Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = materials science and chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2101 KiB  
Article
Structural and Ferromagnetic Response of B2-Type Al45Mn41.8X13.2 (X = Fe, Co, Ni) Alloys
by Esmat Dastanpour, Haireguli Aihemaiti, Shuo Huang, Valter Ström, Lajos Károly Varga and Levente Vitos
Magnetochemistry 2025, 11(8), 67; https://doi.org/10.3390/magnetochemistry11080067 - 6 Aug 2025
Abstract
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate [...] Read more.
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate that adding 13.2 atomic percent magnetic 3d metal to AlMn stabilizes a ferromagnetic B2 structure, where Al and X occupy different sublattices. We employ density functional theory calculations and experimental characterizations to underscore the role of the late 3d metals for the phase stability of the quasi-ordered ternary systems. We show that these alloys possess large local magnetic moments primarily due to Mn atoms partitioned to the Al-free sublattice. The revealed magneto-chemical effect opens alternative routes for tailoring the magnetic properties of B2 intermetallic compounds for various magnetic applications. Full article
(This article belongs to the Special Issue Advances in Functional Materials with Tunable Magnetic Properties)
Show Figures

Figure 1

42 pages, 1506 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 209
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 - 3 Aug 2025
Viewed by 217
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 217
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

10 pages, 1195 KiB  
Article
Lipase-Catalyzed Cyclization of β-Ketothioamides with β-Nitrostyrene for the Synthesis of Tetrasubstituted Dihydrothiophenes
by Yihang Dai, Yuming Piao, Wenbo Kan, Lei Wang and Yazhuo Li
Molecules 2025, 30(15), 3202; https://doi.org/10.3390/molecules30153202 - 30 Jul 2025
Viewed by 301
Abstract
Tetrasubstituted dihydrothiophenes represent a class of heterocyclic compounds with significant potential in various fields, particularly in medicinal chemistry and materials science. In this work, we have developed an eco-friendly and efficient method for synthesizing such compounds, using porcine pancreatic lipase (PPL) as a [...] Read more.
Tetrasubstituted dihydrothiophenes represent a class of heterocyclic compounds with significant potential in various fields, particularly in medicinal chemistry and materials science. In this work, we have developed an eco-friendly and efficient method for synthesizing such compounds, using porcine pancreatic lipase (PPL) as a biocatalyst to promote the cyclization reaction between β-ketothioamides and β-nitrostyrenes. Through this approach, sixteen tetrasubstituted dihydrothiophenes were successfully synthesized, and all of them achieved high yields, ranging from 80% to 96%. This research not only expands the application scope of lipase in organic synthesis, demonstrating its versatility beyond traditional hydrolytic reactions, but also provides a new environmentally friendly pathway for the production of tetrasubstituted dihydrothiophenes, which is of great significance for advancing related fields of chemical synthesis. Full article
Show Figures

Figure 1

13 pages, 1132 KiB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 344
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

29 pages, 3064 KiB  
Review
Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Junctions: Recent Advances and Applications
by Hyunwook Song
Crystals 2025, 15(8), 681; https://doi.org/10.3390/cryst15080681 - 26 Jul 2025
Viewed by 394
Abstract
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing [...] Read more.
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing its development from foundational principles to the latest advances. We begin with the theoretical background, detailing the mechanisms by which inelastic tunneling processes generate vibrational fingerprints of molecules, and highlighting how IETS complements optical spectroscopies by accessing electrically driven vibrational excitations. We then discuss recent progress in experimental techniques and device architectures that have broadened the applicability of IETS. Central focus is given to emerging applications of IETS over the last decade: molecular sensing (identification of chemical bonds and conformational changes in junctions), thermoelectric energy conversion (probing vibrational contributions to molecular thermopower), molecular switches and functional devices (monitoring bias-driven molecular state changes via vibrational signatures), spintronic molecular junctions (detecting spin excitations and spin–vibration interplay), and advanced data analysis approaches such as machine learning for interpreting complex tunneling spectra. Finally, we discuss current challenges, including sensitivity at room temperature, spectral interpretation, and integration into practical devices. This review aims to serve as a thorough reference for researchers in physics, chemistry, and materials science, consolidating state-of-the-art understanding of IETS in molecular junctions and its growing role in molecular-scale device characterization. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

15 pages, 2806 KiB  
Article
Ni-MOF/g-C3N4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction
by Muhammad Sabir, Mahmoud Sayed, Iram Riaz, Guogen Qiu, Muhammad Tahir, Khuloud A. Alibrahim and Wang Wang
Materials 2025, 18(14), 3419; https://doi.org/10.3390/ma18143419 - 21 Jul 2025
Viewed by 498
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) [...] Read more.
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) to achieve enhanced charge separation. The establishment of an S-scheme charge transfer configuration at the interface of the Ni-MOF/g-C3N4 heterostructure plays a pivotal role in enabling efficient charge carrier separation, and hence, high CO2 photoreduction efficiency with a CO evolution rate of 1014.6 µmol g−1 h−1 and selectivity of 95% under simulated solar illumination. CO evolution represents an approximately 3.7-fold enhancement compared to pristine Ni-MOF. Density functional theory (DFT) calculations, supported by in situ irradiated X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experimental results, confirmed the establishment of a well-defined and strongly bonded interface, which improves the charge transfer and separation following the S-scheme mechanism. This study sheds light on MOF-based S-scheme heterojunctions as fruitful and selective alternatives for practical CO2 photoreduction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

27 pages, 5654 KiB  
Review
Synthetic Approaches to 1,3,4-Oxadiazole-Containing Boronic Derivatives
by Barbara Wołek and Agnieszka Kudelko
Appl. Sci. 2025, 15(14), 8054; https://doi.org/10.3390/app15148054 - 19 Jul 2025
Viewed by 750
Abstract
1,3,4-Oxadiazoles containing boronic acid moieties are promising as a highly versatile class of compounds with significant utility across various scientific domains. The diverse synthetic methodologies for their preparation make these compounds valuable precursors for developing novel entities with tailored properties in medicinal chemistry, [...] Read more.
1,3,4-Oxadiazoles containing boronic acid moieties are promising as a highly versatile class of compounds with significant utility across various scientific domains. The diverse synthetic methodologies for their preparation make these compounds valuable precursors for developing novel entities with tailored properties in medicinal chemistry, agrochemistry, and materials science. This review systematically compiles and discusses synthetic methods for the direct and indirect incorporation of boronic acid derivatives into 1,3,4-oxadiazole scaffolds. Understanding these strategies is particularly important because of their key role in modern synthetic transformations, especially Suzuki–Miyaura cross-coupling reactions, which enable easy access to a new generation of structurally diverse 1,3,4-oxadiazole-based compounds. The synthetic procedures and reactions discussed are based on the currently available literature, offering a comprehensive overview of this rapidly evolving field. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

5 pages, 181 KiB  
Editorial
New Insights into Polymeric Liquid Crystals and Their Applications
by A. C. Trindade, J. P. Canejo and P. L. Almeida
Molecules 2025, 30(14), 2997; https://doi.org/10.3390/molecules30142997 - 16 Jul 2025
Viewed by 356
Abstract
Polymeric liquid crystals (PLCs) have emerged as one of the most frenetic and interdisciplinary areas of materials science, found at the crossroads of soft condensed matter, chemistry, physics, and engineering [...] Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
46 pages, 3942 KiB  
Review
Catalytic Fluorination with Modern Fluorinating Agents: Recent Developments and Synthetic Scope
by Muhammad Saeed Akhtar, Mohammad Aslam, Wajid Zaman, Kuppu Sakthi Velu, Seho Sun and Hee Nam Lim
Catalysts 2025, 15(7), 665; https://doi.org/10.3390/catal15070665 - 8 Jul 2025
Viewed by 2011
Abstract
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, [...] Read more.
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, and material science research. In recent years, catalytic fluorination has become an important methodology for the efficient and selective incorporation of fluorine atoms into complex molecular architectures. This review highlights advances in catalytic fluorination reactions over the past six years and describes the contributions of transition metal catalysts, photocatalysts, organocatalysts, and electrochemical systems that have enabled site-selective fluorination under a variety of conditions. Particular attention is given to the use of well-defined fluorinating agents, including Selectfluor, N-fluorobenzenesulfonimide (NFSI), AlkylFluor, Synfluor, and hypervalent iodine reagents. These reagents have been combined with diverse catalytic systems, such as AgNO3, Rh(II), Mo-based complexes, Co(II)-salen, and various organocatalysts, including β,β-diaryl serine catalysts, isothiourea catalysts, and chiral phase-transfer catalysts. This review summarizes proposed mechanisms reported in the original studies and discusses examples of electrophilic, nucleophilic, radical, photoredox, and electrochemical fluorination pathways. Recent developments in stereoselective and more sustainable protocols are also examined. By consolidating these strategies, this article provides an up-to-date perspective on catalytic fluorination and its impact on synthetic organic chemistry. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

17 pages, 3854 KiB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 598
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

18 pages, 2397 KiB  
Article
High-Accuracy Polymer Property Detection via Pareto-Optimized SMILES-Based Deep Learning
by Mohammad Anwar Parvez and Ibrahim M. Mehedi
Polymers 2025, 17(13), 1801; https://doi.org/10.3390/polym17131801 - 28 Jun 2025
Viewed by 477
Abstract
Polymers have a wide range of applications in materials science, chemistry, and biomedical domains. Conventional design methods for polymers are mostly event-oriented, directed by intuition, experience, and abstract insights. Nevertheless, they have been effectively utilized to determine several essential materials; these techniques are [...] Read more.
Polymers have a wide range of applications in materials science, chemistry, and biomedical domains. Conventional design methods for polymers are mostly event-oriented, directed by intuition, experience, and abstract insights. Nevertheless, they have been effectively utilized to determine several essential materials; these techniques are facing important challenges owing to the great requirement of original materials and the huge design area of organic polymers and molecules. Enhanced and inverse materials design is the best solution to these challenges. With developments in high-performing calculations, artificial intelligence (AI) (particularly Deep learning (DL) and Machine learning (ML))-aided materials design is developing as a promising tool to show development in various domains of materials science and engineering. Several ML and DL methods are established to perform well for polymer classification and detection presently. In this paper, we design and develop a Simplified Molecular Input Line Entry System Based Polymer Property Detection and Classification Using Pareto Optimization Algorithm (SMILES-PPDCPOA) model. This study presents a novel deep learning framework tailored for polymer property classification using SMILES input. By integrating a one-dimensional convolutional neural network (1DCNN) with a gated recurrent unit (GRU) and optimizing the model via Pareto Optimization, the SMILES-PPDCPOA model demonstrates superior classification accuracy and generalization. Unlike existing methods, our model is designed to capture both local substructures and long-range chemical dependencies, offering a scalable and domain-specific solution for polymer informatics. Furthermore, the proposed SMILES-PPDCPOA model executes a one-dimensional convolutional neural network and gated recurrent unit (1DCNN-GRU) technique for the classification process. Finally, the Pareto optimization algorithm (POA) adjusts the hyperparameter values of the 1DCNN-GRU algorithm optimally and results in greater classification performance. Results on a benchmark dataset show that SMILES-PPDCPOA achieves an average classification accuracy of 98.66% (70% Training, 30% Testing) across eight polymer property classes, with high precision and recall metrics. Additionally, it demonstrates superior computational efficiency, completing tasks in 4.97 s, outperforming other established methods such as GCN-LR and ECFP-NN. The experimental validation highlights the potential of SMILES-PPDCPOA in polymer property classification, making it a promising approach for materials science and engineering. The simulation result highlighted the improvement of the SMILES-PPDCPOA system when compared to other existing techniques. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

17 pages, 2711 KiB  
Article
Heterojunction-Engineered g-C3N4/TiO2 Nanocomposites with Superior Bilirubin Removal Efficiency for Enhanced Hemoperfusion Therapy
by Lingdong Meng, Shouxuan Tao, Liyao Wang, Yu Cao, Jianhua Hou and Chengyin Wang
Molecules 2025, 30(13), 2729; https://doi.org/10.3390/molecules30132729 - 25 Jun 2025
Viewed by 343
Abstract
The g-C3N4/TiO2 intercalation composite material was successfully synthesized and used as the adsorbent in the hemoperfusion device. Then, the cytotoxicity and hemolysis rate were studied. The experimental results proved that g-C3N4/TiO2 was non-toxic [...] Read more.
The g-C3N4/TiO2 intercalation composite material was successfully synthesized and used as the adsorbent in the hemoperfusion device. Then, the cytotoxicity and hemolysis rate were studied. The experimental results proved that g-C3N4/TiO2 was non-toxic to cells and would not cause hemolysis. The adsorption and removal performance of the composite material for bilirubin (BR) was explored as well. The maximum adsorption capacity for BR was 850 mg·g−1. Compared with the chemical hemoperfusion adsorbent coconut shell activated carbon (AC), the g-C3N4/TiO2 material presented excellent adsorption performance. Furthermore, SEM, infrared spectroscopy, XPS and other characterizations results indicated that g-C3N4/TiO2 has an effective adsorption effect on bilirubin, and the main adsorption mechanism is chemical adsorption. This study demonstrates that g-C3N4/TiO2 may be a potential adsorbent for hemoperfusion in the treatment of hyperbilirubinemia. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

2 pages, 337 KiB  
Editorial
Purification: An International Open Access Journal on Purification Science and Technology
by Francesco Vegliò
Purification 2025, 1(1), 5; https://doi.org/10.3390/purification1010005 - 19 Jun 2025
Viewed by 280
Abstract
Purification (ISSN 3042-6197) is an international, peer-reviewed, open access journal offering a platform for theories, emerging technologies, and practical applications of purification across chemistry, biology, chemical and environmental engineering, materials science, pharmaceutical technology, food engineering, and related areas [...] Full article
Back to TopTop