppo, Pietro Messina, Enzo Maria Cumbo, Emanuele Di Vita and Giuseppe Alessandro Scardina
Prosthesis 2025, 7(4), 95; https://doi.org/10.3390/prosthesis7040095 (registering DOI) - 1 Aug 2025
Abstract
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to [...] Read more.
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to the therapeutic relationship and decision-making autonomy. Materials and Methods: A literature search was conducted in PubMed, Scopus, Web of Science, and Cochrane Library, complemented by Google Scholar for non-indexed studies. The selection criteria included peer-reviewed studies published in English between 2014 and 2024, focusing on digital dentistry, artificial intelligence, and medical ethics. This is a narrative review. Elements of PRISMA guidelines were applied to enhance transparency in reporting. Results: The analysis highlighted that although digital technologies and AI offer significant benefits, such as more accurate diagnoses and personalized treatments, there are associated risks, including the loss of empathy in the dentist–patient relationship, the risk of overdiagnosis, and the possibility of bias in the data. Conclusions: The balance between technological innovation and the centrality of the dentist is crucial. A human and ethical approach to digital medicine is essential to ensure that technologies improve patient care without compromising the therapeutic relationship. To preserve the quality of dental care, it is necessary to integrate digital technologies in a way that supports, rather than replaces, the therapeutic relationship. Full article
Show Figures

Figure 1

24 pages, 3553 KiB  
Article
A Hybrid Artificial Intelligence Framework for Melanoma Diagnosis Using Histopathological Images
by Alberto Nogales, María C. Garrido, Alfredo Guitian, Jose-Luis Rodriguez-Peralto, Carlos Prados Villanueva, Delia Díaz-Prieto and Álvaro J. García-Tejedor
Technologies 2025, 13(8), 330; https://doi.org/10.3390/technologies13080330 (registering DOI) - 1 Aug 2025
Abstract
Cancer remains one of the most significant global health challenges due to its high mortality rates and the limited understanding of its progression. Early diagnosis is critical to improving patient outcomes, especially in skin cancer, where timely detection can significantly enhance recovery rates. [...] Read more.
Cancer remains one of the most significant global health challenges due to its high mortality rates and the limited understanding of its progression. Early diagnosis is critical to improving patient outcomes, especially in skin cancer, where timely detection can significantly enhance recovery rates. Histopathological analysis is a widely used diagnostic method, but it is a time-consuming process that heavily depends on the expertise of highly trained specialists. Recent advances in Artificial Intelligence have shown promising results in image classification, highlighting its potential as a supportive tool for medical diagnosis. In this study, we explore the application of hybrid Artificial Intelligence models for melanoma diagnosis using histopathological images. The dataset used consisted of 506 histopathological images, from which 313 curated images were selected after quality control and preprocessing. We propose a two-step framework that employs an Autoencoder for dimensionality reduction and feature extraction of the images, followed by a classification algorithm to distinguish between melanoma and nevus, trained on the extracted feature vectors from the bottleneck of the Autoencoder. We evaluated Support Vector Machines, Random Forest, Multilayer Perceptron, and K-Nearest Neighbours as classifiers. Among these, the combinations of Autoencoder with K-Nearest Neighbours achieved the best performance and inference time, reaching an average accuracy of approximately 97.95% on the test set and requiring 3.44 min per diagnosis. The baseline comparison results were consistent, demonstrating strong generalisation and outperforming the other models by 2 to 13 percentage points. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Medical Image Analysis)
Show Figures

Figure 1

12 pages, 1346 KiB  
Article
A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
by Yi Luo, Hamed Hooshangnejad, Xue Feng, Gaofeng Huang, Xiaojian Chen, Rui Zhang, Quan Chen, Wil Ngwa and Kai Ding
Bioengineering 2025, 12(8), 835; https://doi.org/10.3390/bioengineering12080835 (registering DOI) - 31 Jul 2025
Abstract
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), [...] Read more.
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. Purpose: The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Methods: Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. Results: The deployment of the OCC system resulted in a 35.0% reduction in the false discovery rate, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. Conclusions: OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs, improving contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation and reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVM hallucinations with ablation study; and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges. Full article
(This article belongs to the Special Issue Novel Imaging Techniques in Radiotherapy)
Show Figures

Figure 1

37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 (registering DOI) - 31 Jul 2025
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

15 pages, 2428 KiB  
Article
Using Large Language Models to Simulate History Taking: Implications for Symptom-Based Medical Education
by Cheong Yoon Huh, Jongwon Lee, Gibaeg Kim, Yerin Jang, Hye-seung Ko, Min Jung Suh, Sumin Hwang, Ho Jin Son, Junha Song, Soo-Jeong Kim, Kwang Joon Kim, Sung Il Kim, Chang Oh Kim and Yeo Gyeong Ko
Information 2025, 16(8), 653; https://doi.org/10.3390/info16080653 (registering DOI) - 31 Jul 2025
Viewed by 47
Abstract
Medical education often emphasizes theoretical knowledge, limiting students’ opportunities to practice history taking, a structured interview that elicits relevant patient information before clinical decision making. Large language models (LLMs) offer novel solutions by generating simulated patient interviews. This study evaluated the educational potential [...] Read more.
Medical education often emphasizes theoretical knowledge, limiting students’ opportunities to practice history taking, a structured interview that elicits relevant patient information before clinical decision making. Large language models (LLMs) offer novel solutions by generating simulated patient interviews. This study evaluated the educational potential of LLM-generated history-taking dialogues, focusing on clinical validity and diagnostic diversity. Chest pain was chosen as a representative case given its frequent presentation and importance for differential diagnosis. A fine-tuned Gemma-3-27B, specialized for medical interviews, was compared with GPT-4o-mini, a freely accessible LLM, in generating multi-branching history-taking dialogues, with Claude-3.5 Sonnet inferring diagnoses from these dialogues. The dialogues were assessed using a Chest Pain Checklist (CPC) and entropy-based metrics. Gemma-3-27B outperformed GPT-4o-mini, generating significantly more high-quality dialogues (90.7% vs. 76.5%). Gemma-3-27B produced diverse and focused diagnoses, whereas GPT-4o-mini generated broader but less specific patterns. For demographic information, such as age and sex, Gemma-3-27B showed significant shifts in dialogue patterns and diagnoses aligned with real-world epidemiological trends. These findings suggest that LLMs, particularly those fine-tuned for medical tasks, are promising educational tools for generating diverse, clinically valid interview scenarios that enhance clinical reasoning in history taking. Full article
Show Figures

Figure 1

21 pages, 22884 KiB  
Data Descriptor
An Open-Source Clinical Case Dataset for Medical Image Classification and Multimodal AI Applications
by Mauro Nievas Offidani, Facundo Roffet, María Carolina González Galtier, Miguel Massiris and Claudio Delrieux
Data 2025, 10(8), 123; https://doi.org/10.3390/data10080123 - 31 Jul 2025
Viewed by 54
Abstract
High-quality, openly accessible clinical datasets remain a significant bottleneck in advancing both research and clinical applications within medical artificial intelligence. Case reports, often rich in multimodal clinical data, represent an underutilized resource for developing medical AI applications. We present an enhanced version of [...] Read more.
High-quality, openly accessible clinical datasets remain a significant bottleneck in advancing both research and clinical applications within medical artificial intelligence. Case reports, often rich in multimodal clinical data, represent an underutilized resource for developing medical AI applications. We present an enhanced version of MultiCaRe, a dataset derived from open-access case reports on PubMed Central. This new version addresses the limitations identified in the previous release and incorporates newly added clinical cases and images (totaling 93,816 and 130,791, respectively), along with a refined hierarchical taxonomy featuring over 140 categories. Image labels have been meticulously curated using a combination of manual and machine learning-based label generation and validation, ensuring a higher quality for image classification tasks and the fine-tuning of multimodal models. To facilitate its use, we also provide a Python package for dataset manipulation, pretrained models for medical image classification, and two dedicated websites. The updated MultiCaRe dataset expands the resources available for multimodal AI research in medicine. Its scale, quality, and accessibility make it a valuable tool for developing medical AI systems, as well as for educational purposes in clinical and computational fields. Full article
Show Figures

Figure 1

13 pages, 532 KiB  
Article
Medical and Biomedical Students’ Perspective on Digital Health and Its Integration in Medical Curricula: Recent and Future Views
by Srijit Das, Nazik Ahmed, Issa Al Rahbi, Yamamh Al-Jubori, Rawan Al Busaidi, Aya Al Harbi, Mohammed Al Tobi and Halima Albalushi
Int. J. Environ. Res. Public Health 2025, 22(8), 1193; https://doi.org/10.3390/ijerph22081193 - 30 Jul 2025
Viewed by 140
Abstract
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, [...] Read more.
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, artificial intelligence, and virtual reality. The present study aimed to explore the medical and biomedical students’ perspectives on the integration of digital health in medical curricula. A cross-sectional study was conducted on the medical and biomedical undergraduate students at the College of Medicine and Health Sciences at Sultan Qaboos University. Data was collected using a self-administered questionnaire. The response rate was 37%. The majority of respondents were in the MD (Doctor of Medicine) program (84.4%), while 29 students (15.6%) were from the BMS (Biomedical Sciences) program. A total of 55.38% agreed that they were familiar with the term ‘e-Health’. Additionally, 143 individuals (76.88%) reported being aware of the definition of e-Health. Specifically, 69 individuals (37.10%) utilize e-Health technologies every other week, 20 individuals (10.75%) reported using them daily, while 44 individuals (23.66%) indicated that they never used such technologies. Despite having several benefits, challenges exist in integrating digital health into the medical curriculum. There is a need to overcome the lack of infrastructure, existing educational materials, and digital health topics. In conclusion, embedding digital health into medical curricula is certainly beneficial for creating a digitally competent healthcare workforce that could help in better data storage, help in diagnosis, aid in patient consultation from a distance, and advise on medications, thereby leading to improved patient care which is a key public health priority. Full article
Show Figures

Figure 1

16 pages, 1194 KiB  
Systematic Review
Artificial Intelligence in the Diagnosis of Tongue Cancer: A Systematic Review with Meta-Analysis
by Seorin Jeong, Hae-In Choi, Keon-Il Yang, Jin Soo Kim, Ji-Won Ryu and Hyun-Jeong Park
Biomedicines 2025, 13(8), 1849; https://doi.org/10.3390/biomedicines13081849 - 30 Jul 2025
Viewed by 176
Abstract
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and [...] Read more.
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and histopathology. This systematic review aimed to evaluate studies applying artificial intelligence (AI) in the diagnostic imaging of TSCC. Methods: This review was conducted under PRISMA 2020 guidelines and included studies from January 2020 to December 2024 that utilized AI in TSCC imaging. A total of 13 studies were included, employing AI models such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random Forest (RF). Imaging modalities analyzed included MRI, CT, PET, ultrasound, histopathological whole-slide images (WSI), and endoscopic photographs. Results: Diagnostic performance was generally high, with area under the curve (AUC) values ranging from 0.717 to 0.991, sensitivity from 63.3% to 100%, and specificity from 70.0% to 96.7%. Several models demonstrated superior performance compared to expert clinicians, particularly in delineating tumor margins and estimating the depth of invasion (DOI). However, only one study conducted external validation, and most exhibited moderate risk of bias in patient selection or index test interpretation. Conclusions: AI-based diagnostic tools hold strong potential for enhancing TSCC detection, but future research must address external validation, standardization, and clinical integration to ensure their reliable and widespread adoption. Full article
(This article belongs to the Special Issue Recent Advances in Oral Medicine—2nd Edition)
Show Figures

Figure 1

13 pages, 311 KiB  
Article
Diagnostic Performance of ChatGPT-4o in Analyzing Oral Mucosal Lesions: A Comparative Study with Experts
by Luigi Angelo Vaira, Jerome R. Lechien, Antonino Maniaci, Andrea De Vito, Miguel Mayo-Yáñez, Stefania Troise, Giuseppe Consorti, Carlos M. Chiesa-Estomba, Giovanni Cammaroto, Thomas Radulesco, Arianna di Stadio, Alessandro Tel, Andrea Frosolini, Guido Gabriele, Giannicola Iannella, Alberto Maria Saibene, Paolo Boscolo-Rizzo, Giovanni Maria Soro, Giovanni Salzano and Giacomo De Riu
Medicina 2025, 61(8), 1379; https://doi.org/10.3390/medicina61081379 - 30 Jul 2025
Viewed by 149
Abstract
Background and Objectives: this pilot study aimed to evaluate the diagnostic accuracy of ChatGPT-4o in analyzing oral mucosal lesions from clinical images. Materials and Methods: a total of 110 clinical images, including 100 pathological lesions and 10 healthy mucosal images, were retrieved [...] Read more.
Background and Objectives: this pilot study aimed to evaluate the diagnostic accuracy of ChatGPT-4o in analyzing oral mucosal lesions from clinical images. Materials and Methods: a total of 110 clinical images, including 100 pathological lesions and 10 healthy mucosal images, were retrieved from Google Images and analyzed by ChatGPT-4o using a standardized prompt. An expert panel of five clinicians established a reference diagnosis, categorizing lesions as benign or malignant. The AI-generated diagnoses were classified as correct or incorrect and further categorized as plausible or not plausible. The accuracy, sensitivity, specificity, and agreement with the expert panel were analyzed. The Artificial Intelligence Performance Instrument (AIPI) was used to assess the quality of AI-generated recommendations. Results: ChatGPT-4o correctly diagnosed 85% of cases. Among the 15 incorrect diagnoses, 10 were deemed plausible by the expert panel. The AI misclassified three malignant lesions as benign but did not categorize any benign lesions as malignant. Sensitivity and specificity were 91.7% and 100%, respectively. The AIPI score averaged 17.6 ± 1.73, indicating strong diagnostic reasoning. The McNemar test showed no significant differences between AI and expert diagnoses (p = 0.084). Conclusions: In this proof-of-concept pilot study, ChatGPT-4o demonstrated high diagnostic accuracy and strong descriptive capabilities in oral mucosal lesion analysis. A residual 8.3% false-negative rate for malignant lesions underscores the need for specialist oversight; however, the model shows promise as an AI-powered triage aid in settings with limited access to specialized care. Full article
(This article belongs to the Section Dentistry and Oral Health)
50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 192
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

15 pages, 1152 KiB  
Article
Nurse-Led, Remote Optimisation of Guideline-Directed Medical Therapy in Patients with Heart Failure and Reduced Ejection Fraction Across Australia
by Gabrielle Freedman, Racheal Watt, Enayet Karim Chowdhury, Kate Quinlan, David Eccleston, Andrea Driscoll, James Theuerle and Leighton Kearney
J. Clin. Med. 2025, 14(15), 5371; https://doi.org/10.3390/jcm14155371 - 30 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal [...] Read more.
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal 4P-HF therapy were identified from a large, multicentre Cardiology network database using a natural language processing tool, supported by manual file review. A nurse-led, remotely delivered, medication uptitration program aimed to optimise therapy in this real-world cohort. Results: The final cohort included 2004 patients with a mean age of 72.7 ± 11.6 years. Utilisation of 4P-HF increased from 11.1% at baseline to 49.8% post intervention, and each individual medication class increased significantly post intervention (all p < 0.001). The largest increase was observed with the use of sodium–glucose cotransporter 2 inhibitors, which rose from 17.3% to 73.9%, followed by mineralocorticoid receptor antagonists (51.6% to 65.7%), beta-blockers (88.4% to 97.0%), and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor blocker–neprilysin inhibitors (89.8% to 96.4%). In patients on submaximal therapy, barriers were documented in all cases. Following medication optimisation, left ventricular ejection function (LVEF) improved significantly (38.5% ± 10.8% vs. 42.5% ± 11.7, p < 0.001). Conclusions: This nurse-led, remotely delivered, medication optimisation program significantly improved the adoption of 4P-HF therapy and LVEF in patients with HFrEF. The program demonstrates a practical, scalable solution for the optimisation of HFrEF therapy across a large healthcare network. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

35 pages, 4940 KiB  
Article
A Novel Lightweight Facial Expression Recognition Network Based on Deep Shallow Network Fusion and Attention Mechanism
by Qiaohe Yang, Yueshun He, Hongmao Chen, Youyong Wu and Zhihua Rao
Algorithms 2025, 18(8), 473; https://doi.org/10.3390/a18080473 - 30 Jul 2025
Viewed by 199
Abstract
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to [...] Read more.
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to run efficiently on mobile devices or edge devices, so the research on lightweight face expression recognition is particularly important. However, feature extraction and classification methods of lightweight convolutional neural network expression recognition algorithms mostly used at present are not specifically and fully optimized for the characteristics of facial expression images, yet fail to make full use of the feature information in face expression images. To address the lack of facial expression recognition models that are both lightweight and effectively optimized for expression-specific feature extraction, this study proposes a novel network design tailored to the characteristics of facial expressions. In this paper, we refer to the backbone architecture of MobileNet V2 network, and redesign LightExNet, a lightweight convolutional neural network based on the fusion of deep and shallow layers, attention mechanism, and joint loss function, according to the characteristics of the facial expression features. In the network architecture of LightExNet, firstly, deep and shallow features are fused in order to fully extract the shallow features in the original image, reduce the loss of information, alleviate the problem of gradient disappearance when the number of convolutional layers increases, and achieve the effect of multi-scale feature fusion. The MobileNet V2 architecture has also been streamlined to seamlessly integrate deep and shallow networks. Secondly, by combining the own characteristics of face expression features, a new channel and spatial attention mechanism is proposed to obtain the feature information of different expression regions as much as possible for encoding. Thus improve the accuracy of expression recognition effectively. Finally, the improved center loss function is superimposed to further improve the accuracy of face expression classification results, and corresponding measures are taken to significantly reduce the computational volume of the joint loss function. In this paper, LightExNet is tested on the three mainstream face expression datasets: Fer2013, CK+ and RAF-DB, respectively, and the experimental results show that LightExNet has 3.27 M Parameters and 298.27 M Flops, and the accuracy on the three datasets is 69.17%, 97.37%, and 85.97%, respectively. The comprehensive performance of LightExNet is better than the current mainstream lightweight expression recognition algorithms such as MobileNet V2, IE-DBN, Self-Cure Net, Improved MobileViT, MFN, Ada-CM, Parallel CNN(Convolutional Neural Network), etc. Experimental results confirm that LightExNet effectively improves recognition accuracy and computational efficiency while reducing energy consumption and enhancing deployment flexibility. These advantages underscore its strong potential for real-world applications in lightweight facial expression recognition. Full article
Show Figures

Figure 1

8 pages, 192 KiB  
Brief Report
Accuracy and Safety of ChatGPT-3.5 in Assessing Over-the-Counter Medication Use During Pregnancy: A Descriptive Comparative Study
by Bernadette Cornelison, David R. Axon, Bryan Abbott, Carter Bishop, Cindy Jebara, Anjali Kumar and Kristen A. Root
Pharmacy 2025, 13(4), 104; https://doi.org/10.3390/pharmacy13040104 - 30 Jul 2025
Viewed by 311
Abstract
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study [...] Read more.
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study focuses on a chatbot’s ability to accurately provide information regarding OTC medications as it relates to patients that are pregnant. A prospective, descriptive design was used to compare the responses generated by the Chat Generative Pre-Trained Transformer 3.5 (ChatGPT-3.5) to the information provided by UpToDate®. Eighty-seven of the top pharmacist-recommended OTC drugs in the United States (U.S.) as identified by Pharmacy Times were assessed for safe use in pregnancy using ChatGPT-3.5. A piloted, standard prompt was input into ChatGPT-3.5, and the responses were recorded. Two groups independently rated the responses compared to UpToDate on their correctness, completeness, and safety using a 5-point Likert scale. After independent evaluations, the groups discussed the findings to reach a consensus, with a third independent investigator giving final ratings. For correctness, the median score was 5 (interquartile range [IQR]: 5–5). For completeness, the median score was 4 (IQR: 4–5). For safety, the median score was 5 (IQR: 5–5). Despite high overall scores, the safety errors in 9% of the evaluations (n = 8), including omissions that pose a risk of serious complications, currently renders the chatbot an unsafe standalone resource for this purpose. Full article
(This article belongs to the Special Issue AI Use in Pharmacy and Pharmacy Education)
Back to TopTop