Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment, Clinical Parameters, and Sample Collection
2.2. Biochemical Estimation of Plasma Glypican1, MMP9, and IL-1β
2.3. Statistical Analysis
3. Results
3.1. Baseline Demographics and Clinical Characteristics in Normal vs. Prolonged CPB Patients
3.2. Surgical Parameters and Outcomes in Normal vs. Prolonged CPB Patients
3.3. Laboratory Hematology and Blood Chemistry in the Normal vs. Prolonged CPB Patients
3.4. Temporal Changes in Plasma Glypican-1, MMP9 and IL-1β in Normal vs. Prolonged CPB Patients
3.5. Relationship Between the Plasma Markers During and After the Surgery
3.6. Relationship Between the CPB Times and Plasma Markers During and After the Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhavan, S.; Chan, S.P.; Tan, W.C.; Eng, J.; Li, B.; Luo, H.D.; Teoh, L.K. Cardiopulmonary bypass time: Every minute counts. J. Cardiovasc. Surg. 2018, 59, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.N.; Hsieh, L.; Kajimoto, M.; Charette, K.; Kibiryeva, N.; Forero, A.; Hampson, S.; Marshall, J.A.; O’Brien, J.; Scatena, M.; et al. Shear stress associated with cardiopulmonary bypass induces expression of inflammatory cytokines and necroptosis in monocytes. JCI Insight 2021, 6, e141341. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, C.; Haberer, A.; Tiefenthaller, A.; Januszewska, K.; Chappell, D.; Brettner, F.; Mayer, P.; Dalla Pozza, R.; Genzel-Boroviczeny, O. Perturbation of the microvascular glycocalyx and perfusion in infants after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2015, 150, 1474–1481.e1. [Google Scholar] [CrossRef] [PubMed]
- Aebert, H.; Kirchner, S.; Keyser, A.; Birnbaum, D.E.; Holler, E.; Andreesen, R.; Eissner, G. Endothelial apoptosis is induced by serum of patients after cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2000, 18, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Giacinto, O.; Satriano, U.; Nenna, A.; Spadaccio, C.; Lusini, M.; Mastroianni, C.; Nappi, F.; Chello, M. Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. Recent. Pat. Inflamm. Allergy Drug Discov. 2019, 13, 158–173. [Google Scholar] [CrossRef]
- Mahmoud, M.; Mayer, M.; Cancel, L.M.; Bartosch, A.M.; Mathews, R.; Tarbell, J.M. The glycocalyx core protein Glypican 1 protects vessel wall endothelial cells from stiffness-mediated dysfunction and disease. Cardiovasc. Res. 2021, 117, 1592–1605. [Google Scholar] [CrossRef]
- Robich, M.; Ryzhov, S.; Kacer, D.; Palmeri, M.; Peterson, S.M.; Quinn, R.D.; Carter, D.; Sheppard, F.; Hayes, T.; Sawyer, D.B.; et al. Prolonged Cardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation. J. Surg. Res. 2020, 251, 287–295. [Google Scholar] [CrossRef]
- Ebong, E.E.; Lopez-Quintero, S.V.; Rizzo, V.; Spray, D.C.; Tarbell, J.M. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 2014, 6, 338–347. [Google Scholar] [CrossRef]
- Bartosch, A.M.W.; Mathews, R.; Tarbell, J.M. Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling. Biophys. J. 2017, 113, 101–108. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, J. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes. Exp. Cell Res. 2016, 348, 184–189. [Google Scholar] [CrossRef]
- Pahakis, M.Y.; Kosky, J.R.; Dull, R.O.; Tarbell, J.M. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 2007, 355, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Serraino, G.F.; Jiritano, F.; Costa, D.; Ielapi, N.; Battaglia, D.; Bracale, U.M.; Mastroroberto, P.; Andreucci, M.; Serra, R. Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules 2023, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Manicone, A.M.; McGuire, J.K. Matrix metalloproteinases as modulators of inflammation. Semin. Cell Dev. Biol. 2008, 19, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Raffetto, J.D.; Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 2008, 75, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tousoulis, D.; Kioufis, S.; Oikonomou, E.; Siasou, Z.; Limperi, M.; Papavassiliou, A.G.; Stefanadis, C. Inflammatory mechanisms in atherosclerosis: The impact of matrix metalloproteinases. Curr. Top. Med. Chem. 2012, 12, 1132–1148. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.T.; Pan, Y.; Liu, X.F.; Xu, J.W.; Cui, W.J.; Qiao, X.R.; Dong, L. Syndecan-1 Shedding by Matrix Metalloproteinase-9 Signaling Regulates Alveolar Epithelial Tight Junction in Lipopolysaccharide-Induced Early Acute Lung Injury. J. Inflamm. Res. 2021, 14, 5801–5816. [Google Scholar] [CrossRef]
- Salis, S.; Mazzanti, V.V.; Merli, G.; Salvi, L.; Tedesco, C.C.; Veglia, F.; Sisillo, E. Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2008, 22, 814–822. [Google Scholar] [CrossRef]
- Atladottir, H.O.; Modrau, I.S.; Jakobsen, C.J.; Torp-Pedersen, C.T.; Gissel, M.S.; Nielsen, D.V. Impact of perioperative course during cardiac surgery on outcomes in patients 80 years and older. J. Thorac. Cardiovasc. Surg. 2021, 162, 1568–1577. [Google Scholar] [CrossRef]
- Del Duca, D.; Iqbal, S.; Rahme, E.; Goldberg, P.; de Varennes, B. Renal failure after cardiac surgery: Timing of cardiac catheterization and other perioperative risk factors. Ann. Thorac. Surg. 2007, 84, 1264–1271. [Google Scholar] [CrossRef]
- Kumar, A.B.; Suneja, M.; Bayman, E.O.; Weide, G.D.; Tarasi, M. Association between postoperative acute kidney injury and duration of cardiopulmonary bypass: A meta-analysis. J. Cardiothorac. Vasc. Anesth. 2012, 26, 64–69. [Google Scholar] [CrossRef]
- Basile, D.P. The endothelial cell in ischemic acute kidney injury: Implications for acute and chronic function. Kidney Int. 2007, 72, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, H.; Carter, M.J.; Parmar, K.; Austin, C.; Shankar-Hari, M.; Hunt, B.J.; Tibby, S.M. Degradation of the Endothelial Glycocalyx Contributes to Metabolic Acidosis in Children Following Cardiopulmonary Bypass Surgery. Pediatr. Crit. Care Med. 2021, 22, e571–e581. [Google Scholar] [CrossRef] [PubMed]
- Bartosch, A.M.W.; Mathews, R.; Mahmoud, M.M.; Cancel, L.M.; Haq, Z.S.; Tarbell, J.M. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci. Rep. 2021, 11, 11386. [Google Scholar] [CrossRef] [PubMed]
- Kamenshchikov, N.O.; Duong, N.; Berra, L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023, 11, 1085. [Google Scholar] [CrossRef]
- Kamenshchikov, N.O.; Anfinogenova, Y.J.; Kozlov, B.N.; Svirko, Y.S.; Pekarskiy, S.E.; Evtushenko, V.V.; Lugovsky, V.A.; Shipulin, V.M.; Lomivorotov, V.V.; Podoksenov, Y.K. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. J. Thorac. Cardiovasc. Surg. 2022, 163, 1393–1403.e9. [Google Scholar] [CrossRef]
- Mylonas, N.; Nikolaou, P.E.; Karakasis, P.; Stachteas, P.; Fragakis, N.; Andreadou, I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2024, 25, 7274. [Google Scholar] [CrossRef]
- Nikolaou, P.E.; Mylonas, N.; Makridakis, M.; Makrecka-Kuka, M.; Iliou, A.; Zerikiotis, S.; Efentakis, P.; Kampoukos, S.; Kostomitsopoulos, N.; Vilskersts, R.; et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: A class or a drug effect? Basic. Res. Cardiol. 2022, 117, 27. [Google Scholar] [CrossRef]
- Ma, L.; Zou, R.; Shi, W.; Zhou, N.; Chen, S.; Zhou, H.; Chen, X.; Wu, Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics 2022, 12, 5034–5050. [Google Scholar] [CrossRef]
- Zhou, Y.; Tai, S.; Zhang, N.; Fu, L.; Wang, Y. Dapagliflozin prevents oxidative stress-induced endothelial dysfunction via sirtuin 1 activation. Biomed. Pharmacother. 2023, 165, 115213. [Google Scholar] [CrossRef]
- Milusev, A.; Rieben, R.; Sorvillo, N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087. [Google Scholar] [CrossRef]
- Magoon, R.; Makhija, N. Endothelial Glycocalyx and Cardiac Surgery: Newer Insights. J. Cardiothorac. Vasc. Anesth. 2020, 34, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Dekker, N.A.M.; Veerhoek, D.; Koning, N.J.; van Leeuwen, A.L.I.; Elbers, P.W.G.; van den Brom, C.E.; Vonk, A.B.A.; Boer, C. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia 2019, 74, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Mahmoud, A.M.; Le Master, E.; Levitan, I.; Phillips, S.A. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H647–H663. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, H.H. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann. Biomed. Eng. 2012, 40, 840–848. [Google Scholar] [CrossRef]
- Nissinen, L.; Kahari, V.M. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta 2014, 1840, 2571–2580. [Google Scholar] [CrossRef]
- Zakkar, M.; Guida, G.; Suleiman, M.S.; Angelini, G.D. Cardiopulmonary bypass and oxidative stress. Oxid. Med. Cell. Longev. 2015, 2015, 189863. [Google Scholar] [CrossRef]
- Paparella, D.; Yau, T.M.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002, 21, 232–244. [Google Scholar] [CrossRef]
- Lin, T.C.; Lin, F.Y.; Lin, Y.W.; Hsu, C.H.; Huang, G.S.; Wu, Z.F.; Tsai, Y.T.; Lin, C.Y.; Li, C.Y.; Tsai, C.S. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery. Mediat. Inflamm. 2015, 2015, 341740. [Google Scholar] [CrossRef]
- Wang, C.; Li, D.; Qian, Y.; Wang, J.; Jing, H. Increased matrix metalloproteinase-9 activity and mRNA expression in lung injury following cardiopulmonary bypass. Lab. Investig. 2012, 92, 910–916. [Google Scholar] [CrossRef]
- Gao, W.; Fang, F.; Xia, T.J.; Zhang, Y.; Sun, J.; Wu, Q.; Wang, W. Doxycycline can reduce glycocalyx shedding by inhibiting matrix metalloproteinases in patients undergoing cardiopulmonary bypass: A randomized controlled trial. Microvasc. Res. 2022, 142, 104381. [Google Scholar] [CrossRef]
- Ramnath, R.D.; Butler, M.J.; Newman, G.; Desideri, S.; Russell, A.; Lay, A.C.; Neal, C.R.; Qiu, Y.; Fawaz, S.; Onions, K.L.; et al. Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease. Kidney Int. 2020, 97, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Niu, M.; Gao, W.; Wang, C.; Wu, Q.; Fang, F.; Wang, Y.; Wang, W. Predictive role of glycocalyx components and MMP-9 in cardiopulmonary bypass patients for ICU stay. Heliyon 2024, 10, e23299. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Kuo, C.T.; Lin, C.C.; Hsieh, H.L.; Yang, C.M. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br. J. Pharmacol. 2010, 160, 1595–1610. [Google Scholar] [CrossRef] [PubMed]
- Esnault, S.; Kelly, E.A.; Johnson, S.H.; DeLain, L.P.; Haedt, M.J.; Noll, A.L.; Sandbo, N.; Jarjour, N.N. Matrix Metalloproteinase-9-Dependent Release of IL-1beta by Human Eosinophils. Mediat. Inflamm. 2019, 2019, 7479107. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, J.; Zhu, R.; Gao, S.; Fan, J.; Xia, M.; Zhao, R.C.; Zhang, J. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-kappaB pathway. Aging 2019, 11, 11391–11415. [Google Scholar] [CrossRef]
Characteristics | Normal CPB (N = 23) | Prolonged CPB (N = 28) | p-Value |
---|---|---|---|
Demography | |||
Age in years, Median (IQR) | 68 (63–77) | 65 (62–72) | 0.59 |
Sex, n (% male) | 12 (52.17%) | 18 (64.29%) | 0.41 |
Race | 1.00 | ||
Caucasian white, n (%) | 18 (78.26%) | 22 (78.57%) | |
African American, n (%) | 2 (8.70%) | 2 (7.14%) | |
Asian, n (%) | 3 (13.04%) | 4 (14.29%) | |
Height in meters, Median (IQR) | 1.70 (1.60–1.80) | 1.73 (1.67–1.79) | 0.34 |
Weight in kilograms, Median (IQR) | 82.00 (71.70–96.20) | 91.27 (77.00–103.10) | 0.24 |
BMI, kg/m2, Median (IQR) | 28.14 (23.90–32.90) | 29.74 (25.75–33.95) | 0.33 |
BSA, m2, Median (IQR) | 1.93 (1.80–2.08) | 2.06 (1.85–2.17) | 0.20 |
History of smoking, n (%) | 10 (43.48%) | 14 (50.00%) | 0.78 |
History of alcohol abuse, n (%) | 11 (47.83%) | 16 (57.14%) | 0.58 |
Hypertension, n (%) | 19 (82.61%) | 21 (75.00%) | 0.73 |
Diabetes, n (%) | 8 (34.78%) | 7 (25.00%) | 0.54 |
COPD, n (%) | 2 (8.70%) | 2 (7.14%) | 1.00 |
ESRD, n (%) | 2 (8.70%) | 2 (7.14%) | 1.00 |
Peripheral vascular disease, n (%) | 1 (4.35%) | 2 (7.14%) | 1.00 |
Cerebral vascular accident, n (%) | 4 (17.39%) | 3 (10.71%) | 0.69 |
Prior cardiac surgeries, n (%) | 1 (4.55%) | 2 (7.14%) | 1.00 |
SBP (mmHg), Median (IQR) | 138 (123–155) | 129 (116–141) | 0.09 |
DBP (mmHg), Median (IQR) | 72 (68–79) | 69 (64–73) | 0.05 |
Echocardiographic parameters | |||
LviDd in centimeters, n (%) | 4.61 (3.84–5.20) | 4.91 (4.39–5.28) | 0.35 |
LVEF (%) | 56.20 (55.10–61.80) | 57.66 (54.80–64.10) | 0.97 |
Surgical Procedure | 0.77 | ||
CABG, n (%) | 3 (13.04%) | 6 (21.43%) | |
Valve, n (%) | 16 (69.57%) | 18 (64.29%) | |
CABG with Valve, n (%) | 4 (17.39%) | 4 (14.29%) |
Characteristics | Normal CPB (N = 23) | Prolonged CPB (N = 28) | p-Value |
---|---|---|---|
Length of CPB in minutes, Median (IQR) | 124 (111–142) | 235 (201–270) | <0.01 * |
Length of aortic clamp in minutes, Median (IQR) | 87 (74–107) | 155 (120–181) | <0.01 * |
Length of surgery in minutes, Median (IQR) | 278 (221–308) | 430 (350–468) | <0.01 * |
Sternotomy, n (%) | 12 (52.17%) | 20 (71.43%) | 0.25 |
ICU mortality, n (%) | 0 | 6 (21.43%) | 0.03 * |
ICU stay in days, Median (IQR) | 7 (2–10) | 19 (3–17) | 0.22 |
Mechanical ventilation time in hours, Median (IQR) | 21 (3–7) | 54 (6–20) | 0.02 * |
Arrhythmia, n (%) | 5 (21.74%) | 12 (42.86%) | 0.14 |
AKI, n (%) | 1 (4.35%) | 8 (28.57%) | 0.03 * |
Infection, n (%) | 1 (4.35%) | 4 (14.29%) | 0.36 |
Characteristics | Normal CPB (N = 23) | Prolonged CPB (N = 28) | p-Value |
---|---|---|---|
Preoperative laboratory parameters | |||
Leukocytes (103/μL), Median (IQR) | 7.17 (5.40–8.50) | 7.38 (5.10–8.20) | 0.91 |
Erythrocyte (103/μL), Median (IQR) | 4.26 (4.03–4.43) | 4.15 (3.68–4.68) | 0.79 |
Hemoglobin (g/dL), Median (IQR) | 12.71 (11.60–14.50) | 11.69 (10.30–13.30) | 0.08 |
Hematocrit (%), Median (IQR) | 38.55 (34.40–42.60) | 38.26 (33.00–41.10) | 0.29 |
MCH (pg), Median (IQR) | 29.83 (28.80–31.00) | 28.27 (27.70–30.15) | 0.09 |
Platelets (103/μL), Median (IQR) | 235 (188–263) | 211 (166–259) | 0.29 |
Creatinine (mg/dL), Median (IQR) | 1.08 (0.77–1.15) | 1.13 (0.90–1.23) | 0.17 |
eGFR (ml/min/1.73 m2), Median (IQR) | 74.57 (69.00–86.00) | 70.11 (63.50–83.00) | 0.16 |
INR, Median (IQR) | 1.36 (1.10–1.36) | 1.36 (1.10–1.36) | 0.08 |
Intraoperative laboratory parameters | |||
Leukocytes (103/μL), Median (IQR) | 13.58 (9.70–17.85) | 15.06 (10.00–19.60) | 0.46 |
Erythrocyte (103/μL), Median (IQR) | 3.31 (2.80–3.82) | 3.30 (2.91–3.68) | 0.98 |
Hemoglobin (g/dL), Median (IQR) | 10.02 (8.90–11.60) | 9.42 (8.70–10.15) | 0.15 |
Hematocrit (%), Median (IQR) | 30.40 (26.90–33.70) | 29.25 (26.95–30.90) | 0.44 |
MCH (pg), Median (IQR) | 30.37 (29.10–31.60) | 28.74 (27.80–30.50) | 0.08 |
Platelets (103/μL), Median (IQR) | 154 (107–172) | 125 (86–148) | 0.13 |
Creatinine (mg/dL), Median (IQR) | 1.14 (0.69–0.95) | 1.80 (0.84–1.16) | * <0.01 |
eGFR (ml/min/1.73 m2), Median (IQR) | 82.78 (75.00–100.00) | 66.46 (62.00–86.00) | * <0.01 |
INR, Median (IQR) | 1.61 (1.39–1.71) | 1.66 (1.46–1.83) | 0.14 |
Postoperative laboratory parameters | |||
Leukocytes (103/μL), Median (IQR) | 10.73 (9.10–11.20) | 10.38 (7.70–11.75) | 0.46 |
Erythrocyte (103/μL), Median (IQR) | 3.17 (2.93–3.35) | 3.11 (2.80–3.36) | 0.50 |
Hemoglobin (g/dL), Median (IQR) | 9.41 (8.40–9.90) | 8.83 (8.15–9.15) | 0.07 |
Hematocrit (%), Median (IQR) | 28.58 (26.40–30.70) | 27.44 (25.50–29.10) | 0.20 |
MCH (pg), Median (IQR) | 30.18 (28.60–31.50) | 28.58 (28.05–30.10) | * 0.04 |
Platelets (103/μL), Median (IQR) | 162 (110–215) | 126 (83–186) | 0.13 |
Creatinine (mg/dL), Median (IQR) | 0.94 (0.64–0.91) | 1.12 (0.74–1.36) | 0.05 |
eGFR (ml/min/1.73 m2), Median (IQR) | 88.57 (84.00–102.00) | 71.07 (45.00–96.00) | * 0.02 |
INR, Median (IQR) | 1.43 (1.27–1.71) | 1.53 (1.28–1.61) | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Nordick, K.V.; Murrieta-Álvarez, I.; Kirby, R.P.; Bhattacharya, R.; Garcia, I.; Hochman-Mendez, C.; Rosengart, T.K.; Liao, K.K.; Mondal, N.K. Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery. Biomedicines 2025, 13, 33. https://doi.org/10.3390/biomedicines13010033
Li S, Nordick KV, Murrieta-Álvarez I, Kirby RP, Bhattacharya R, Garcia I, Hochman-Mendez C, Rosengart TK, Liao KK, Mondal NK. Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery. Biomedicines. 2025; 13(1):33. https://doi.org/10.3390/biomedicines13010033
Chicago/Turabian StyleLi, Shiyi, Katherine V. Nordick, Iván Murrieta-Álvarez, Randall P. Kirby, Rishav Bhattacharya, Ismael Garcia, Camila Hochman-Mendez, Todd K. Rosengart, Kenneth K. Liao, and Nandan K. Mondal. 2025. "Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery" Biomedicines 13, no. 1: 33. https://doi.org/10.3390/biomedicines13010033
APA StyleLi, S., Nordick, K. V., Murrieta-Álvarez, I., Kirby, R. P., Bhattacharya, R., Garcia, I., Hochman-Mendez, C., Rosengart, T. K., Liao, K. K., & Mondal, N. K. (2025). Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery. Biomedicines, 13(1), 33. https://doi.org/10.3390/biomedicines13010033