A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor
Abstract
:1. Introduction
2. Designs of the Artificial Magnetic Conductor and Antenna
2.1. A Design of the Artificial Magnetic Conductor (AMC) with the Ferrite Material
2.2. The Designed Antenna with the AMC
3. Experimental Verification
3.1. Performance of the Designed Antenna with the AMC
3.2. Experimental Results of the Designed Antenna with the AMC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Austin, B.A.; Murray, K.P. Predicted and measured patterns of vehicle-mounted whip and loop antennas for near vertical incidence skywave (NVIS) propagation. In Proceedings of the IEE Colloquium on HF Antennas and Propagation, London, UK, 14 November 1995. [Google Scholar]
- Austin, B.A.; Murray, K.P. The Application of Characteristic-Mode Techniques to Vehicle-Mounted NVIS Antennas. IEEE Antennas Propag. Mag. 1998, 40, 7–21. [Google Scholar] [CrossRef]
- Austin, B.A.; Liu, W.C. Assessment of vehicle-mounted antennas for NVIS applications. IEE Proc. Microw. Antennas Propag. 2002, 149, 147–152. [Google Scholar] [CrossRef]
- Webster, R. 20-70 MC monopole antennas on ground-based vehicles. IRE Trans. Antennas Propag. 1957, 5, 363–368. [Google Scholar] [CrossRef]
- Smith, R.C.; Ignatenko, M.; Filipovic, D.S. Design of small loop antennas for on-the-move HF manpack radios. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PuertoRico, 26 June–1 July 2016. [Google Scholar]
- Ignatenko, M.; Filipovic, S.D. On the Design of Vehicular Electrically Small Antennas for NVIS Communications. IEEE Trans. Antennas Propag. 2016, 64, 2136–2145. [Google Scholar] [CrossRef]
- Shrestha, S.; Ignatenko, M.; Filipovic, S.D. Combined Dipole-Multiturn Loop for Vehicle-Based High-Frequency (HF) Communications. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, MI, USA, 6–11 July 2014. [Google Scholar]
- Baker, J.; Youn, H.-S.; Celik, N.; Iskander, F.M. Low-Profile Multifrequency HF Antenna Design for Coastal Radar Applications. IEEE Antennas Wireless Propag. Lett. 2010, 9, 1119–1122. [Google Scholar] [CrossRef]
- Lopez, D.G.; Ignatenko, M.; Filipovic, S.D. Low-Profile Tri-band Inverted-F Antenna for Vehicular Applications in HF and VHF Bands. IEEE Trans. Antennas Propag. 2015, 63, 4632–4639. [Google Scholar] [CrossRef]
- Naji, D.K. Miniature Slotted Semi-Circular Dual-Band Antenna for WiMAX and WLAN Applications. J. Electromagn. Eng. Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef]
- Ali, A.; Wang, H.; Yun, Y.; Lee, J.; Park, I. Compact Slot Antenna Integrated with a Photovoltaic Cell. J. Electromagn. Eng. Sci. 2020, 20, 248–253. [Google Scholar] [CrossRef]
- Jeong, M.-J.; Lim, J.-H.; Park, J.-W.; Park, S.-W.; Kim, N. Compact Slot Antenna Integrated with a Photovoltaic Cell. J. Electromagn. Eng. Sci. 2019, 19, 89–95. [Google Scholar] [CrossRef]
- Feresidis, A.P.; Goussetis, G.; Wang, S.; Vardaxoglou, J.C. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag. 2005, 53, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Rajanna, P.K.T.; Rudramuni, K.; Kandasamy, K. A Wideband Circularly Polarized Slot Antenna Backed by a Frequency Selective Surface. J. Electromagn. Eng. Sci. 2019, 19, 166–171. [Google Scholar] [CrossRef]
- Foroozesh, A.; Shafai, L. Investigation Into the Application of Artificial Magnetic Conductors to Bandwidth Broadening, Gain Enhancement and Beam Shaping of Low Profile and Conventional Monopole Antenna. IEEE Trans. Antennas Propag. 2011, 59, 4–20. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-samii, Y. Reflection phase characteristics of the EBG ground plane for low profile wire antennas. IEEE Trans. Antennas Propag. 2003, 51, 2691–2703. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.M.; Iskander, M.F. Equivalent Circuit Model of an Ultrawideband Hybrid EBG/Ferrite Structure. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 573–576. [Google Scholar] [CrossRef]
- Gregoire, D.J.; White, C.R.; Colburn, J.S. Wideband Artificial Magnetic Conductors Loaded With Non-Foster Negative Inductors. In Proceedings of the 2012 IEEE International Workshop on Antenna Technology (iWAT), Tucson, AZ, USA, 5–7 March 2012. [Google Scholar]
- Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Alexopolous, N.G.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R. Magnetic loading of artificial magnetic conductors for bandwidth enhancement. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003. [Google Scholar]
- Bell, J.M.; Iskander, M.F.; Lee, J.J. Ultrawideband Hybrid EBG/Ferrite Ground Plane for Low-Profile Array Antennas. IEEE Trans. Antennas Propag. 2007, 55, 4–12. [Google Scholar] [CrossRef]
- Kwon, O.H.; Hwang, K.C. Low-Profile Spidron Fractal Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor for Manpack Applications. Appl. Sci. 2020, 10, 8843. [Google Scholar] [CrossRef]
- Warnagiris, T.J.; Minardo, T.J. Performance of a Meandered Line as an Electrically Small Transmitting Antenna. IEEE Trans. Antennas Propag. 1998, 46, 1797–1801. [Google Scholar] [CrossRef] [Green Version]
- Marrocco, G. Gain-Optimized Self-Resonant Meander Line Antennas for RFID Applications. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 302–305. [Google Scholar] [CrossRef]
- MP2106-0M0. Available online: https://www.mouser.com/datasheet/2/987/MP2106-0M0-1650723.pdf (accessed on 22 January 2021).
- Trinh-Van, S.; Kwon, O.H.; Jung, E.; Park, J.; Yu, B.; Kim, K.; Seo, J.; Hwang, K.C. A low-profile high-gain and wideband log-periodic meandered dipole array antenna with a cascaded multi-section artificial magnetic conductor structure. Sensors 2019, 19, 4404–4415. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, Z.; Werner, P.L.; Werner, D.H. The design of miniature three-element stochastic Yagi-Uda arrays using particle swarm optimization. IEEE Antennas Wless Propag. Lett. 2006, 5, 22–26. [Google Scholar] [CrossRef]
- OMNI-A0245. Available online: http://www.alarisantennas.com/wp-content/uploads/2017/06/brochures /OMNI-A0245%20Version%201.2.pdf (accessed on 22 January 2021).
- MP1DXTR80. Available online: http://newsuperantenna.com/ (accessed on 22 January 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, O.H.; Park, W.B.; Yun, J.; Lim, H.J.; Hwang, K.C. A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor. Appl. Sci. 2021, 11, 2237. https://doi.org/10.3390/app11052237
Kwon OH, Park WB, Yun J, Lim HJ, Hwang KC. A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor. Applied Sciences. 2021; 11(5):2237. https://doi.org/10.3390/app11052237
Chicago/Turabian StyleKwon, Oh Heon, Won Bin Park, Juho Yun, Hong Jun Lim, and Keum Cheol Hwang. 2021. "A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor" Applied Sciences 11, no. 5: 2237. https://doi.org/10.3390/app11052237
APA StyleKwon, O. H., Park, W. B., Yun, J., Lim, H. J., & Hwang, K. C. (2021). A Low-Profile HF Meandered Dipole Antenna with a Ferrite-Loaded Artificial Magnetic Conductor. Applied Sciences, 11(5), 2237. https://doi.org/10.3390/app11052237