Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles
Abstract
:1. Introduction
2. Meander Line Antenna Formula
3. Antenna Design
3.1. Design of 5G FR1 Meander Line Antenna
3.2. Design of 5G FR2 Meander Line Antenna
4. Results and Discussion
Measured Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chung, M.A.; Tseng, K.C.; Meiy, I.P. Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites. Vehicles 2023, 5, 55–74. [Google Scholar] [CrossRef]
- Jain, P.; Gupta, A.; Kumar, N.; Guizani, M. Dynamic and Efficient Spectrum Utilization for 6G with THz, mmWave, and RF band. IEEE Trans. Veh. Technol. 2023, 72, 3264–3273. [Google Scholar] [CrossRef]
- De Fazio, R.; Mattei, V.; Al-Naami, B.; De Vittorio, M.; Visconti, P. Methodologies and Wearable Devices to Monitor Biophysical Parameters Related to Sleep Dysfunctions: An Overview. Micromachines 2022, 13, 1335. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, E.; Choi, C.; Yeo, W.H. Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices. Micromachines 2022, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Ishihara, T.; Kuwabara, K.; Amano, T.; Togo, H. Wearable Microfluidic Sensor for the Simultaneous and Continuous Monitoring of Local Sweat Rates and Electrolyte Concentrations. Micromachines 2022, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Lorincz, J.; Klarin, Z.; Begusic, D. Advances in Improving Energy Efficiency of Fiber–Wireless Access Networks: A Comprehensive Overview. Sensors 2023, 23, 2239. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, I.; Asif, M.; Ihsan, A.; Khan, W.U.; Ahmed, M.; Rabie, K.M. LSTM-based distributed conditional generative adversarial network for data-driven 5G-enabled maritime UAV communications. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2431–2446. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Y.; Bornemann, J.; Gu, L.; Mamedes, D.F. SIW Triplets Including Meander-Line and CRLH Resonators and Their Applications to Quasi-Elliptic Filters. IEEE Trans. Microw. Theory Tech. 2022, 71, 2193–2206. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Antoniades, M.A.; Sebak, A.; Kishk, A.A.; Sorkherizi, M.S.; Denidni, T.A. High-gain 60 GHz linear antenna array loaded with electric and magnetic metamaterial resonators. IEEE Trans. Antennas Propag. 2020, 68, 3673–3684. [Google Scholar] [CrossRef]
- Zheng, D.; Lyu, Y.L.; Wu, K. Longitudinally slotted SIW leaky-wave antenna for low cross-polarization millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 68, 656–664. [Google Scholar] [CrossRef]
- Karmakar, A. Fractal antennas and arrays: A review and recent developments. Int. J. Microw. Wirel. Technol. 2021, 13, 173–197. [Google Scholar] [CrossRef]
- Lv, X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Frequency-selective-surface-based mechanically reconfigurable terahertz bandpass filter. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 257–266. [Google Scholar] [CrossRef]
- Liu, Y.; Bian, L.A.; Xu, K.D.; Huang, K.; Wang, Y.; Li, Y.; Xie, S. A Pattern-Reversal Wideband Antenna Integrating Metal Rings, Diodes-Loaded Stubs and Defective Ground. IEEE Open J. Antennas Propag. 2022, 3, 722–731. [Google Scholar] [CrossRef]
- Ran, J.; Wu, Y.; Jin, C.; Zhang, P.; Wang, W. Dual-Band Multi-Polarized Aperture-Shared Antenna Array for Ku-/Ka-Band Satellite Communication. IEEE Trans. Antennas Propag. 2023, 71, 3882–3893. [Google Scholar] [CrossRef]
- Padhi, J.; Shrikanth Reddy, G.; Kumar, A. Multiple stubs loaded efficient electrically small antenna for DCS/WiMAX/5G NR-n77/n78 applications. J. Electromagn. Waves Appl. 2023, 37, 271–281. [Google Scholar] [CrossRef]
- Zhou, Z.; Ge, Y.; Yuan, J.; Xu, Z.; Chen, Z.D. Wideband MIMO Antennas with Enhanced Isolation Using Coupled CPW Transmission Lines. IEEE Trans. Antennas Propag. 2023, 71, 1414–1423. [Google Scholar] [CrossRef]
- Lian, J.W.; Ansari, M.; Hu, P.; Guo, Y.J.; Ding, D. Wideband and High-Efficiency Parallel-Plate Luneburg Lens Employing All-Metal Metamaterial for Multibeam Antenna Applications. IEEE Trans. Antennas Propag. 2023, 71, 3193–3203. [Google Scholar] [CrossRef]
- Bosman, D.; Huynen, M.; De Zutter, D.; Sun, X.; Pantano, N.; Van Der Plas, G.; Beyne, E.; Ginste, D.V. Analysis and Application of a Surface Admittance Operator for Combined Magnetic and Dielectric Contrast in Emerging Interconnect Topologies. IEEE Trans. Microw. Theory Tech. 2023, 71, 2794–2806. [Google Scholar] [CrossRef]
- Kumar, J. Comact MIMO antenna. Microw. Opt. Technol. Lett. 2016, 58, 1294–1298. [Google Scholar] [CrossRef]
- BharathiDevi, B.; Kumar, J. Small frequency range discrete bandwidth tunable multiband MIMO antenna for radio/LTE/ISM-2.4 GHz band applications. AEU-Int. J. Electron. Commun. 2022, 144, 154060. [Google Scholar] [CrossRef]
- Nikam, P.B.; Kumar, J.; Sivanagaraju, V.; Baidya, A. Dual-band reconfigurable EBG loaded circular patch MIMO antenna using defected ground structure (DGS) and PIN diode integrated branch-lines (BLs). Measurement 2022, 195, 111127. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Alanazi, M.D. A Review of Dielectric Resonator Antenna at Mm-Wave Band. Eng 2023, 4, 843–856. [Google Scholar] [CrossRef]
- Ravi, K.C.; Kumar, J. Multi-directional Wideband Unit-element MIMO Antenna for FR-2 Band 5G Array Applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2022, 46, 311–317. [Google Scholar] [CrossRef]
- Chand Ravi, K.; Kumar, J.; Elwi, T.A.; Mahdi Ali, M. Compact MIMO antenna for 5G Applications. In Proceedings of the 2022 IEEE ANDESCON, Barranquilla, Colombia, 16–19 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Rohde & Schwarz. Millimeter-Wave Beamforming: Antenna Array Design Choices & Characterization. Rohde & Schwarz Application Note. Available online: www.rohde-schwarz.com/in/applications/millimeter-wave-beamforming-antenna-array-design-choices-characterization-white-paper_230854-325249.html (accessed on 1 September 2023).
- Palepu, N.R.; Kumar, J. Neutralized meander line patch antipodal vivaldi defected ground millimeter-wave (mm-wave) antenna array. AEU-Int. J. Electron. Commun. 2023, 166, 154663. [Google Scholar] [CrossRef]
- Maamria, T.; Challal, M.; Benmahmoud, F.; Fertas, K.; Mesloub, A. A novel compact quad-band planar antenna using meander-line, multi-stubs, and slots for WiMAX, WLAN, LTE/5G sub-6 GHz applications. Int. J. Microw. Wirel. Technol. 2023, 15, 852–859. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Zhu, L. Direct synthesis and design of wideband linear-to-circular polarizers on 3-D frequency selective structures. IEEE Trans. Antennas Propag. 2022, 70, 9385–9395. [Google Scholar] [CrossRef]
- Islam, S.; Zada, M.; Yoo, H. Low-Pass Filter Based Integrated 5G Smartphone Antenna for Sub-6-GHz and mm-Wave Bands. IEEE Trans. Antennas Propag. 2021, 69, 5424–5436. [Google Scholar] [CrossRef]
- Hussain, R.; Khan, M.U.; Sharawi, M.S. Design and Analysis of aMiniaturizedMeandered Slot-Line-Based Quad-Band Frequency Agile MIMO Antenna. IEEE Trans. Antennas Propag. 2020, 68, 2410–2415. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Ali, M.; Sayeed, S.Y.B.; Tummala, R.R.; Pulugurtha, M.R. A review of 5G front-end systems package integration. IEEE Trans. Components, Packag. Manuf. Technol. 2020, 11, 118–133. [Google Scholar] [CrossRef]
- Li, C.H.; Chiu, T.Y. Low-Loss Single-Band, Dual-Band, and Broadband mm-Wave and (Sub-) THz Interconnects for THz SoP Heterogeneous System Integration. IEEE Trans. Terahertz Sci. Technol. 2021, 12, 130–143. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Mathur, D.; Bhatnagar, S.K.; Sahula, V. Quick estimation of rectangular patch antenna dimensions based on equivalent design concept. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1469–1472. [Google Scholar] [CrossRef]
- Raman, S.; Mohanan, P.; Timmons, N.; Morrison, J. Microstrip-fed pattern-and polarization-reconfigurable compact truncated monopole antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 710–713. [Google Scholar] [CrossRef]
- Calla, O.P.N.; Singh, A.; Singh, A.K.; Kumar, S.; Kumar, T. Empirical relation for designing the meander line antenna. In Proceedings of the 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, 21–24 November 2008; IEEE: Piscataway, NJ, USA, 2008. [Google Scholar]
- Chu, R.-S.; Lee, K.-M. Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence. IEEE Trans. Antennas Propag. 1987, 35, 652–661. [Google Scholar]
- Chew, D.K.; Saunders, S.R. Meander line technique for size reduction of quadrifilar helix antenna. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 109–111. [Google Scholar] [CrossRef]
- Gatti, R.V.; Rossi, R. A novel meander-line polarizer modeling procedure and broadband equivalent circuit. IEEE Trans. Antennas Propag. 2017, 65, 6179–6184. [Google Scholar] [CrossRef]
- Robbins, W.P.; Polla, D.L.; Glumac, D.E. High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Losito, O.; Dimiccoli, V.; Barletta, D. Meander-line inverted F antenna designed using a transmission line model. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; He, W. High efficient and ultra wide band monopole antenna for microwave imaging and communication applications. Sensors 2019, 20, 115. [Google Scholar] [CrossRef]
- Awl, H.N.; Mahmud, R.H.; Karim, B.A.; Abdulkarim, Y.I.; Karaaslan, M.; Deng, L.; Luo, H. Double Meander Dipole Antenna Array with Enhanced Bandwidth and Gain. Int. J. Antennas Propag. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Yu, C.; Yang, S.; Chen, Y.; Wang, W.; Zhang, L.; Li, B.; Wang, L. A super-wideband and high isolation MIMO antenna system using a windmill-shaped decoupling structure. IEEE Access 2020, 8, 115767–115777. [Google Scholar] [CrossRef]
- Xiao, C.; Hao, S.; Zhang, Y. 915 MHz Miniaturized Loop Conformal Antenna for Capsule Endoscope. IEEE Trans. Antennas Propag. 2022, 70, 10233–10244. [Google Scholar] [CrossRef]
Type | Theoretical | ||||||
---|---|---|---|---|---|---|---|
h | w | d | Lm | Ls | Ws | ||
Ant1 | 6.04 | 20.37 | 3.02 | 9.66 | 28.38 | 30 | 42 |
Ant2 | 5.56 | 3.37 | 2.33 | 2.64 | 9.95 | 12 | 22 |
Ant3 | 5.56 | 5.11 | 1.39 | 1.39 | 12.35 | 15 | 34 |
Ant4 | 5.56 | 5.19 | 5.22 | 4.67 | 19.83 | 20 | 34 |
Parameter | Ref. [44] | Ref. [45] | Ref. [46] | Ref. [47] | This Work |
---|---|---|---|---|---|
Substance | RT5880 | RT5880 | FR4 | polymide | FR4 |
Permittivity () | 2.2 | 2.2 | 4.4 | 3.5 | 4.4 |
Volume () | 38 × 35 × 1.57 | 100 × 80 × 3.175 | 58 × 58 × 1 | 30.5 × 4.6 × 0.05 | 34 × 20 × 1.6 |
Feeding | QWT MS | Corporate MS | 4-port MS | Offset MS | MS |
(GHz) | 5.5/8.5/12.8 /18 | 14.5/16.5 | 3.5/5.8/13/ 18/25/30 | 0.915 | 7.5/8.5/12.8 /18/28/38 |
BWR | 8.33:1 | 1.39:1 | 13:79:1 | 10:1 | 9.09:1 |
Gain (dBi) | 6.4 | 10 | 13.5 | −21.5 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palepu, N.R.; Kumar, J.; Peddakrishna, S. Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles. Vehicles 2024, 6, 242-255. https://doi.org/10.3390/vehicles6010010
Palepu NR, Kumar J, Peddakrishna S. Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles. Vehicles. 2024; 6(1):242-255. https://doi.org/10.3390/vehicles6010010
Chicago/Turabian StylePalepu, Narayana Rao, Jayendra Kumar, and Samineni Peddakrishna. 2024. "Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles" Vehicles 6, no. 1: 242-255. https://doi.org/10.3390/vehicles6010010
APA StylePalepu, N. R., Kumar, J., & Peddakrishna, S. (2024). Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles. Vehicles, 6(1), 242-255. https://doi.org/10.3390/vehicles6010010