Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems
Abstract
:1. Introduction
2. Antenna Array Design Details
3. MTM Analysis and Discussion
3.1. Design Methodology
3.1.1. Monopole Antenna Performance
3.1.2. Interdigital Capacitor Effects
3.1.3. Mender Line Effects
3.1.4. MIMO Array Performance
3.2. Antenna Reconfiguration Study
4. Results, Discussion, and Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mezaal, Y.S.; Abdulkareem, S.F.; Ali, J.K. A Dual-Band Printed Slot Antenna for WiMAX and Metrological Wireless Applications. Adv. Electromagn. 2018, 7, 75–81. [Google Scholar] [CrossRef]
- Haleem, M.; Elwi, T.A. Circularly Polarized Metamaterial Patch Antenna Circuitry for Modern Applications. Int. J. Emerg. Technol. Adv. Eng. 2022, 12, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Ibrahim, I.M.; Shairi, N.A. Review Isolation Techniques of the MIMO Antennas for Sub-6-6 GHz bands. Prz. Elektrotechniczny 2021, 1, 3–9. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Ren, A.-D.; Liu, Y. Decoupling methods of MIMO antenna arrays for 5G applications: A review. Front. Inf. Technol. Electron. Eng. 2020, 21, 62–71. [Google Scholar] [CrossRef]
- Al-Hadeethi, S.T.; Elwi, T.A.; Ibrahim, A.A. A Printed Reconfigurable Monopole Antenna Based on a Novel Metamaterial Structures for 5G Applications. Micromachines 2023, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.C.; Kumar, J.; Elwi, T.A.; Ali, M.M. Compact MIMO antenna for 5G Applications. In Proceedings of the 2022 IEEE ANDESCON, Barranquilla, Colombia, 16–19 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ahmed, E.S. Design of CPW Fed Two Layered Rectangular Dielectric Resonator Antenna for 5G Mobile Communications. In Proceedings of the 3rd International Conference on Recent Innovations in Engineering, Duhok, Iraq, 9–10 September 2020. [Google Scholar]
- Ghaffar, A.; Awan, W.A.; Hussain, N.; Ahmad, S.; Li, X.J. A compact dual-band flexible antenna for applications at 900 and 2450 MHZ. Prog. Electromagn. Res. Lett. 2021, 99, 83–91. [Google Scholar] [CrossRef]
- Jwair, M.H.; Elwi, T.A. Steerable composite right–left-hand-based printed antenna circuitry for 5G applications. Microw. Opt. Technol. Lett. 2023, 65, 2084–2091. [Google Scholar] [CrossRef]
- Elwi, T.A. A Miniaturized Folded Antenna Array for MIMO Applications. Wirel. Pers. Commun. 2018, 98, 1871–1883. [Google Scholar] [CrossRef]
- Muqdad, Z.S.; Alibakhshikenari, M.; Elwi, T.A.; Hassain, Z.A.A.; Virdee, B.; Sharma, R.; Khan, S.; Tokan, N.T.; Livreri, P.; Falcone, F.; et al. Photonic controlled metasurface for intelligent antenna beam steering applications including 6G mobile communication systems. AEU Int. J. Electron. Commun. 2023, 166, 15–25. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Naser-Moghadasi, M.; Huynen, I.; Denidni, T.A.; Limiti, E. A comprehensive survey of “metamaterial transmission-line based antennas: Design, challenges, and applications. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Bayat, M.; Shahi, H.; Mazloum, J. Dual-band balanced-to-single-ended crossover based on composite right-and left-handed transmission lines. Electron. Lett. 2020, 56, 380–382. [Google Scholar] [CrossRef]
- Althuwayb, A.A. MTM- and SIW-Inspired Bowtie Antenna Loaded with AMC for 5G mm-Wave Applications. Int. J. Antennas Propag. 2021, 2021, 6658819. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Choi, S.; Lee, Y.-H.; Chung, J.-Y.; Hwang, K.C.; Park, Y.B. Design and Characterization of VHF Band Small Antenna Using CRLH Transmission Line and Non-Foster Matching Circuit. Appl. Sci. 2020, 10, 6366. [Google Scholar] [CrossRef]
- Song, K.; Zhang, F.; Fan, M.; Zhu, Y.; Fan, Y. Compact broadband bandstop filter based on composite right/left handed transmission line. Electromagnetics 2017, 37, 196–202. [Google Scholar] [CrossRef]
- Pant, A.; Singh, M.; Parihar, M.S. A frequency reconfigurable/switchable MIMO antenna for LTE and early 5G applications. AEU Int. J. Electron. Commun. 2021, 131, 153638. [Google Scholar] [CrossRef]
- Mansoul, A.; Nedil, M. Compact and Reconfigurable Multiband 2-Element MIMO Slot Antenna for Advanced Communication Systems. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 575–576. [Google Scholar] [CrossRef]
- Saeidi, T.; Ismail, I.; Wen, W.P.; Alhawari, A.R.H.; Mohammadi, A. Ultra-Wideband Antennas for Wireless Communication Applications. Int. J. Antennas Propag. 2019, 2019, 7918765. [Google Scholar] [CrossRef]
- Ghadeer, S.H.; Abd.Rahim, S.K.; Elwi, T.A. Solar Panel Integrated 3D MIMO Antenna Array for Modern Communication Systems. In Proceedings of the 2021 International Conference on Advanced Computer Applications (ACA), Maysan, Iraq, 25–26 July 2021; pp. 112–115. [Google Scholar] [CrossRef]
- Essid, C.; Abdelhamid, C.; Almalki, F.A.; Ali, O.; Sakli, H. New MIMO Antenna with Filtration for the Future Multiuser Systems in Satellite Communications. Wirel. Commun. Mob. Comput. 2022, 2022, 1040333. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, S.; Kanaujia, B.K.; Pandey, V.K. Design and performance analysis of a frequency reconfigurable four-element multiple-input-multiple-output antenna. AEU Int. J. Electron. Commun. 2022, 146, 154118. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, A. Two Elements MIMO Antenna for Tablet Size Ground Plane with Reconfigurable Lower Bands and Consistent High Band Radiating Elements. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 25–26. [Google Scholar] [CrossRef]
- Ismail, M.M.; Elwi, T.A.; Salim, A.J. Reconfigurable CRLH-inspired antenna based on Hilbert curve EBG structure for modern wireless systems. Microw. Opt. Technol. Lett. 2023, 23, 1–10. [Google Scholar] [CrossRef]
- Al-Tameemi, A.R.; Hock, G.C.; Elwi, T.A.; Abbas, J.K.; Al-Shaikhli, T.R.; Bashar, B.S.; Jawad, M.A. A Novel Conformal MIMO Antenna Array based a Cylindrical Configuration for 5G Applications. In Proceedings of the 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Jakarta, Indonesia, 6–7 October 2022; pp. 446–451. [Google Scholar] [CrossRef]
- Proakis, J.; Salehi, M. Digital Communications; McGraw-Hill Education: Los Angeluses, CA, USA, 2019. [Google Scholar]
Symbol | Value | Abbreviation |
---|---|---|
Xg | 3 | Separation distance |
Yg | 3 | Ground plane length |
Xm | 4 | Monopole width |
D | 12 | Separation distance between antenna elements |
Element | Value |
---|---|
Resistance of the left hand (RLH) | 12.2 Ω |
Resistance of the right hand (RRH) | 50 Ω |
Conductance of the left hand (GLH) | 0.11 S |
Conductance of the right hand (GRH) | 4.55 S |
Capacitance of the left hand (CLH) | 1.17 pF |
Capacitance of the right hand (CRH) | 3.11 pF |
Inductance of the left hand (LLH) | 3.24 nH |
Inductance of the right hand (LRH) | 2.34 nH |
Switching Scenario | Frequency/GHz | Gain/dBi |
---|---|---|
0000 | 3–5.5 | 4.5 |
0011 | 3.5–4.7 | 5.1 |
1100 | 3.4–4.1 | 6.2 |
1111 | 3.1–4.6 | 8.1 |
Case | BW/GHz | Gain/dBi | Efficiency | DG | ECC | Coupling/dB |
---|---|---|---|---|---|---|
Without MTM | 3.2–4.65 | 1.1 | 20% | 5.3 | 0.24 | −3 |
With MTM | 3–5.5 | 4.5 | 83% | 10 | 0.01 | −20 |
Ref. | Size | Ports | BW/GHz | Gain/dBi | Coup/dB | DG | ECC | D | Rec. |
---|---|---|---|---|---|---|---|---|---|
[18] | 130 × 100 | 8 | 5.1–5.9 | 2.1 | −15 | --- | 0.05 | λ/1.9 | Not |
[19] | 150 × 75 | 4 | 2.45,5.8 | 2.5 | −14 | 9.8 | 0.06 | λ/2 | Not |
[20] | 136 × 60 | 8 | 5.1–5.9 | 1.9 | −10 | 9.3 | 0.09 | λ/2 | Diode |
[21] | 150 × 75 | 12 | 4.8–5.1 | 2.6 | −12 | 9.7 | --- | λ/2.1 | Not |
[22] | 150 × 80 | 8 | 5.1–5.9 | 2.2 | −10 | 9.2 | 0.11 | λ/2.3 | Not |
[23] | 133 × 133 | 4 | 2.25 | 2.5 | −15 | 9.3 | 0.10 | λ/2.1 | Diode |
[24] | 160 × 70 | 2 | 4.42 | 5.2 | −30 | 10 | 0.06 | λ/1.4 | Not |
[25] | 30 × 40 | 4 | 2–3, 3.4–3.9, 4.4–5.2 | 6.3 | −20 | 10 | 0.01 | λ/15 | Not |
This work | 30 × 50 | 2 | 3–5.5 | 4.5 | −20 | 10 | 0.01 | 0.08λ | LDR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.; Atasoy, F.; Elwi, T.A. Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems. Sensors 2023, 23, 5871. https://doi.org/10.3390/s23135871
Hussein H, Atasoy F, Elwi TA. Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems. Sensors. 2023; 23(13):5871. https://doi.org/10.3390/s23135871
Chicago/Turabian StyleHussein, Humam, Ferhat Atasoy, and Taha A. Elwi. 2023. "Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems" Sensors 23, no. 13: 5871. https://doi.org/10.3390/s23135871
APA StyleHussein, H., Atasoy, F., & Elwi, T. A. (2023). Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems. Sensors, 23(13), 5871. https://doi.org/10.3390/s23135871