Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = meandered monopole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12812 KiB  
Article
Design of a Compact Multiband Monopole Antenna with MIMO Mutual Coupling Reduction
by Chang-Keng Lin, Ding-Bing Lin, Han-Chang Lin and Chang-Ching Lin
Sensors 2024, 24(17), 5495; https://doi.org/10.3390/s24175495 - 24 Aug 2024
Cited by 2 | Viewed by 2135
Abstract
In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These [...] Read more.
In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These bands include the 2.4 GHz band, the 3.5 GHz band, and the 5–6 GHz band, ensuring versatility in practical applications. Another important point is that this paper demonstrates effective methods for reducing mutual coupling through two meander slits on the common ground, resembling a defected ground structure (DGS) between two antenna elements. This approach achieves mutual coupling suppression from −6.5 dB and −9 dB to −26 dB and −13 dB at 2.46 GHz and 3.47 GHz, respectively. Simulated and measured results are in good agreement, demonstrating significant improvements in isolation and overall multiple-input multiple-output (MIMO) antenna system performance. This research proposes a compact multiband monopole antenna and demonstrates a method to suppress coupling in multiband antennas, making them suitable for internet of things (IoT) sensor devices and Wi-Fi infrastructure systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

14 pages, 5398 KiB  
Article
Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles
by Narayana Rao Palepu, Jayendra Kumar and Samineni Peddakrishna
Vehicles 2024, 6(1), 242-255; https://doi.org/10.3390/vehicles6010010 - 23 Jan 2024
Cited by 3 | Viewed by 2127
Abstract
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost [...] Read more.
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost meander line patch antenna is designed for fifth-generation (5G) vehicular mobile frequency applications. The proposed antenna is excited through a microstrip feedline on top of the substrate with a continuous ground plane. The meander line is implemented through a theoretical formula to cover upper-5G frequency range 1 (FR1) and frequency range 2 (FR2). The proposed antenna has 7.5 dBi peak gain when operated at 28 GHz. The simulated bandwidth ratio (BWR) is 9.09:1 for a −10 dB reflection coefficient covering a 53.4 GHz (6.6 GHz to 60 GHz) frequency range. The proposed antenna has a linear meander line planar structure, occupies a small area of 34 mm × 20 mm × 1.6 mm, and satisfies the bandwidth requirements of 5G millimeter-wave and sub-bands of the sixth generation for vehicular applications. Full article
Show Figures

Figure 1

21 pages, 6141 KiB  
Article
Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems
by Humam Hussein, Ferhat Atasoy and Taha A. Elwi
Sensors 2023, 23(13), 5871; https://doi.org/10.3390/s23135871 - 25 Jun 2023
Cited by 9 | Viewed by 2841
Abstract
In this work, a highly miniaturized microstrip antenna array based on two elements is proposed for multiple inputs multiple outputs (MIMO) application systems at sub-6 GHz frequency bands. The antenna is structured from a meander line in conjugate with an interdigital capacitor when [...] Read more.
In this work, a highly miniaturized microstrip antenna array based on two elements is proposed for multiple inputs multiple outputs (MIMO) application systems at sub-6 GHz frequency bands. The antenna is structured from a meander line in conjugate with an interdigital capacitor when excited through the monopole basic antenna. The proposed antenna elements are separated with a Minkowski factor-shaped metamaterial (MTM) column to achieve a separation distance (D) of 0.08λ at 3 GHz when printed on an FR-4 substrate. Later on, the antenna performance in terms of bandwidth and gain is controlled using a photonic process based on optical active switches based on light-dependent resistances (LDR). Therefore, the reconfiguration complexity with such a technique can be eliminated significantly without the need for a biasing circuit. The antenna design was conducted through several parametric studies to arrive at the optimal design that realizes the frequency bandwidth between 3 and 5.5 GHz with a maximum gain of about 4.5 dBi when all LDR terminals are off. For a wireless channel performance study-based massive MIMO environment, the proposed antenna is suitable to be configured in arrays of 64 × 64 elements. From this study, it was found the maximum bit error rate (BER) does not exceed 0.15 with a channel capacity (CC) of 2 Gbps. For validation, the antenna was fabricated based on two elements and tested experimentally. Finally, it was revealed that the measured results agree very well with simulations after comparing the theoretical calculations with the measured data. Full article
Show Figures

Figure 1

13 pages, 5667 KiB  
Article
Low Profile Meandered Printed Monopole WiMAX/WLAN Antenna for Laptop Computer Applications
by Killol Vishnuprasad Pandya
Micromachines 2022, 13(12), 2251; https://doi.org/10.3390/mi13122251 - 17 Dec 2022
Cited by 1 | Viewed by 2126
Abstract
The research on wireless communication demands technology-based efficient radio frequency devices. A printed monopole dual-band antenna is designed and presented. The presented antenna exhibits a promising response with improved bandwidth and gain. The antenna radiates from 3.49 GHz to 3.82 GHz and from [...] Read more.
The research on wireless communication demands technology-based efficient radio frequency devices. A printed monopole dual-band antenna is designed and presented. The presented antenna exhibits a promising response with improved bandwidth and gain. The antenna radiates from 3.49 GHz to 3.82 GHz and from 4.83 GHz to 5.08 GHz frequencies with 3.7 dBi and 5.26 dBi gain, having a bandwidth of 9.09% and 5.06%, respectively. The novelty in the developed antenna is that resonating elements have been engineered adequately without the use of the additional reactive component. The cost-effective FR 4 laminate is utilized as a substrate. This structure exhibits an efficiency of over 83% for both resonances. The numerically computed results through simulations and measured results are found to be in good correlation. The aforesaid response from the antenna makes it an appropriate candidate for laptop computer applications. Full article
(This article belongs to the Special Issue Advanced Antennas for Wireless Communication Systems)
Show Figures

Figure 1

30 pages, 13742 KiB  
Article
A Compact Monopole Antenna for Underwater Acoustic Monitoring Beacons
by Stefania Bucuci, Andreea Constantin, Mirel Paun, Marius N. Pastorcici, Razvan D. Tamas, Alin Danisor and Rodica Constantinescu
Sensors 2022, 22(21), 8392; https://doi.org/10.3390/s22218392 - 1 Nov 2022
Cited by 4 | Viewed by 2743
Abstract
Protected wetlands such as deltas, lakes or rivers provide a sanctuary for many endangered species. In order to protect these areas from illegal human interventions, it is necessary to monitor the unauthorized entrance of motor boats. In order to mitigate such an impact, [...] Read more.
Protected wetlands such as deltas, lakes or rivers provide a sanctuary for many endangered species. In order to protect these areas from illegal human interventions, it is necessary to monitor the unauthorized entrance of motor boats. In order to mitigate such an impact, we have developed a network of floating beacons for underwater acoustic monitoring, using LoRa communication modules operating at 433 MHz. Such beacons should be equipped with compact antennas. In this paper, we use a genetic algorithm approach to design the compact, monopole antennas required for the beacons; size constraints would apply not only to the radiating element but also to the ground plane. Although the antenna input is unbalanced, such a small ground plane may yield common mode currents on the antenna feeder, which distort the radiation pattern of the antenna. In order to investigate the effect of the common mode currents, we developed a distance averaging method, while, for characterizing the antenna, we used a single-antenna method. For the experimental validation of the system in real conditions, a continuous monitoring of the lake was carried out. During the monitoring, multiple events generated by incursions of motor boats were successfully detected and recorded. Full article
(This article belongs to the Special Issue Antennas for Integrated Sensors Systems)
Show Figures

Figure 1

13 pages, 5118 KiB  
Communication
Low Profile Monopole Meander Line Antenna for WLAN Applications
by Husam Hamid Ibrahim, Mandeep Jit Singh, Samir Salem Al-Bawri, Sura Khalil Ibrahim, Mohammad Tariqul Islam, Mohamed S. Soliman and Md Shabiul Islam
Sensors 2022, 22(16), 6180; https://doi.org/10.3390/s22166180 - 18 Aug 2022
Cited by 7 | Viewed by 2618
Abstract
An antenna assumes a significant role in expanding the levels of communication to meet the demands of contemporary technologically based industry and private data services. In this paper, a printed compact meander line patch antenna array for wireless local-area network (WLAN) applications in [...] Read more.
An antenna assumes a significant role in expanding the levels of communication to meet the demands of contemporary technologically based industry and private data services. In this paper, a printed compact meander line patch antenna array for wireless local-area network (WLAN) applications in the frequency span of 2.3685–2.4643 GHz is presented. The impedance matching of the antenna is generated by applying a partial rectangular-shaped ground plane backside of the meander line antenna. The proposed antenna evolved on the Rogers RT5880 substrate with a dielectric permittivity of 2.2, and the height of the substrate was 1.575 mm to accomplish the lowest possible return loss. The proposed antenna was developed to achieve particular outcomes, for example, voltage standing wave ratio (VSWR) 1.32, reflection coefficient 20 dB with a bandwidth of 94.2 MHz, a gain of 2.8 dBi, and an efficacy measurement of 97%. This antenna is appropriate for WLAN applications that utilize a 2.4 GHz resonance frequency. The overall dimensions of the antenna are 15 mm × 90.86 mm. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 8200 KiB  
Article
Flexible Planar Monopole Built-in GIS PD Sensor Based on Meandering Technology
by Shuo Zhang, Guozhi Zhang, Changyue Lu, Hanlv Tian, Jianben Liu and Xiaoxing Zhang
Sensors 2022, 22(11), 4134; https://doi.org/10.3390/s22114134 - 29 May 2022
Cited by 11 | Viewed by 2311
Abstract
To address the problem of low space utilization of existing rigid Ultra-High Frequency (UHF) sensors for partial discharge (PD) in Gas-Insulated Switchgears (GIS) and the problem of disrupting the electric field distribution inside the GIS. This paper draws on the idea of flexible [...] Read more.
To address the problem of low space utilization of existing rigid Ultra-High Frequency (UHF) sensors for partial discharge (PD) in Gas-Insulated Switchgears (GIS) and the problem of disrupting the electric field distribution inside the GIS. This paper draws on the idea of flexible wearable antennas and introduces planar monopole antennas commonly used in the communication field as GIS PD detection sensors and carried out research on flexible planar monopole sensing technology built into GIS PD. The VSWR of monopole antenna in the UHF low band is optimized by the meandering technique. The size of the designed flexible antenna is 142 mm × 195 mm × 0.28 mm. The simulation and physical test results show that the improved monopole antenna with meandering technology has a VSWR of ≤2 in the frequency bands 570 MHz–830 MHz, 1.38 GHz–1.8 GHz, and 2.2 GHz–2.76 GHz when the bending radius is 0 mm, 200 mm, and 400 mm, respectively. The VSWR in the frequency band 450 MHz–3 GHz is ≤5. A 220 kV GIS PD detection platform was built to test the performance of the designed antenna, and the results showed that the antenna could detect the PD signal after bending deformation with a high Signal Noise Ratio (SNR). Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 8807 KiB  
Article
Design and Evaluation of a Flexible Dual-Band Meander Line Monopole Antenna for On- and Off-Body Healthcare Applications
by Shahid M Ali, Cheab Sovuthy, Sima Noghanian, Zulfiqur Ali, Qammer H. Abbasi, Muhammad A. Imran, Tale Saeidi and Soeung Socheatra
Micromachines 2021, 12(5), 475; https://doi.org/10.3390/mi12050475 - 22 Apr 2021
Cited by 16 | Viewed by 4588
Abstract
The human body is an extremely challenging environment for wearable antennas due to the complex antenna-body coupling effects. In this article, a compact flexible dual-band planar meander line monopole antenna (MMA) with a truncated ground plane made of multiple layers of standard off-the-shelf [...] Read more.
The human body is an extremely challenging environment for wearable antennas due to the complex antenna-body coupling effects. In this article, a compact flexible dual-band planar meander line monopole antenna (MMA) with a truncated ground plane made of multiple layers of standard off-the-shelf materials is evaluated to validate its performance when worn by different subjects to help the designers who are shaping future complex on-/off-body wireless devices. The antenna was fabricated, and the measured results agreed well with those from the simulations. As a reference, in free-space, the antenna provided omnidirectional radiation patterns (ORP), with a wide impedance bandwidth of 1282.4 (450.5) MHz with a maximum gain of 3.03 dBi (4.85 dBi) in the lower (upper) bands. The impedance bandwidth could reach up to 688.9 MHz (500.9 MHz) and 1261.7 MHz (524.2 MHz) with the gain of 3.80 dBi (4.67 dBi) and 3.00 dBi (4.55 dBi), respectively, on the human chest and arm. The stability in results shows that this flexible antenna is sufficiently robust against the variations introduced by the human body. A maximum measured shift of 0.5 and 100 MHz in the wide impedance matching and resonance frequency was observed in both bands, respectively, while an optimal gap between the antenna and human body was maintained. This stability of the working frequency provides robustness against various conditions including bending, movement, and relatively large fabrication tolerances. Full article
(This article belongs to the Special Issue Security and Sensing Devices for Healthcare Technologies)
Show Figures

Figure 1

11 pages, 2911 KiB  
Article
A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor
by Oh Heon Kwon, Won Bin Park, Juho Yun, Hong Jun Lim and Keum Cheol Hwang
Appl. Sci. 2021, 11(5), 2237; https://doi.org/10.3390/app11052237 - 3 Mar 2021
Cited by 7 | Viewed by 3516
Abstract
In this paper, a low-profile HF (high-frequency) meandered dipole antenna with a ferrite-loaded artificial magnetic conductor (AMC) is proposed. To operate in the HF band while retaining a compact size, ferrite with high permeability is applied to the unit cell of the AMC. [...] Read more.
In this paper, a low-profile HF (high-frequency) meandered dipole antenna with a ferrite-loaded artificial magnetic conductor (AMC) is proposed. To operate in the HF band while retaining a compact size, ferrite with high permeability is applied to the unit cell of the AMC. The operating frequency bandwidth of the designed unit cell of the AMC is 1.89:1 (19–36 MHz). Thereafter, a meandered dipole antenna is designed by implementing a binary genetic algorithm and is combined with the AMC. The overall size of the designed antenna is 0.06×0.06×0.002 λ3 at the lowest operating frequency. The proposed dipole antenna with a ferrite-loaded AMC is fabricated and measured. The measured VSWR bandwidth (<3) covers 20–30 MHz on the HF band. To confirm the performance of the antenna, a reference monopole antenna which operates on the HF band was selected, and the measured receiving power is compared with the result of the proposed antenna with the AMC. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 8290 KiB  
Article
Compact Planar Super-Wideband Monopole Antenna with Four Notched Bands
by Sachin Kumar, Gwan Hui Lee, Dong Hwi Kim, Nashuha Syifa Haunan, Hyun Chul Choi and Kang Wook Kim
Electronics 2020, 9(8), 1204; https://doi.org/10.3390/electronics9081204 - 27 Jul 2020
Cited by 17 | Viewed by 4715
Abstract
A compact-sized planar super-wideband (SWB) monopole antenna with four notched bands is presented in this paper. The antenna consists of a rectangular ground plane and a circular radiator that is fed by a tapered microstrip feed line. The overall size of the antenna [...] Read more.
A compact-sized planar super-wideband (SWB) monopole antenna with four notched bands is presented in this paper. The antenna consists of a rectangular ground plane and a circular radiator that is fed by a tapered microstrip feed line. The overall size of the antenna is 18 mm × 12 mm × 0.5 mm, and its impedance bandwidth (S11 ≤ −10 dB) ranges from 2.5 GHz to 40 GHz (bandwidth ratio of 16:1). Four notched bands are obtained using two inverted U-shaped slots, a split-ring resonator (SRR), and a meandered slot. The notched frequency bands can be adjustable by changing the parameters of parasitic slot elements, and the realized notched bands in this paper are Wi-MAX band (3.5 GHz), WLAN band (5.5 GHz), satellite communication X-band (7.5 GHz), and amateur radio band (10.5 GHz). The simulated and experimental results show good agreement with each other. The antenna possesses a high gain, super-wide impedance bandwidth, and omni-directional radiation patterns. Full article
(This article belongs to the Special Issue Ultra-Wideband Microwave/MM-Wave Components and Packaging)
Show Figures

Figure 1

11 pages, 4250 KiB  
Article
Beam-Reconfigurable Multi-Antenna System with Beam-Combining Technology for UAV-to-Everything Communications
by Yu-Seong Choi, Jeong-Su Park and Wang-Sang Lee
Electronics 2020, 9(6), 980; https://doi.org/10.3390/electronics9060980 - 12 Jun 2020
Cited by 7 | Viewed by 6335
Abstract
This paper proposes a beam-reconfigurable antenna for unmanned aerial vehicles (UAVs) with wide beam coverage by applying beam-combining technology to multiple antennas with different beam patterns. The proposed multi-antenna system consists of a circular patch antenna and a low-profile printed meandered monopole antenna. [...] Read more.
This paper proposes a beam-reconfigurable antenna for unmanned aerial vehicles (UAVs) with wide beam coverage by applying beam-combining technology to multiple antennas with different beam patterns. The proposed multi-antenna system consists of a circular patch antenna and a low-profile printed meandered monopole antenna. For beam combining, a coplanar waveguide with ground (CPW-G) structure feeding network is proposed, and it consists of two input ports, a 90° hybrid coupler, a microstrip 90° phase delay line, and a single-pole double-throw (SPDT) switch. It performs the role of power distribution and phase adjustment, and synthesizes the broad-side beam of the monopole antenna and the end-fire beam of the patch antenna to form the directive broadside beams in four different directions. The proposed antenna system operates at 5–5.5 GHz which covers both UAV ground control frequencies (5.03–5.09 GHz) and UAV mission frequencies (5.091–5.150 GHz). The peak gain, total efficiency, and half-power beamwidth (HPBW) of the antenna system are approximately 5.8 dBi, 76%, 145° in the elevation plane, and 360° in the azimuth plane respectively. Its electrical size and weight are λ 0 × λ 0 × 0.21 λ 0 at 5.09 GHz and 19.2 g, respectively. Full article
(This article belongs to the Special Issue RF/Microwave Antenna, Circuit, and System Design for UAV Applications)
Show Figures

Figure 1

12 pages, 2667 KiB  
Article
Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications
by Shahid Ullah, Cunjun Ruan, Muhammad Shahzad Sadiq, Tanveer Ul Haq, Ayesha Kosar Fahad and Wenlong He
Sensors 2020, 20(6), 1735; https://doi.org/10.3390/s20061735 - 20 Mar 2020
Cited by 33 | Viewed by 4477
Abstract
This paper presents a new shape (s-shape monopole) of a super wideband antenna using stepped meander lines, a quarter waveguide transformer feeding line, and a defected ground structure (DGS). The antenna will be used for multiple wireless communication applications like WIMAX/WLAN/ISM/UWB, and also [...] Read more.
This paper presents a new shape (s-shape monopole) of a super wideband antenna using stepped meander lines, a quarter waveguide transformer feeding line, and a defected ground structure (DGS). The antenna will be used for multiple wireless communication applications like WIMAX/WLAN/ISM/UWB, and also for several wireless communication applications. The total dimensions of the proposed antenna are 35 mm × 35 mm × 1.57 mm or 0.36 λo × 0.36 λo × 0.016 λo, which are the corresponding electrical dimensions with free-space wavelength (λo) at the lower operating frequency. The antenna is designed and simulated into two steps: the first (Antenna 1) covers a bandwidth of 18.2 GHz, while the second (Antenna 2, using DGS) covers a super wide bandwidth of 37.82 GHz (3.08–40.9 GHz). The measured fractional bandwidth and bandwidth ratio of the antenna are 174.68% and 13.009:1, respectively, which is operating from 3.09–40.2 GHz. The maximum calculated gain and efficiency are 5.9 dBi and 92.7%, respectively. The time-domain performance is good due to the calculation of the system fidelity factor, group delay, and its linear and constant phase variation. Full article
Show Figures

Figure 1

11 pages, 3285 KiB  
Article
High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications
by Shahid Ullah, Cunjun Ruan, Muhammad Shahzad Sadiq, Tanveer Ul Haq and Wenlong He
Sensors 2020, 20(1), 115; https://doi.org/10.3390/s20010115 - 23 Dec 2019
Cited by 60 | Viewed by 9196
Abstract
The paper presents a highly efficient, low cost, ultra-wideband, microstrip monopole antenna for microwave imaging and wireless communications applications. A new structure (z-shape, ultra-wideband (UWB) monopole) is designed, which consists of stepped meander lines to achieve super-wide bandwidth and high efficiency. Three steps [...] Read more.
The paper presents a highly efficient, low cost, ultra-wideband, microstrip monopole antenna for microwave imaging and wireless communications applications. A new structure (z-shape, ultra-wideband (UWB) monopole) is designed, which consists of stepped meander lines to achieve super-wide bandwidth and high efficiency. Three steps are used to design the proposed structure for the purpose to achieve high efficiency and wide bandwidth. The antenna bandwidth is enhanced by varying the length of meander line slots, optimization of the feeding line and with the miniaturization of the ground width. The simulated and measured frequency bands are 2.7–22.5 GHz and 2.8–22.7 GHz (156% fractional bandwidth), respectively. The dimensions of the antenna are 38 mm × 35 mm × 1.57 mm, and its corresponding electrical size is 2.41 λg × 2.22 λg × 0.09 λg, where guided wavelength λg is at the center frequency (12.75 GHz). This antenna achieved a high bandwidth ratio (8.33:1). The realized gain is varying from 1.6–6.4 dBi, while that of efficiency is 70% to 93% for the whole band. Radiation patterns are measured at four operating frequencies. It has an acceptable group delay, fidelity factor, and phase variation results that satisfy the limit of ultra-wideband in the form of the time domain. Full article
(This article belongs to the Special Issue Ultra Wideband (UWB) Systems in Biomedical Sensing)
Show Figures

Figure 1

8 pages, 3197 KiB  
Article
A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications
by Syed Imran Hussain Shah and Sungjoon Lim
Sensors 2017, 17(11), 2675; https://doi.org/10.3390/s17112675 - 20 Nov 2017
Cited by 25 | Viewed by 7132
Abstract
In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended [...] Read more.
In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz) and 15% (2.1–2.45 GHz) for the unfolded state and 20% (1.3–1.6 GHz) and 14% (2.3–2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state. Full article
Show Figures

Figure 1

Back to TopTop