Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = mealworm’s gut-microbiota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4198 KB  
Article
Tenebrio molitor Meal-Induced Changes in Rat Gut Microbiota: Microbiological and Metagenomic Findings
by Remigiusz Gałęcki, Adriana Nowak and Justyna Szulc
Int. J. Mol. Sci. 2025, 26(17), 8663; https://doi.org/10.3390/ijms26178663 - 5 Sep 2025
Viewed by 1753
Abstract
As demand for sustainable protein sources grows, edible insects like Tenebrio molitor (yellow mealworm) are gaining attention as functional feed ingredients. This study investigated how dietary inclusion of T. molitor meal affects gut microbiota composition and diversity in laboratory rats. Wistar rats were [...] Read more.
As demand for sustainable protein sources grows, edible insects like Tenebrio molitor (yellow mealworm) are gaining attention as functional feed ingredients. This study investigated how dietary inclusion of T. molitor meal affects gut microbiota composition and diversity in laboratory rats. Wistar rats were divided into three diet groups: standard feed, 35% chicken meal, and 35% T. molitor meal. Fecal samples were collected at weeks 4, 6, and 8. Microbial populations were assessed using culture-based methods, and community structure was analyzed at week 9 via Illumina MiSeq 16S rRNA sequencing. Bioinformatic analyses evaluated microbial diversity and predicted functions. Rats fed T. molitor meal showed significantly reduced counts of total aerobic/anaerobic bacteria, fungi, and coagulase-positive staphylococci. Metagenomics revealed a Firmicutes-dominated microbiota, with enrichment of protein- and cholesterol-metabolizing taxa (e.g., Eubacterium coprostanoligenes, Oscillospiraceae, Ruminococcaceae), and a decline in fiber- and mucin-degrading bacteria like Akkermansia and Muribaculaceae. Functional predictions indicated upregulated amino acid metabolism and chitin degradation. Despite compositional shifts, microbial diversity remained stable, with no signs of dysbiosis. These findings suggest that T. molitor meal supports a safe, functional adaptation of gut microbiota to high-protein, chitin-rich diets, supporting its potential use in monogastric animal nutrition. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 1838 KB  
Article
Effects of Short-Term Feeding with Diets Containing Insect Meal on the Gut Microbiota of African Catfish Hybrids
by Balázs Libisch, Zsuzsanna J. Sándor, Tibor Keresztény, Chioma Lilian Ozoaduche, Péter P. Papp, Katalin Posta, Janka Biró, Viktor Stojkov, Vojislav Banjac, Nóra Adányi, Mária Berki, Éva Lengyel-Kónya, Rita Tömösközi-Farkas and Ferenc Olasz
Animals 2025, 15(9), 1338; https://doi.org/10.3390/ani15091338 - 6 May 2025
Cited by 2 | Viewed by 1808
Abstract
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly [...] Read more.
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly larvae (BSL) (Hermetia illucens), yellow mealworm (Tenebrio molitor) or blue bottle-fly larvae (Calliphora vicina) for 18 days. The relative abundance of the Bacillaceae, the Planococcaceae and other bacteria significantly increased (p < 0.05) in the intestinal microbiota of the BSL group and also in the pooled group of the three catfish groups that received insect meals. Several strains of the Bacillales cultured from BSL feed had higher (p < 0.05) abundance in the intestinal microbiota of the BSL group compared to those of the control group. Among these Bacillales strains, a single fosB antibiotic resistance gene was identified. In the gut resistomes of both the BSL and the control catfish groups, the tetA(P), tetB(P) and lnu(C) antibiotic-resistance determinants were detected, while fosB was detected only in the BSL group. Overall, the study showed that a short-term shift to diets containing insect meals can induce significant (q < 0.05) changes in the gut microbiota of the African catfish without the development of reduced α-diversity and without the overgrowth of bacteria pathogenic to fish. Full article
Show Figures

Figure 1

6 pages, 1961 KB  
Proceeding Paper
Isolation and Identification of Culturable Gut Microbiota in the Larval Stage of Lesser Mealworm (Alphitobius diaperinus)
by Gisele Ivonne Antonuccio and Diego Herman Sauka
Biol. Life Sci. Forum 2024, 31(1), 12; https://doi.org/10.3390/ECM2023-16465 - 30 Nov 2023
Viewed by 1653
Abstract
The highly prevalent pest Alphitobius diaperinus (Coleoptera: Tenebrionidae) causes significant structural damage in poultry farms. Despite previous investigations on its carriage of pathogenic microorganisms, our understanding of its microbiome remains limited. This study aimed to analyze the diversity of culturable gut microbiota in [...] Read more.
The highly prevalent pest Alphitobius diaperinus (Coleoptera: Tenebrionidae) causes significant structural damage in poultry farms. Despite previous investigations on its carriage of pathogenic microorganisms, our understanding of its microbiome remains limited. This study aimed to analyze the diversity of culturable gut microbiota in A. diaperinus obtained from laboratory breeding. Fifteen seventh instar larvae underwent a 24-h starvation period, followed by surface disinfection. Dissected midguts were homogenized and plated on nutrient agar (NA), brain heart infusion agar (BHI), and Bacillus cereus agar (BC). The cultured isolates were subjected to gram staining, phylogenetic analysis, biochemical property evaluation, and metabolic activity assessment. Bacterial counts were higher in BHI (2.51 × 105 CFU/gut) than in NA (2.25 × 105 CFU/gut), possibly due to nutrient richness. NA exhibited a dominant colony morphology of gram-negative bacilli, while BHI displayed additional distinct colonies of gram-positive cocci. Surprisingly, yeast-like colonies were observed on BC plates. Based on 16S rRNA gene sequences, eight bacterial isolates were identified as Enterobacter sp., and two as Staphylococcus sp. Using RNA gene ITS region sequences, two yeast isolates were identified as Debaryomyces sp. and Hyphopichia sp. A preliminary species-level identification of bacteria (Enterobacter cloacae, Staphylococcus gallinarum, and Staphylococcus succinus) was achieved using API systems and complementary biochemical tests. Discrepancies between phylogenetic analysis and phenotypic data suggest the potential existence of new species or subspecies. Further comprehensive studies are required to confirm this hypothesis. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Microbiology)
Show Figures

Figure 1

19 pages, 6043 KB  
Article
Enzymatic Characterization of a Novel HSL Family IV Esterase EstD04 from Pseudomonas sp. D01 in Mealworm Gut Microbiota
by Jung-En Kuan, Chih-Hsuan Tsai, Chun-Chi Chou, Cindy Wu and Whei-Fen Wu
Molecules 2023, 28(14), 5410; https://doi.org/10.3390/molecules28145410 - 14 Jul 2023
Cited by 7 | Viewed by 2432
Abstract
Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a [...] Read more.
Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM−1 s−1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase. Full article
Show Figures

Graphical abstract

19 pages, 1694 KB  
Article
Different Diets Based on Yellow Mealworm (Tenebrio molitor)—Part B: Modification of the Intestinal Inflammatory Response and the Microbiota Composition of Rainbow Trout (Oncorhynchus mykiss)
by Federico Melenchón, Ana María Larrán, Marta Hernández, David Abad, Amalia E. Morales, Héctor J. Pula, Dmitri Fabrikov, María José Sánchez-Muros, Alba Galafat, Francisco Javier Alarcón, Helena M. Lourenço, María-Fernanda Pessoa and Cristina Tomás-Almenar
Fishes 2023, 8(6), 284; https://doi.org/10.3390/fishes8060284 - 26 May 2023
Cited by 5 | Viewed by 3193
Abstract
With the purpose of improving aquaculture sustainability, the search for protein alternatives to fishmeal makes it necessary to test different variables and the possible repercussions of new ingredients. The use of insect meal as a protein source for aquaculture is well described, but [...] Read more.
With the purpose of improving aquaculture sustainability, the search for protein alternatives to fishmeal makes it necessary to test different variables and the possible repercussions of new ingredients. The use of insect meal as a protein source for aquaculture is well described, but the complex composition of insect meals (fat and other components) can affect the physiology of fish. For this reason, as a part of a bigger study, the aim of the current manuscript was to test diets based on three different presentations of insect meal coming from yellow mealworm (Tenebrio molitor): full fat, partially defatted, and supplemented with a long chain omega–3-enriched oil, and to evaluate their effects on protein digestibility, biometric indices, immunological system and gut health (intestinal histomorphology and microbiota) of rainbow trout (Oncorhynchus mykiss). Digestibility of the protein and body indices showed a minor but consistent trend. The non-specific immunological system did not show changes, but the histology of the intestine showed signs that insect meals could be softening a mild inflammatory response. The gut microbiota suffered several changes, which could be associated with the different amino acid and fatty acid compositions of the diets. Full article
Show Figures

Figure 1

15 pages, 1998 KB  
Article
Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836)
by Xin-Ru Jiang, Ying-Yu Dai, Yu-Rong Wang, Kun Guo, Yu Du, Jian-Fang Gao, Long-Hui Lin, Peng Li, Hong Li, Xiang Ji and Yan-Fu Qu
Animals 2023, 13(8), 1365; https://doi.org/10.3390/ani13081365 - 16 Apr 2023
Cited by 5 | Viewed by 3547
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko [...] Read more.
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host’s metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

24 pages, 2181 KB  
Review
Insects as Feed for Companion and Exotic Pets: A Current Trend
by Fabrizzio Valdés, Valeria Villanueva, Emerson Durán, Francisca Campos, Constanza Avendaño, Manuel Sánchez, Chaneta Domingoz-Araujo and Carolina Valenzuela
Animals 2022, 12(11), 1450; https://doi.org/10.3390/ani12111450 - 3 Jun 2022
Cited by 48 | Viewed by 15601
Abstract
The objective of this review was to carry out a comprehensive investigation of the benefits of incorporating insects as a pet food ingredient and the implications this can have in determining a market demand for insect-based pet foods. Black soldier fly larvae ( [...] Read more.
The objective of this review was to carry out a comprehensive investigation of the benefits of incorporating insects as a pet food ingredient and the implications this can have in determining a market demand for insect-based pet foods. Black soldier fly larvae (Hermetia illucens), mealworm larvae (Tenebrio molitor) and adult house crickets (Acheta domesticus) are currently used in pet food. These insects are widely fed to exotic pets, mainly in whole, live or dehydrated formats. They are also incorporated as meal or fat and are offered to cats and dogs as dry or wet food and treats. Scientific studies about the use of insects for dog and cat feed are scarce. Most studies are in dogs. Research shows that insect nutrients, mainly amino acids, have high digestibility, are beneficial to health, do not have any detrimental effect on the gut microbiota and are accepted by dogs. In several countries, insects are approved for use in pet food and commercialization has spread throughout the world. Pet owners are willing to try foods made with insect meal for their pets. In conclusion, the use of insects in pet food is a reality that is taking on more and more prominence. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 331 KB  
Article
Effects of Agro-Industrial Byproduct-Based Diets on the Growth Performance, Digestibility, Nutritional and Microbiota Composition of Mealworm (Tenebrio molitor L.)
by Ana Montalbán, Cristian Jesús Sánchez, Fuensanta Hernández, Achille Schiavone, Josefa Madrid and Silvia Martínez-Miró
Insects 2022, 13(4), 323; https://doi.org/10.3390/insects13040323 - 25 Mar 2022
Cited by 42 | Viewed by 5801
Abstract
The aim of this study was to evaluate the effects of agro-industrial byproduct-based diets on the productive parameters, digestibility, insect composition, and gut microbiota of mealworm (Tenebrio molitor) larvae. Three formulations corresponding to three different levels of starch and protein were [...] Read more.
The aim of this study was to evaluate the effects of agro-industrial byproduct-based diets on the productive parameters, digestibility, insect composition, and gut microbiota of mealworm (Tenebrio molitor) larvae. Three formulations corresponding to three different levels of starch and protein were tested: one formulation based on bread remains and brewer’s yeast, representing a diet of high starch (61.1%) and low crude protein (18.5%) (HS-LP); and two formulations in which an additional four byproducts (courgette (Cucurbita pepo) remains, tigernut (Cyperus scelentus) pulp, brewer’s spent grains, and rice straw) were incorporated in different proportions, consistent with a diet of both moderate starch (29.8%) and crude protein (21.0%) (MS-MP); and another corresponding to a diet of low starch (20.0%) and high crude protein (26.3%) (LS-HP). A total of 1920 young larvae (average weight = 0.65 mg per larva) were used in this study. The larvae were randomly distributed into 16 replicates per treatment (boxes of 22.5 cm × 14.0 cm × 4.75 cm). Ten replicates for the growth performance–digestibility trial and six replicates for the complementary trial to determine uric acid levels in the frass were assigned per treatment. For growth performance, the diets were administered ad libitum during the experiment. The average number of days for the larvae to start pupating was lower in those reared on the HS-LP and LS-HP diets (88.90 and 91.00 days, respectively) than those on the MS-MP diet (120.09 days) (p < 0.001). The final individual weight was higher (p < 0.001) in larvae of the LS-HP group (168.69 mg) compared to those of the other groups (100.29 and 112.99 mg for HS-LP and MS-MP, respectively). However, the feed conversion ratio was better (p < 0.001) in the HS-LP group with the lowest value (1.39 g/g), with dry matter digestibility being the highest for the same diet (70.38%) (p < 0.001). Mealworms reared on LS-HP and MS-MP diets had a higher crude protein content than those reared on the HS-LP diet (p = 0.039). The most abundant phyla in the gut microbiota of larvae were Tenericutes, Proteobacteria, and Firmicutes, with their abundance depending on the rearing substrate. The representation of Tenericutes phylum was higher (p < 0.05) in the mealworms reared on MS-MP and HS-LP diets, whereas Proteobacteria and Cyanobacteria were higher in abundance (p < 0.001) in the insects reared on LS-HP. In conclusion, the larval growth, digestibility, insect composition, and gut microbiota of Tenebrio molitor were found to depend on the composition of the administered diet, and the results suggest great potential for the use of agro-industrial byproducts in their rearing and production. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
14 pages, 1332 KB  
Article
Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies
by Emmanouil Tsochatzis, Ida Elizabeth Berggreen, Francesca Tedeschi, Konstantina Ntrallou, Helen Gika and Milena Corredig
Molecules 2021, 26(24), 7568; https://doi.org/10.3390/molecules26247568 - 14 Dec 2021
Cited by 30 | Viewed by 8034
Abstract
Polystyrene (PS) is a plastic polymer extensively used for food packaging. PS is difficult to decompose and has low recycling rates, resulting in its accumulation in the environment, in the form of microplastic particles causing pollution and harming oceans and wildlife. Degradation of [...] Read more.
Polystyrene (PS) is a plastic polymer extensively used for food packaging. PS is difficult to decompose and has low recycling rates, resulting in its accumulation in the environment, in the form of microplastic particles causing pollution and harming oceans and wildlife. Degradation of PS by mealworms (Tenebrio molitor) has been suggested as a possible biological strategy for plastic contamination; however, the biodegradation mechanism of PS by mealworms is poorly understood. It is hypothesized that the gut microbiome plays an important role in the degradation of PS by mealworms. This study carried out a comparative analysis of the gut microbiome of Tenebrio molitor larvae under different feeding strategies, and of the formation of degradation compounds (monomers, oligomers). A diet of bran:PS at 4:1 and 20:1 ratios was tested. The diet with the low ratio of bran:PS led to the presence of higher amounts of these compounds, compared to that with the high ratio. In addition, it was demonstrated that the addition of H2O significantly improved the biodegradation of PS monomer and oligomer residues, which could be identified only in the frass. The protein and nitrogen contents in insects’ biomass and frass varied amongst treatments. The diets resulted in differences in the gut microbiota, and three potential bacterial strains were identified as candidates involved in the biodegradation of PS. Full article
(This article belongs to the Special Issue Food Contact Materials: Migration and Analysis)
Show Figures

Figure 1

13 pages, 1738 KB  
Article
Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects
by Shan Jiang, Tingting Su, Jingjing Zhao and Zhanyong Wang
Polymers 2021, 13(20), 3539; https://doi.org/10.3390/polym13203539 - 14 Oct 2021
Cited by 83 | Viewed by 13104
Abstract
Plastic waste pollution and its difficult degradation process have aroused widespread concern. Research has demonstrated that the larvae of Tenebrio molitor (yellow mealworm), Galleria mellonella (greater wax moth), and Zophobas atratus (superworm) possess a biodegradation ability for polystyrene (PS) within the gut microbiota [...] Read more.
Plastic waste pollution and its difficult degradation process have aroused widespread concern. Research has demonstrated that the larvae of Tenebrio molitor (yellow mealworm), Galleria mellonella (greater wax moth), and Zophobas atratus (superworm) possess a biodegradation ability for polystyrene (PS) within the gut microbiota of these organisms. In this study, the difference in PS degradation and the changes of the gut microbiota were compared before and after feeding PS. The results showed that superworm had the strongest PS consumption capacity and the highest survival rate during the 30 d experiment period. They all could degrade PS to different degrees. Superworm showed the highest ability to degrade PS into low-molecular-weight substances, while yellow mealworm depolymerized PS strongly by destroying the benzene ring. The changes of the intestinal microbiome caused by feeding PS showed that after ingesting PS, there was a decrease in community diversity in superworm and yellow mealworm, but an increase in greater wax moth. Meanwhile, Enterococcus and Enterobacteriaceae, found in all three species’ larvae upon 20 d of PS feeding, might play an important role in PS degradation. The results will provide more accurate PS degradation comparative data of the three species’ larvae and theoretical guidance for further research on the efficient PS biodegradations. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2651 KB  
Article
Novel Dietary Proteins Selectively Affect Intestinal Health In Vitro after Clostridium difficile-Secreted Toxin A Exposure
by Paulus G. M. Jochems, Johan Garssen, Pascale C. S. Rietveld, Coen Govers, Monic M. M. Tomassen, Harry J. Wichers, Jeroen van Bergenhenegouwen and Rosalinde Masereeuw
Nutrients 2020, 12(9), 2782; https://doi.org/10.3390/nu12092782 - 11 Sep 2020
Cited by 3 | Viewed by 5559
Abstract
Bacterial gastroenteritis forms a burden on a global scale, both socially and economically. The Gram-positive bacterium Clostridium difficile is an inducer of gastrointestinal bacterial infections, often triggered following disruption of the microbiota by broad-spectrum antibiotics to treat other conditions. The clinical manifestatiaons, e.g., [...] Read more.
Bacterial gastroenteritis forms a burden on a global scale, both socially and economically. The Gram-positive bacterium Clostridium difficile is an inducer of gastrointestinal bacterial infections, often triggered following disruption of the microbiota by broad-spectrum antibiotics to treat other conditions. The clinical manifestatiaons, e.g., diarrhea, are driven by its toxins secretion, toxin A (TcdA) and toxin B (TcdB). Current therapies are focused on discontinuing patient medication, including antibiotics. However, relapse rates upon therapy are high (20–25%). Here, eighteen dietary proteins were evaluated for their capacity to restore gut health upon C. difficile-derived TcdA exposure. We used bioengineered intestinal tubules to assess proteins for their beneficial effects by examining the epithelial barrier, cell viability, brush-border enzyme activity, IL-6 secretion, IL-8 secretion and nitric oxide (NO) levels upon TcdA challenge. TcdA effectively disrupted the epithelial barrier, increased mitochondrial activity, but did not affect alkaline phosphatase activity, IL-6, IL-8 and NO levels. Intervention with dietary proteins did not show a protective effect on epithelial barrier integrity or mitochondrial activity. However, bovine plasma and potato protein increased alkaline phosphatase activity, egg-white protein increased IL-6 and IL-8 release and wheat, lesser mealworm and yeast protein increased NO levels after TcdA exposure. Hence, dietary proteins can influence parameters involved in intestinal physiology and immune activation suggesting that supplementation with specific dietary proteins may be of benefit during C. difficile infections. Full article
(This article belongs to the Special Issue Perinatal Nutrition)
Show Figures

Figure 1

19 pages, 2943 KB  
Article
Antimicrobial Effects of Black Soldier Fly and Yellow Mealworm Fats and Their Impact on Gut Microbiota of Growing Rabbits
by Sihem Dabbou, Ilario Ferrocino, Laura Gasco, Achille Schiavone, Angela Trocino, Gerolamo Xiccato, Ana C. Barroeta, Sandra Maione, Dominga Soglia, Ilaria Biasato, Luca Cocolin, Francesco Gai and Daniele Michele Nucera
Animals 2020, 10(8), 1292; https://doi.org/10.3390/ani10081292 - 28 Jul 2020
Cited by 59 | Viewed by 6396
Abstract
This study aimed to evaluate the in vitro antimicrobial activities of two types of insect fats extracted from black soldier fly larvae (HI, Hermetia illucens L.) and yellow mealworm larvae (TM, Tenebrio molitor L.) and their effects as dietary replacement of soybean oil [...] Read more.
This study aimed to evaluate the in vitro antimicrobial activities of two types of insect fats extracted from black soldier fly larvae (HI, Hermetia illucens L.) and yellow mealworm larvae (TM, Tenebrio molitor L.) and their effects as dietary replacement of soybean oil (S) on cecal fermentation pattern, and fecal and cecal microbiota in rabbits. A total of 120 weaned rabbits were randomly allotted to three dietary treatments (40 rabbits/group) —a control diet (C diet) containing 1.5% of S and two experimental diets (HI diet (HID) and TM diet (TMD)), where S was totally substituted by HI or TM fats during the whole trial that lasted 41 days. Regarding the in vitro antimicrobial activities, HI and TM fats did not show any effects on Salmonella growth. Yersinia enterocolitica showed significantly lower growth when challenged with HI fats than the controls. The insect fat supplementation in rabbit diets increased the contents of the cecal volatile fatty acids when compared to the control group. A metataxonomic approach was adopted to investigate the shift in the microbial composition as a function of the dietary insect fat supplementation. The microbiota did not show a clear separation as a function of the inclusion, even if a specific microbial signature was observed. Indeed, HI and TM fat supplementation enriched the presence of Akkermansia that was found to be correlated with NH3-N concentration. An increase in Ruminococcus, which can improve the immune response of the host, was also observed. This study confirms the potential of HI and TM fats as antibacterial feed ingredients with a positive influence on the rabbit cecal microbiota, thus supporting the possibility of including HI and TM fats in rabbit diets. Full article
(This article belongs to the Special Issue Future challenges in Rabbit Nutrition)
Show Figures

Figure 1

20 pages, 325 KB  
Article
The Effect of Hydrolyzed Insect Meals in Sea Trout Fingerling (Salmo trutta m. trutta) Diets on Growth Performance, Microbiota and Biochemical Blood Parameters
by Zuzanna Mikołajczak, Mateusz Rawski, Jan Mazurkiewicz, Bartosz Kierończyk and Damian Józefiak
Animals 2020, 10(6), 1031; https://doi.org/10.3390/ani10061031 - 13 Jun 2020
Cited by 72 | Viewed by 5746
Abstract
The present study is the first introduction of hydrolyzed superworm meal in sea trout nutrition. It was conducted to evaluate the effects of inclusion in the diet of hydrolyzed insect meals as a partial replacement for fishmeal on growth performance, feed utilization, organosomatic [...] Read more.
The present study is the first introduction of hydrolyzed superworm meal in sea trout nutrition. It was conducted to evaluate the effects of inclusion in the diet of hydrolyzed insect meals as a partial replacement for fishmeal on growth performance, feed utilization, organosomatic indices, serum biochemical parameters, gut histomorphology, and microbiota composition of sea trout (Salmo trutta m. trutta). The experiment was performed on 225 sea trout fingerlings distributed into three groups (3 tanks/treatment, 25 fish/tank). The control diet was fishmeal-based. In the experimental groups, 10% of hydrolyzed mealworm (TMD) and superworm (ZMD) meals were included. The protein efficiency ratio was lower in the TMD and ZMD. Higher organosomatic indices and liver lipid contents were found in the group fed ZMD. The ZMD increased levels of aspartate aminotransferase, and decreased levels of alkaline phosphatase. The Aeromonas spp. and Enterococcus spp. populations decreased in the ZMD. The concentrations of the Carnobacterium spp. decreased in the ZMD and TMD, as did that of the Lactobacillus group in the TMD. In conclusion, insect meals may be an alternative protein source in sea trout nutrition, as they yield satisfying growth performance and have the capability to modulate biochemical blood parameters and microbiota composition. Full article
(This article belongs to the Special Issue Alternatives Protein in Animal Nutrition)
15 pages, 2014 KB  
Article
Gut Microbiota and Mucin Composition in Female Broiler Chickens Fed Diets including Yellow Mealworm (Tenebrio molitor, L.)
by Ilaria Biasato, Ilario Ferrocino, Elena Grego, Sihem Dabbou, Francesco Gai, Laura Gasco, Luca Cocolin, Maria Teresa Capucchio and Achille Schiavone
Animals 2019, 9(5), 213; https://doi.org/10.3390/ani9050213 - 3 May 2019
Cited by 64 | Viewed by 8029
Abstract
A total of 160 female broiler chickens were divided into four dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with five replicate pens/treatment and eight birds/pen) to investigate the effects of Tenebrio molitor (TM) meal utilization on [...] Read more.
A total of 160 female broiler chickens were divided into four dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with five replicate pens/treatment and eight birds/pen) to investigate the effects of Tenebrio molitor (TM) meal utilization on poultry gut microbiota and mucin composition. The cecal microbiota assessment displayed a shift in the beta diversity in chickens fed TM-based diets. The TM10 and TM15 birds showed a significant decrease in the relative abundance of Firmicutes phylum and lower Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05), respectively, than the TM5 group. The relative abundance of Clostridium, Alistipes and Sutterella genera significantly increased in TM chickens (FDR < 0.05), while birds fed TM-based diets displayed a significant decrease in the relative abundance of Ruminococcus genus in comparison with the C group (FDR < 0.05). Gut mucin composition evaluation revealed higher mucin staining intensity in the intestinal villi of TM5 birds than the other TM groups, as well as mucin reduction in the intestinal villi of TM10 birds when compared to the C group (p < 0.05). In conclusion, dietary TM meal utilization (especially the 10–15% inclusion levels) may negatively influence either the cecal microbiota or the intestinal mucin dynamics of broiler chickens. Full article
(This article belongs to the Special Issue Insects: Alternative Protein Source for Animal Feed)
Show Figures

Figure 1

Back to TopTop