Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = matrix metallopeptidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 972 KiB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

18 pages, 2994 KiB  
Article
Altered Expression of Cell Cycle Regulators and Factors Released by Aged Cells in Skeletal Muscle of Patients with Bone Fragility: A Pilot Study on the Potential Role of SIRT1 in Muscle Atrophy
by Angela Falvino, Roberto Bonanni, Beatrice Gasperini, Ida Cariati, Angela Chiavoghilefu, Amarildo Smakaj, Virginia Veronica Visconti, Annalisa Botta, Riccardo Iundusi, Elena Gasbarra, Virginia Tancredi and Umberto Tarantino
Biomedicines 2025, 13(6), 1350; https://doi.org/10.3390/biomedicines13061350 - 31 May 2025
Viewed by 879
Abstract
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at [...] Read more.
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at the tissue level remains limited. Our pilot study aimed to characterize the expression profile of cell cycle regulators, factors released by aged cells, and sirtuin 1 (SIRT1) in the muscle tissue of 26 elderly patients undergoing hip arthroplasty, including 13 with low-energy fracture and 13 with osteoarthritis (OA). Methods: The mRNA expression levels of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin-dependent kinase inhibitor 2A (CDKN2A), p53, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-15 (IL-15), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3), growth differentiation factor 15 (GDF15), and SIRT1 were evaluated in muscle tissue by qRT-PCR. In addition, immunohistochemistry and Western blotting analysis were conducted to measure the protein levels of SIRT1. Results: A marked muscle atrophy was observed in fractured patients compared to the OA group, in association with an up-regulation of cell cycle regulators and factors released by the aged cells. The expression of matrix metallopeptidase 3 (MMP3), plasminogen activator inhibitor 1 (PAI-1), and fas cell surface death receptor (FAS) was also investigated, although no significant differences were observed between the two experimental groups. Notably, SIRT1 expression was significantly higher in OA patients, confirming its role in maintaining muscle health during aging. Conclusions: Further studies will be needed to clarify the role of SIRT1 in the senescence characteristic of age-related musculoskeletal disorders, counteracting the muscle atrophy that predisposes to fragility fractures. Full article
Show Figures

Figure 1

10 pages, 1704 KiB  
Communication
Jatrorrhizine Isolated from Phellodendron amurense Improves Collagen Homeostasis in CCD-986sk Human Dermal Fibroblast Cells
by Junhyo Cho
Cosmetics 2025, 12(2), 70; https://doi.org/10.3390/cosmetics12020070 - 9 Apr 2025
Cited by 1 | Viewed by 662
Abstract
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to [...] Read more.
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to determine the impact on collagen homeostasis in CCD-986sk human dermal fibroblast cells. Jatrorrhizine did not show toxicity of up to 10 μM in CCD-986sk cells. Jatrorrhizine induced procollagen and hyaluronic acid synthesis by increasing the gene expression of collagen type I alpha 2, TIMP metallopeptidase inhibitor 1, transforming growth factor beta 1, and hyaluronan synthase 2. In addition, jatrorrhizine treatment inhibited the gene expression of matrix metallopeptidase 1 and matrix metallopeptidase 9 by increasing tissue inhibitors of metalloproteinase. Our results suggest that jatrorrhizine has the potential for application in therapeutic and cosmetic products to improve collagen homeostasis and prevent wrinkle formation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

15 pages, 3208 KiB  
Article
Safety Profile of Solanum tuberosum-Derived Exosomes: Evidence from In Vitro Experiments and Human Skin Tests
by Yeji Lee, Radwa Wahid Mohamed and Sanghwa Yang
Pharmaceuticals 2025, 18(4), 458; https://doi.org/10.3390/ph18040458 - 24 Mar 2025
Viewed by 1521
Abstract
Background/Objectives: Potato (Solanum tuberosum)-derived exosomes (SDEs) are extracellular vesicles (66 nm in diameter) with therapeutic potential. SDEs suppress matrix metallopeptidases (MMPs) 1, 2, and 9, tumor necrosis factor (TNF), and interleukin 6 (IL6), while exhibiting [...] Read more.
Background/Objectives: Potato (Solanum tuberosum)-derived exosomes (SDEs) are extracellular vesicles (66 nm in diameter) with therapeutic potential. SDEs suppress matrix metallopeptidases (MMPs) 1, 2, and 9, tumor necrosis factor (TNF), and interleukin 6 (IL6), while exhibiting radical-scavenging activity against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro and mitigating hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT cells. SDEs upregulate the antioxidant gene glutathione S-transferase alpha 4 (GSTA4), prevent UVB damage, and regenerate photodamaged HaCaT cells. This study evaluates SDEs’ safety and skin-enhancing properties to improve their beauty-related and medical applications. Methods: The SDEs purified via ultracentrifugation were tested for their cytotoxic effects on HaCaT cell viability in scratch wound healing assays and for skin barrier gene modulation in HaCaT keratinocytes and Detroit 551 fibroblasts. A reverse transcription–polymerase chain reaction (RT-PCR) was used to analyze the changes in skin barrier gene expression following the SDE treatment. Cosmetic prototypes containing SDEs were assessed for skin irritation, cooling effects, periorbital wrinkle reduction, elasticity, and whitening properties. Results: The cytotoxicity and human topical tests confirmed the safety of SDE application. The SDEs accelerated wound closure, elevated the skin barrier gene expression level, and improved the clinical parameters, including wrinkle reduction, elasticity enhancement, and whitening. No irritation or side effects were observed. Conclusions: This study identified natural, edible potato-derived exosomes (SDEs) as highly safe agents that significantly enhance wound healing and promote skin barrier-related gene expression. Their multifunctional anti-aging efficacy—reducing wrinkles, enhancing elasticity, and promoting whitening without irritation—positions them as promising candidates for cosmetic and dermatological innovations. These findings warrant further exploration of SDEs for therapeutic applications, including inflammatory skin disorders and drug delivery systems. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

19 pages, 3588 KiB  
Article
A Proprietary Punica granatum pericarp Extract, Its Antioxidant Properties Using Multi-Radical Assays and Protection Against UVA-Induced Damages in a Reconstructed Human Skin Model
by Steve Thomas Pannakal, Steven Durand, Julie Gizard, Peggy Sextius, Emilie Planel, Emilie Warrick, Damien Lelievre, Celine Lelievre, Joan Eilstein, Floriane Beaumard, Arpita Prasad, Sanketh Shetty, Arun Duraisamy, Kumar Gaurav, Sherluck John, Adrien Benazzouz, Xavier Fastinger, Dhimoy Roy and Vishal Sharma
Antioxidants 2025, 14(3), 301; https://doi.org/10.3390/antiox14030301 - 28 Feb 2025
Viewed by 1761
Abstract
Background: Within the solar ultraviolet (UV) spectrum, ultraviolet A rays (UVA, 320–400 nm), although less energetic than ultraviolet B rays (UVB, 280–320 nm), constitute at least 95% of solar UV radiation that penetrates deep into the skin The UV rays are associated with [...] Read more.
Background: Within the solar ultraviolet (UV) spectrum, ultraviolet A rays (UVA, 320–400 nm), although less energetic than ultraviolet B rays (UVB, 280–320 nm), constitute at least 95% of solar UV radiation that penetrates deep into the skin The UV rays are associated with both epidermal and dermal damage resulting from the generation of reactive oxygen species (ROS). Among them, the longest UVA wavelengths (UVA1, 340–400 nm) can represent up to 75% of the total UV energy. Therefore, UVA radiation is linked to various acute and chronic conditions, including increased skin pigmentation and photoaging. Despite many advances in the skin photoprotection category, there is still a growing demand for natural daily photoprotection active ingredients that offer broad protection against skin damage caused by UVA exposure. In our quest to discover new, disruptive, next generation of photoprotective ingredients, we were drawn to pomegranate, based on its diverse polyphenolic profile. We investigated the pericarp of the fruit, so far considered as byproducts of the pomegranate supply chain, to design a novel patented extract “POMAOX” with a desired spectrum of phenolic components comprising of αβ-punicalagins, αβ-punicalins and ellagic acid. Methods: Antioxidant properties of POMAOX were measured using in-tubo standard tests capable of revealing a battery of radical oxygen species (ROS): peroxyl radical (ORAC), singlet oxygen (SOAC), superoxide anion (SORAC), peroxynitrite (NORAC), and hydroxyl radical (HORAC). In vitro, confirmation of antioxidant properties was first performed by evaluating protection against UVA-induced lipid peroxidation in human dermal fibroblasts (HDF), via the release of 8 iso-prostanes. The protection offered by POMAOX was further validated in a 3D in vitro reconstructed T-SkinTM model, by analyzing tissue viability/morphology and measuring the release of Matrix Metallopeptidase 1 (MMP-1) & pro-inflammatory mediators (IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNF-α) after UVA1 exposure. Results: POMAOX displayed strong antioxidant activity against peroxynitrite (NORAC) at 1.0–3.0 ppm, comparable to the reference vitaminC, as well as singlet oxygen (SOAC) at 220 ppm, and superoxide radicals with a SORAC value of 500 ppm. Additionally, POMAOX demonstrated strong photoprotection benefit at 0.001% concentration, offering up to 74% protection against UVA-induced lipid peroxidation on HDF, in a similar range as the positive reference, Vitamin E at 0.002% (50 µM), and with higher efficacy than ellagic acid alone at 5 µM. Moreover, our pomegranate-derived extract delivered photoprotection at 0.001%, mitigating dermal damages induced by UVA1, through inhibition of MMP-1 and significant inhibition of pro-inflammatory mediators release (including IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNFα) on an in vitro reconstructed full-thickness human skin model with a similar level of protection to that of Vitamin C tested at 0.035% (200 µM). Conclusions: Overall, the novel pomegranate-derived extract “POMAOX” significantly reduced the impact of UVA on human skin, due to its broad-spectrum antioxidant profile. These findings suggest that POMAOX could offer enhanced protection against the detrimental effects of UV exposure, addressing the growing consumer demand for strong photoprotection with skincare benefits. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 4187 KiB  
Review
A Novel Insight into the Role of Obesity-Related Adipokines in Ovarian Cancer—State-of-the-Art Review and Future Perspectives
by Klaudia Kołakowska, Joanna Kiśluk and Jacek Nikliński
Int. J. Mol. Sci. 2025, 26(5), 1857; https://doi.org/10.3390/ijms26051857 - 21 Feb 2025
Cited by 1 | Viewed by 2316
Abstract
Ovarian cancer (OC) is one of the most fatal gynecological neoplasms. Meta-analyses have shown that the relationship between body mass index (BMI) and ovarian cancer incidence was detected in some types of ovarian cancer. Chronic inflammation and excessive accumulation of free fatty acids [...] Read more.
Ovarian cancer (OC) is one of the most fatal gynecological neoplasms. Meta-analyses have shown that the relationship between body mass index (BMI) and ovarian cancer incidence was detected in some types of ovarian cancer. Chronic inflammation and excessive accumulation of free fatty acids are key adipose tissue-derived factors initiating cancer development. Cancer cells transform adipose-derived stem cells into cancer-associated adipocytes, which produce adipokines and interleukins. It was revealed that adipokines exert a pleiotropic role in ovarian cancer pathogenesis. Chemerin presents both pro-cancer and anti-cancer action in ovarian cancer development. Chemerin induces angiogenesis and increases programmed death ligand-1 (PD-L1) expression, leading to enhanced proliferation and migration of OC cells. Apelin impacts cancer cell migration and acts as a mitogenic factor. Moreover, apelin exerts influence on lipid uptake into cancer cells and accelerates fatty acid oxidation, which provides energy for cancer cells. Visfatin induces matrix metallopeptidase 2 (MMP2) expression involved in extracellular matrix degradation and suppresses claudin 3 and 4 expression. Visfatin also induces a shift to anaerobic glucose metabolism and influences poly-ADP ribose polymerase (PARP). Resistin induces MMP2 and vascular endothelial growth factor (VEGF) expression and contributes to cisplatin-resistance development. A substantial body of evidence indicates that antagonists of adipokines mitigate OC progression, and adipokines are gaining gradual recognition as a potential therapeutic aim in ovarian cancer targeted therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 26775 KiB  
Article
Inhibitory Effects of Heat-Processed Gynostemma pentaphyllum Extract (Actiponin®) and Its Components on Cartilage Breakdown in Osteoarthritis
by Seul Ah Lee, Chan Hwi Lee, Sun Hee Lee, Eunju Do, Do Kyung Kim, Tae-Lin Huh and Chun Sung Kim
Int. J. Mol. Sci. 2025, 26(4), 1728; https://doi.org/10.3390/ijms26041728 - 18 Feb 2025
Cited by 1 | Viewed by 1234
Abstract
Osteoarthritis (OA), caused by the long-term use of joints, is a representative degenerative disease in the elderly. However, recently, the age of onset has been decreasing owing to excessive activities among young people in their 20s and 30s. Gynostemma pentaphyllum (Thunb.) Makino (GP), [...] Read more.
Osteoarthritis (OA), caused by the long-term use of joints, is a representative degenerative disease in the elderly. However, recently, the age of onset has been decreasing owing to excessive activities among young people in their 20s and 30s. Gynostemma pentaphyllum (Thunb.) Makino (GP), a perennial herb of the Cucurbitaceae family, has been used since the Ming dynasty as a medicinal material to treat various ailments, such as rheumatism, liver disease, and diabetes. In this study, we investigated the anti-arthritic effects of heat-processed Gynostemma pentaphyllum extract (Actiponin (AP)) and its derivatives, damulin A (DA) and damulin B (DB), using in vitro (primary rat chondrocytes and SW1353 cells) and in vivo (destabilization of the medial meniscus (DMM)-induced OA model) systems. Histological analysis results from the in vivo study showed that the group that underwent DMM surgery induced degeneration by the loss of proteoglycan and the destruction of cartilage (OARSI score 14 ± 0.57), whereas the group that received AP daily for 8 weeks maintained an intact condition (OARSI score 5 ± 0.28 at 200 mg/kg, p < 0.001). In addition, cartilage thickness and chondrocytes were reduced in the DMM group, but were restored in the AP-administered group. Furthermore, the von Frey analysis results showed that the pain threshold of the DMM group was considerably low (54.5 g at 8 weeks), whereas that of the AP group was dose-dependently increased (65.5, 69.5, 70.3, and 71.8 at 8 weeks for 30, 50, 100, and 200 mg/kg, respectively). In vitro studies showed that AP, DA, and DB reduced the expression of interleukin-1β alone-induced nitrite; inducible nitric oxide synthase; cyclooxygenase-2; matrix metallopeptidase 1/3/13; and a disintegrin and metalloproteinase with thrombospondin motifs 4/5. They also restored the expression of collagen type II and aggrecan, which are components of the extracellular matrix. The anti-arthritic effects of AP, DA, and DB were confirmed to be mediated by the mitogen-activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. Collectively, these results suggest that AP is a potential therapeutic agent for mitigating OA progression and chondroprotection. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

22 pages, 5948 KiB  
Article
Extracellular Vesicles Derived from Human Umbilical Mesenchymal Stem Cells Transfected with miR-7704 Improved Damaged Cartilage and Reduced Matrix Metallopeptidase 13
by Kun-Chi Wu, Hui-I Yang, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang and Dah-Ching Ding
Cells 2025, 14(2), 82; https://doi.org/10.3390/cells14020082 - 9 Jan 2025
Cited by 1 | Viewed by 1237
Abstract
We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these [...] Read more.
We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly. Walking capacity (rotarod test), cartilage morphology, histological scores, and the expression of type II collagen, aggrecan, interleukin-1 beta, and matrix metalloproteinase 13 (MMP13) in the cartilage were evaluated. The EVs were characterized to confirm their suitability for therapeutic use. IL-1beta-treated chondrocytes increased type II collagen and decreased MMP13 after treatment with miR-7704-overexpressed EVs. In vivo experiments revealed that an intra-articular injection of miR-7704-overexpressed EVs significantly improved walking capacity, preserved cartilage morphology, and resulted in higher histological scores compared to in the controls. Furthermore, the decreased expression of MMP13 in the cartilage post treatment suggests a potential mechanism for the observed therapeutic effects. Therefore, miR-7704-overexpressed EVs derived from HUCMSCs showed potential as an innovative therapeutic strategy for treating OA. Further investigations should focus on optimizing dosage, understanding mechanisms, ensuring safety and efficacy, developing advanced delivery systems, and conducting early-phase clinical trials to establish the therapeutic potential of HUCMSC-derived EVs for OA management. Full article
Show Figures

Graphical abstract

33 pages, 8068 KiB  
Article
Silencing of Epidermal Growth Factor-like Domain 8 Promotes Proliferation and Cancer Aggressiveness in Human Ovarian Cancer Cells by Activating ERK/MAPK Signaling Cascades
by Yong-Jung Song, Ji-Eun Kim, Lata Rajbongshi, Ye-Seon Lim, Ye-Jin Ok, Seon-Yeong Hwang, Hye-Yun Park, Jin-Eui Lee, Sae-Ock Oh, Byoung-Soo Kim, Dongjun Lee, Hwi-Gon Kim and Sik Yoon
Int. J. Mol. Sci. 2025, 26(1), 274; https://doi.org/10.3390/ijms26010274 - 31 Dec 2024
Cited by 4 | Viewed by 1376
Abstract
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and [...] Read more.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge. This study aimed to investigate the role of epidermal growth factor-like domain 8 (EGFL8) in human OC by examining the effects of siRNA-mediated EGFL8 knockdown on cancer progression. EGFL8 knockdown in human OC cells promoted aggressive traits associated with cancer progression, including enhanced proliferation, colony formation, migration, invasion, chemoresistance, and reduced apoptosis. Additionally, knockdown upregulated the expression of epithelial–mesenchymal transition (EMT) markers (Snail, Twist1, Zeb1, Zeb2, and vimentin) and cancer stem cell biomarkers (Oct4, Sox2, Nanog, KLF4, and ALDH1A1), and increased the expression of matrix metallopeptidases (MMP-2 and MMP-9), drug resistance genes (MDR1 and MRP1), and Notch1. Low EGFL8 expression also correlated with poor prognosis in human OC. Overall, this study provides crucial evidence that EGFL8 inhibits the proliferation and cancer aggressiveness of human OC cells by suppressing ERK/MAPK signaling. Therefore, EGFL8 may serve as a valuable prognostic biomarker and a potential target for developing novel human OC therapies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 2745 KiB  
Article
Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery
by Shiyi Li, Katherine V. Nordick, Iván Murrieta-Álvarez, Randall P. Kirby, Rishav Bhattacharya, Ismael Garcia, Camila Hochman-Mendez, Todd K. Rosengart, Kenneth K. Liao and Nandan K. Mondal
Biomedicines 2025, 13(1), 33; https://doi.org/10.3390/biomedicines13010033 - 27 Dec 2024
Cited by 2 | Viewed by 1583
Abstract
Objectives: A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in [...] Read more.
Objectives: A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in patients undergoing on-pump surgery with an extended CPB. Methods: Fifty-one patients undergoing cardiac surgical procedures were divided into two groups based on the intraoperative CPB duration: (i) normal CPB (<180 min, n = 23) and (ii) prolonged CPB (>180 min, n = 28). The preoperative, intraoperative, and postoperative plasma levels of glypican-1, MMP9, and IL-1β were measured. Results: Before surgery, the plasma levels of glypican-1, MMP9, and IL-1β were comparable between the normal CPB and the prolonged CPB groups. However, after the end of the CPB, all three markers showed significant elevation in the prolonged CPB group compared to the normal CPB group. Significant correlations were observed between the intraoperative and postoperative levels of MMP9, IL-1β, and glypican-1. A strong positive correlation was also observed between the intraoperative and postoperative levels of glypican-1 and the duration of the CPB. Conclusions: A prolonged CPB triggers a systemic inflammatory response and activates MMP9, leading to glypican-1 shedding and endothelial dysfunction. Full article
Show Figures

Figure 1

13 pages, 2145 KiB  
Article
Effect of Metformin on Meibomian Gland Epithelial Cells: Implications in Aging and Diabetic Dry Eye Disease
by Leon Rescher, Swati Singh, Ingrid Zahn, Friedrich Paulsen and Martin Schicht
Life 2024, 14(12), 1682; https://doi.org/10.3390/life14121682 - 18 Dec 2024
Cited by 3 | Viewed by 1401
Abstract
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, [...] Read more.
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h. The assessed outcomes were cell proliferation assays, lipid production, ultrastructural changes, levels of IGF-1, Nrf2, HO-1, apoptosis-inducing factor 1 (AIF1) at the protein level, and the expression of oxidative stress factors (matrix metallopeptidase 9, activating transcription factor 3, CYBB, or NADPH oxidase 2, xanthine dehydrogenase). Results: Morphological studies showed increased lipid production, the differentiation of hMGECs after stimulation with metformin, and the differentiation effects of undifferentiated hMGECs. Proliferation tests showed a reduction in cell proliferation with increasing concentrations over time. AIF1 apoptosis levels were not significantly regulated, but morphologically, the dying cells at a higher concentration of 5-10 mM showed a rupture and permeabilization of the plasma membrane, a swelling of the cytoplasm, and vacuolization after more than 48 h. The IGF-1 ELISA showed an irregular expression, which mostly decreased over time. Only at 72 h and 10 mM did we have a significant increase. Mitochondrial metabolic markers such as Nrf2 significantly increased over time, while HO-1 decreased partially. The RT-PCR showed a significant increase in MMP9, CYBB, XDH, and ATF with increasing time and metformin concentrations, indicating cell stress. Conclusions: Our results using a cell line suggest that metformin affects the cellular physiology of meibomian gland epithelial cells and induces cell stress in a dose- and duration-dependent manner, causing changes in their morphology and ultrastructure. Full article
(This article belongs to the Special Issue Eye Diseases: Diagnosis and Treatment, 3rd Edition)
Show Figures

Figure 1

12 pages, 2345 KiB  
Article
Photoaging Protective Effects of Quercitrin Isolated from ‘Green Ball’ Apple Peel
by Eun-Ho Lee, Junhyo Cho and In-Kyu Kang
Horticulturae 2024, 10(12), 1258; https://doi.org/10.3390/horticulturae10121258 - 27 Nov 2024
Viewed by 1054
Abstract
Premature skin aging, also known as photoaging, refers to the changes in the structure and function of the skin caused by chronic sun exposure. The ultraviolet radiation in sunlight is one of the key factors that cause photoaging. Thus, matrix metalloproteinases (MMPs), transforming [...] Read more.
Premature skin aging, also known as photoaging, refers to the changes in the structure and function of the skin caused by chronic sun exposure. The ultraviolet radiation in sunlight is one of the key factors that cause photoaging. Thus, matrix metalloproteinases (MMPs), transforming growth factor beta-1 (TGFB1), and nuclear factor kappa B (NF-κB) signaling can be an effective therapeutic strategy for ultraviolet B (UVB) exposure. In this study, we used human dermal fibroblast and mouse macrophage cells to identify the mediators of skin photoaging. Quercitrin isolated from ‘Green Ball’ apple peel was treated to UVB-irradiated fibroblast cells and lipopolysaccharide (LPS)-induced macrophages to identify the photoaging prevention effect of quercitrin. Genes that are associated with photoaging were determined by using enzyme-linked immunosorbent assay (ELISA), Western blot, and quantitative polymerase chain reaction (qPCR). Quercitrin increased the collagen biosynthesis in UVB-irradiated fibroblast cells via regulating MMPs, TIMP metallopeptidase inhibitor 1 (TIMP-1), TGFB1, hyaluronan synthase 2 (HAS2), and collagen type I alpha 1 chain (COL1A2). In addition, quercitrin regulated p-65, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and its mediators (prostaglandin E2 and nitric oxide), in the NF-κB signaling process, and it inhibited the production of cytokines in LPS-induced macrophages. These results indicate that quercitrin can improve photoaging damaged skin by regulating MMPs, TGFB1, and NF-κB signaling pathway modulators. Full article
Show Figures

Figure 1

26 pages, 10057 KiB  
Article
EF24, a Curcumin Analog, Reverses Interleukin-18-Induced miR-30a or miR-342-Dependent TRAF3IP2 Expression, RECK Suppression, and the Proinflammatory Phenotype of Human Aortic Smooth Muscle Cells
by Yusuke Higashi, Ryan Dashek, Patrice Delafontaine, Randy Scott Rector and Bysani Chandrasekar
Cells 2024, 13(20), 1673; https://doi.org/10.3390/cells13201673 - 10 Oct 2024
Viewed by 1788
Abstract
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule [...] Read more.
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule TRAF3IP2 (TRAF3 Interacting Protein 2) or inhibition of the matrix metallopeptidase (MMP) regulator RECK (REversion Inducing Cysteine Rich Protein with Kazal Motifs) contributes to pro-oxidant, proinflammatory, pro-mitogenic and pro-migratory effects in response to external stimuli in vascular smooth muscle cells. Here we hypothesized that EF24, a curcumin analog with a better bioavailability and bioactivity profile, reverses interleukin (IL)-18-induced TRAF3IP2 induction, RECK suppression and the proinflammatory phenotype of primary human aortic smooth muscle cells (ASMC). The exposure of ASMC to functionally active recombinant human IL-18 (10 ng/mL) upregulated TRAF3IP2 mRNA and protein expression, but markedly suppressed RECK in a time-dependent manner. Further investigations revealed that IL-18 inhibited both miR-30a and miR-342 in a p38 MAPK- and JNK-dependent manner, and while miR-30a mimic blunted IL-18-induced TRAF3IP2 expression, miR-342 mimic restored RECK expression. Further, IL-18 induced ASMC migration, proliferation and proinflammatory phenotype switching, and these effects were attenuated by TRAF3IP2 silencing, and the forced expression of RECK or EF24. Together, these results suggest that the curcumin analog EF24, either alone or as an adjunctive therapy, has the potential to delay the development and progression of atherosclerosis and other vascular inflammatory and proliferative diseases by differentially regulating TRAF3IP2 and RECK expression in ASMC. Full article
Show Figures

Figure 1

17 pages, 16832 KiB  
Article
Mechanism Actions of Coniferyl Alcohol in Improving Cardiac Dysfunction in Renovascular Hypertension Studied by Experimental Verification and Network Pharmacology
by Qiuling Wu, Qilong Zhou, Chengyu Wan, Guang Xin, Tao Wang, Yu Gao, Ting Liu, Xiuxian Yu, Boli Zhang and Wen Huang
Int. J. Mol. Sci. 2024, 25(18), 10063; https://doi.org/10.3390/ijms251810063 - 19 Sep 2024
Cited by 2 | Viewed by 1635
Abstract
Renovascular hypertension (RH), a secondary hypertension, can significantly impact heart health, resulting in heart damage and dysfunction, thereby elevating the risk of cardiovascular diseases. Coniferol (CA), which has vascular relaxation properties, is expected to be able to treat hypertension-related diseases. However, its potential [...] Read more.
Renovascular hypertension (RH), a secondary hypertension, can significantly impact heart health, resulting in heart damage and dysfunction, thereby elevating the risk of cardiovascular diseases. Coniferol (CA), which has vascular relaxation properties, is expected to be able to treat hypertension-related diseases. However, its potential effects on cardiac function after RH remain unclear. In this study, in combination with network pharmacology, the antihypertensive and cardioprotective effects of CA in a two-kidney, one-clip (2K1C) mice model and its ability to mitigate angiotensin II (Ang II)-induced hypertrophy in H9C2 cells were investigated. The findings revealed that CA effectively reduced blood pressure, myocardial tissue damage, and inflammation after RH. The possible targets of CA for RH treatment were screened by network pharmacology. The interleukin-17 (IL-17) and tumor necrosis factor (TNF) signaling pathways were identified using a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The inflammatory response was identified using a Gene Ontology (GO) enrichment analysis. Western blot analysis confirmed that CA reduced the expression of IL-17, matrix metallopeptidase 9 (MMP9), cyclooxygenase 2 (COX2), and TNF α in heart tissues and the H9C2 cells. In summary, CA inhibited cardiac inflammation and fibrohypertrophy following RH. This effect was closely linked to the expression of MMP9/COX2/TNF α/IL-17. This study sheds light on the therapeutic potential of CA for treating RH-induced myocardial hypertrophy and provides insights into its underlying mechanisms, positioning CA as a promising candidate for future drug development. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 3637 KiB  
Article
The Mclust Analysis of Tumor Budding Unveils the Role of the Collagen Family in Cervical Cancer Progression
by Olive EM Lee, Tan Minh Le, Gun Oh Chong, Junghwan Joshua Cho and Nora Jee-Young Park
Life 2024, 14(8), 1004; https://doi.org/10.3390/life14081004 - 13 Aug 2024
Cited by 1 | Viewed by 1463
Abstract
In RNA-seq data analysis, condensing the gene count matrix size is pivotal for downstream investigations, particularly pathway analysis. For this purpose, harnessing machine learning attracts increasing interest, while conventional methodologies depend on p-value comparisons. In this study, 20 tissue samples from real-world [...] Read more.
In RNA-seq data analysis, condensing the gene count matrix size is pivotal for downstream investigations, particularly pathway analysis. For this purpose, harnessing machine learning attracts increasing interest, while conventional methodologies depend on p-value comparisons. In this study, 20 tissue samples from real-world cervical cancers were subjected to sequencing, followed by the application of the Mclust algorithm to delineate an optimal cluster. By stratifying tumor budding into high and low groups and quantifying the epithelial-to-mesenchymal transition (EMT) score to scrutinize tumor budding, we discerned 24 EMT-related genes, with 5 showing strong associations with cervical cancer prognosis. Our observations elucidate a biological flow wherein EMT, Matrix Metallopep-tidase 2 (MMP2), and extracellular matrix (ECM) degradation are interconnected, ultimately leading to collagen type VI and exacerbating the prognosis of cervical cancer. The present study underscores an alternative method for selecting useful EMT-related genes by employing an appropriate clustering algorithm, thereby avoiding classical methods while unveiling novel insights into cervical cancer etiology and prognosis. Moreover, when comparing high and low tumor budding, collagen type VI emerges as a potential gene marker for the prognosis of cervical cancer. Full article
(This article belongs to the Special Issue Multi-disciplinary Approaches against Female Diseases)
Show Figures

Figure 1

Back to TopTop