Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = mass-action networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2845 KiB  
Article
Circulating Plasma Proteins as Biomarkers for Immunotherapy Toxicity: Insights from Proteome-Wide Mendelian Randomization and Bioinformatics Analysis
by Liansha Tang, Wenbo He, Handan Hu, Jiyan Liu and Zhike Li
Biomedicines 2025, 13(7), 1717; https://doi.org/10.3390/biomedicines13071717 - 14 Jul 2025
Viewed by 486
Abstract
Background: Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, yet severe immune-related adverse events (irAEs) often necessitate immunotherapy discontinuation and cause life-threatening complications. Circulating plasma proteins, dynamically accessible and functionally linked to immunity, may predict and offer novel targets for irAEs. Methods: Leveraging [...] Read more.
Background: Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, yet severe immune-related adverse events (irAEs) often necessitate immunotherapy discontinuation and cause life-threatening complications. Circulating plasma proteins, dynamically accessible and functionally linked to immunity, may predict and offer novel targets for irAEs. Methods: Leveraging multi-omics integration, we conducted bidirectional two-sample Mendelian randomization (MR) using protein quantitative trait loci (pQTLs) from 4998 plasma proteins and genome-wide association data of irAE phenotypes. A causal inference framework combining colocalization analysis, multivariable MR (MVMR) adjusting for body mass index (BMI) confounding, and mediation MR elucidated BMI-independent pathways. Systems biology approaches including tissue-specific expression profiling, pathway enrichment, and protein interaction network analysis revealed spatial and functional drivers of irAE pathogenesis. Results: Proteome-wide MR mapping identified eight plasma proteins (CCL20, CSF1, CXCL9, CD40, TGFβ1, CLSTN2, TNFSF12, TGFα) causally associated with all-grade irAEs, and five (CCL20, CCL25, CXCL10, ADA, TGFα) with high-grade irAEs. Colocalization prioritized CD40/TNFSF12 (all-grade) and ADA/CCL25 (high-grade) as therapeutic targets (PPH4 > 0.7). CXCL9/TNFSF12 (all-grade) and CCL25 (high-grade) exerted BMI-independent effects, suggesting intrinsic immune dysregulation mechanisms. Tissue-specific gene expression patterns, CSF1, TGFβ1 in lung, TNFSF12 in the ileum may explain organ-specific irAE vulnerabilities. High-grade irAEs correlated with compartmentalized immune dysregulation and IL-17/immunodeficiency pathway activation. Conclusions: This study establishes the causal atlas of plasma proteins in irAE pathogenesis, bridging biomarker discovery with actionable therapeutic targets. These advances align with next-generation immunotherapy goals: maximizing efficacy while taming the immune storm. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 3851 KiB  
Article
Neuroprotective Terpenoids Derived from Hericium erinaceus Fruiting Bodies: Isolation, Structural Elucidation, and Mechanistic Insights
by Ying Cao, Qiaona Wang, Lu Li, Haitao Jiang, Bianjiang Zhang, Yulong Wu, Feng Zhou, Chun Hua, Guangming Huo, Shengjie Li and Jianmei Li
Int. J. Mol. Sci. 2025, 26(14), 6606; https://doi.org/10.3390/ijms26146606 - 10 Jul 2025
Viewed by 341
Abstract
Hericium erinaceus, a medicinal macrofungus, is renowned for its potential neuroprotective benefits. Here, we isolated and characterized secondary metabolites from H. erinaceus fruiting bodies and explored their neuroprotective effects and primary mechanisms of action. A novel terpenoid (4) and four known compounds [...] Read more.
Hericium erinaceus, a medicinal macrofungus, is renowned for its potential neuroprotective benefits. Here, we isolated and characterized secondary metabolites from H. erinaceus fruiting bodies and explored their neuroprotective effects and primary mechanisms of action. A novel terpenoid (4) and four known compounds (1, 2, 3, and 5) were identified. Their chemical structures were determined using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and x-ray diffraction (XRD). Bioactivity screening using PC12 cells indicated that (3R,4R)-4-acetyl-3,4-dihydro-6,8-dihydroxy-3-methoxy-5-methyl-1H-2-benzopyran (3) and the terpenoid, (1R,4S,8aS)-1,4-dihydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde (4), demonstrated protective properties against hydrogen peroxide (H2O2)-induced damage. Transcriptomics, network pharmacology, and molecular docking showed that compound 4 counteracted H2O2-induced oxidative stress and inflammation by substantially attenuating pro-inflammatory cytokine (IL-1β, IL-6) expression, downregulating pro-oxidant factors (Aoc3, Dusp3), and decreasing reactive oxygen species levels, while boosting superoxide dismutase activity. Compound 4 exerted neuroprotective effects via the NF-κB pathway. H. erinaceus represents a valuable natural reservoir of bioactive compounds for treating and preventing neurodegenerative diseases. Full article
Show Figures

Figure 1

17 pages, 4243 KiB  
Article
Molecular Target Identification of Gossypol Against Cervical Cancer Based on Target Fishing Technology
by Jinyan Li, Rayisa Asat, Wenying Li, Parwen Parhat, Yue Ma, Yinglan Ma and Min Li
Pharmaceutics 2025, 17(7), 861; https://doi.org/10.3390/pharmaceutics17070861 - 30 Jun 2025
Viewed by 323
Abstract
Objectives: This study aims to investigate the impact of Gossypol on human cervical cancer cells and elucidate its mechanism of action to establish a foundation for further clinical investigations. Methods: Cell proliferation, migration, and invasion were evaluated through CCK−8, wound healing, [...] Read more.
Objectives: This study aims to investigate the impact of Gossypol on human cervical cancer cells and elucidate its mechanism of action to establish a foundation for further clinical investigations. Methods: Cell proliferation, migration, and invasion were evaluated through CCK−8, wound healing, and Transwell assays. Fe3O4-BP-Gossypol (Fe3O4@Gossypol) conjugates were synthesized by linking Fe3O4 with Gossypol using benzophenone crosslinking. Successful conjugation was confirmed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet–visible spectrophotometry (UV-Vis). Subsequent to co-incubation with HeLa cell lysates, Fe3O4@Gossypol complexes facilitated the magnetic enrichment and purification of target proteins, which were identified using high-resolution mass spectrometry (HR-MS). The identified targets underwent KEGG pathway and GO analyses, followed by molecular docking with Gossypol. HeLa cells were exposed to Gossypol at concentrations of 7.48, 14.96, and 29.92 μmol·L−1 for 48 h, and protein expression levels were quantified via Western blotting. Results: Gossypol notably suppressed cervical cancer cell proliferation, migration, and invasion. The integration of target fishing, network pharmacology, and molecular docking highlighted PIK3R2, MAPK1, and GRB2 as potential therapeutic targets. Western blot analysis revealed a dose-dependent reduction in PIK3R2, GRB2, and MAPK1 expression in Gossypol-treated groups compared to controls (p < 0.05). Conclusions: Gossypol may exhibit anti-cervical cancer effects by modulating the PI3K/AKT signaling pathway. Full article
Show Figures

Graphical abstract

18 pages, 8398 KiB  
Article
Application of Predictive Modeling and Molecular Simulations to Elucidate the Mechanisms Underlying the Antimicrobial Activity of Sage (Salvia officinalis L.) Components in Fresh Cheese Production
by Dajana Vukić, Biljana Lončar, Lato Pezo and Vladimir Vukić
Foods 2025, 14(13), 2164; https://doi.org/10.3390/foods14132164 - 20 Jun 2025
Viewed by 482
Abstract
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of [...] Read more.
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of predictive models that describe the influence of key parameters on antimicrobial efficacy. Molecular modeling techniques were employed to identify the major constituents responsible for the observed inhibitory activity. Epirosmanol, carvacrol, limonene, and thymol were identified as the primary compounds contributing to the antimicrobial effects during cheese production. The highest weighted predicted binding energy was observed for thymol against the KdpD histidine kinase from Staphylococcus aureus, with a value of −33.93 kcal/mol. To predict the binding affinity per unit mass of these sage-derived compounds against the target pathogens, machine learning models—including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Boosted Trees Regression (BTR)—were developed and evaluated. Among these, the ANN model demonstrated the highest predictive accuracy and robustness, showing minimal bias and a strong coefficient of determination (R2 = 0.934). These findings underscore the value of integrating molecular modeling and machine learning approaches for the identification of bioactive compounds in functional food systems. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Food Science)
Show Figures

Figure 1

22 pages, 5391 KiB  
Article
Combined Network Pharmacology, Transcriptomics and Metabolomics Strategies Reveal the Mechanism of Action of Lang Chuang Wan to Ameliorate Lupus Nephritis in MRL/lpr Mice
by Cuicui Li, Guoxin Ji, Xinru Zhang, Hang Yu, Zhimeng Li, Bo Yang, Zhuangzhuang Yao, Shilei Wang, Tongwei Jiang and Shumin Wang
Pharmaceuticals 2025, 18(6), 916; https://doi.org/10.3390/ph18060916 - 18 Jun 2025
Viewed by 515
Abstract
Background: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism [...] Read more.
Background: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism of action have not been elucidated. To address this, we aim to analyze LCW’s chemical components and clarify its mechanisms in treating LN. Methods: We utilized ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) to analyze the components of LCW and assessed its effects on MRL/lpr mice through ELISA, H&E staining, Masson’s trichrome staining, and IgG immunofluorescence. Then, we further explored the mechanisms of action through network pharmacology, transcriptomics, and metabolomics, and validated with Western blot. Results: LCW contained 1303 chemical components, primarily flavonoids and terpenoids. It significantly improved kidney pathology and normalized levels of serum ANA, anti-dsDNA, anti-Sm, C3, C4, Cr, BUN, IL-6, IL-10, IL-17, TNF-α, and urinary protein (UP) in MRL/lpr mice. Network pharmacology, transcriptomics, and metabolomics indicated that LCW’s therapeutic effect on LN involved the PI3K/AKT pathway, confirmed by Western blot showing LCW’s suppression of the PI3K/AKT/mTOR pathway. Conclusions: LCW alleviates pathological symptoms in MRL/lpr mice by inhibiting the PI3K/AKT/mTOR signaling pathway, providing insights into its therapeutic mechanisms for lupus nephritis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

29 pages, 13121 KiB  
Article
Mechanistic Exploration of Yiqi Zengmian in Regulating the Microenvironment as an Immunopotentiator with the Beijing Bio-Institute of Biological Products Coronavirus Vaccine Based on Transcriptomics and Integrated Serum Pharmacochemistry
by Zeyue Yu, Yudong Wang, Jianhui Sun, Xiaotong Zheng, Liyu Hao, Yurong Deng, Jianliang Li, Zongyuan Li, Zhongchao Shan, Weidong Li, Yuling Qiao, Ruili Huo, Yibai Xiong, Hairu Huo, Hui Li, Longfei Lin, Hanhui Huang, Guimin Liu, Aoao Wang, Hongmei Li and Luqi Huangadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(6), 802; https://doi.org/10.3390/ph18060802 - 27 May 2025
Viewed by 623
Abstract
Background: Yiqi Zengmian (YQZM) functions as an immunopotentiator by enhancing both cellular and humoral immunity. However, its pharmacodynamic active constituents, particularly those absorbed into the bloodstream, and mechanism of action remain unclear. This study aimed to investigate the immunopotentiating effects and mechanisms [...] Read more.
Background: Yiqi Zengmian (YQZM) functions as an immunopotentiator by enhancing both cellular and humoral immunity. However, its pharmacodynamic active constituents, particularly those absorbed into the bloodstream, and mechanism of action remain unclear. This study aimed to investigate the immunopotentiating effects and mechanisms of YQZM in mice immunized with the BBIBP-CorV (Beijing Bio-Institute of Biological Products Coronavirus Vaccine). Methods: Serum pharmacochemistry and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) were employed to identify bioavailable components of YQZM. The mice received the BBIBP-CorV twice on days 1 and 14, while YQZM was orally administered for 28 days. Neutralization assays and ELISA quantified antigen-specific antibodies (abs), flow cytometry (FC) and intracellular cytokine staining (ICS) were used to assess immune cell populations and their cytokines, and an enzyme-linked immunospot assay (ELISpot) quantified memory T and B cells (MBs and MTs). To identify underlying mechanisms, network pharmacology, RNA sequencing (RNA-Seq), molecular docking, Western blotting (WB), and quantitative reverse transcription PCR (RT-qPCR) were performed. Results: YQZM significantly enhanced antigen-specific antibody titers, immune cell proportions, cytokine levels, and memory lymphocyte functions. UPLC-MS/MS analysis identified 31 bioactive compounds in YQZM. KEGG enrichment analysis based on RNA-Seq and network pharmacology implicated the TLR-JAK-STAT signaling pathway in YQZM’s immune-enhancing effects. WB and RT-PCR validated that YQZM upregulated the expression of critical nodes in the TLR-JAK-STAT signaling pathway. Furthermore, molecular docking indicated that YQZM’s primary active components exhibited strong binding affinity for critical proteins. Conclusions: YQZM effectively enhances vaccine-induced innate and adaptive immunity via a multi-component, multi-target mechanism, among which the TLR-JAK-STAT signaling pathway is a validated molecular target. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

16 pages, 237 KiB  
Article
Digital Religion in the Public Sphere: Tehreek-e-Labbaik Pakistan (TLP) and Alternative for Germany (AfD)
by Abdul Basit Zafar and Geneva Catherine Blackmer
Religions 2025, 16(5), 627; https://doi.org/10.3390/rel16050627 - 16 May 2025
Viewed by 1100
Abstract
While digital religion and digital protest can ideally serve the common good, religious nationalist and fundamentalist movements have exploited these tools to disrupt the social fabric and create dangerous political outcomes. This paper examines how religious communicators within Tehreek-e-Labbaik Pakistan (TLP) and Alternative [...] Read more.
While digital religion and digital protest can ideally serve the common good, religious nationalist and fundamentalist movements have exploited these tools to disrupt the social fabric and create dangerous political outcomes. This paper examines how religious communicators within Tehreek-e-Labbaik Pakistan (TLP) and Alternative for Germany (AfD) perceive and enact their responsibility within digital spaces, leveraging the power of “networked communities” and the collective identity of the digital “crowd” to advance their agendas of religious fundamentalism and political conservatism. Bypassing traditional media, groups like the AfD and TLP exploit digital religion to build communities, spread propaganda that merges religion with national identity, frame political issues as religious mandates, and mobilize collective action. Campbell’s concept of the “networked community” demonstrates how digital technologies form decentralized, fluid, and global religious communities, distinct from traditional, geographically bound ones. Both the TLP and AfD have tapped into this new digital religious space, shaping and mobilizing political and religious identities across virtual borders. Gerbaudo’s idea of the “digital crowd” complements this by examining how collective action in the digital age reshapes mass mobilization, with social media transforming how political movements operate in the 21st century. Although the AfD’s platform is not overtly religious, the party strategically invokes ethno-Christian identity, framing opposition to Islam and Muslim immigration as a defense of German cultural and Christian values. Similarly, the TLP promotes religious nationalism by advocating for Pakistan’s Islamic identity against secularism and liberalism and calling for strict enforcement of blasphemy laws. Recognizing digital spaces as tools co-opted by religious nationalist movements, this paper explores how communicators in these movements understand their responsibility for the social and long term consequences of their messages. Using Luhmann’s systems theory—where communication is central to social systems—this paper analyzes how the TLP and AfD leverage individuals’ need for purpose and belonging to mobilize them digitally. By crafting emotionally charged experiences, these movements extend their influence beyond virtual spaces and into the broader public sphere. Finally, this paper will reflect on the theological implications of these dynamics both on and offline. How do religious communicators in digital spaces reconcile their theological frameworks with the social impact of their communication? Can digital religious communities be harnessed to foster social cohesion and inclusivity instead of exacerbating social divisions? Through this lens, the paper seeks to deepen our understanding of the intersection between digital religion, political mobilization, and theological responsibility in the digital age. Full article
18 pages, 1649 KiB  
Article
Antiprotozoal Activity and Cytotoxicity Screening of Lippia adoensis (Hochst.) Extracts: Growth Inhibition of Plasmodium, Leishmania, and Trypanosoma Parasites
by Eugenie Aimée Madiesse Kemgne, Mariscal Brice Tchatat Tali, Darline Dize, Cyrille Armel Njanpa Ngansop, Boniface Pone Kamdem and Fabrice Fekam Boyom
J. Oman Med. Assoc. 2025, 2(1), 6; https://doi.org/10.3390/joma2010006 - 13 May 2025
Viewed by 462
Abstract
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts [...] Read more.
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts of L. adoensis leaves and twigs, which were obtained by extraction using 70% ethanol in water, were assayed for antiplasmodial activity against P. falciparum 3D7 and Dd2 through the SYBR green I-based fluorescence assay; and for antileishmanial, antitrypanosomal, and cytotoxic effects on Leishmania donovani, Trypanosoma brucei brucei, and Vero cells, respectively, using resazurin colorimetric assays. In vitro phytochemical analysis of L. adoensis extracts was performed using standard methods. Moreover, liquid chromatography–mass spectrometry (LC-MS) feature-based detection and molecular networking flow on Global Natural Product Social (GNPS) were also used for the phytochemical screening of L. adoensis extracts. Crude extracts from L. adoensis inhibited the growth of P. falciparum (3D7 and Dd2) (IC50s; (3D7): 10.00 and 97.46 μg/mL; (Dd2): 29.48 and 26.96 μg/mL), L. donovani (IC50s: 22.87–10.52 μg/mL), and T. brucei brucei (IC50s: 2.30–55.06 μg/mL). The extracts were found to be non-cytotoxic to Vero cells, thus yielding median cytotoxic concentrations (CC50s) above 100 μg/mL. In vitro phytochemical analysis of the crude extracts revealed the presence of alkaloids, terpenoids, phenolic compounds, and carbohydrates. The LC-MS tandem molecular networking flow predicted that the extracts contained valsafungin A and bacillamidin in the first cluster, and fatty acids, ketone, and aldehyde derivatives in the second cluster. Overall, the present study demonstrated the antiparasitic effects of L. adoensis extracts, thus justifying the use of this plant in the traditional treatment of fever and malaria conditions. Nevertheless, detailed metabolomic studies and antiparasitic mechanisms of action of the extracts are expected to unveil the potential antiparasitic hit compounds. Full article
Show Figures

Graphical abstract

19 pages, 601 KiB  
Article
Understanding Teachers’ Adoption of AI Technologies: An Empirical Study from Chinese Middle Schools
by Jin Zhao, Siyi Li and Jianjun Zhang
Systems 2025, 13(4), 302; https://doi.org/10.3390/systems13040302 - 21 Apr 2025
Cited by 3 | Viewed by 2271
Abstract
The advancements in artificial intelligence (AI) technologies and the implementation of government policies are accelerating educational reform in China. In this context, understanding the critical factors influencing middle school teachers’ adoption of AI technologies for classroom instruction is essential for fostering the deep [...] Read more.
The advancements in artificial intelligence (AI) technologies and the implementation of government policies are accelerating educational reform in China. In this context, understanding the critical factors influencing middle school teachers’ adoption of AI technologies for classroom instruction is essential for fostering the deep integration of these technologies into teaching and improving teaching efficiency in middle schools. Grounded in the structural equation model (SEM) approach, this research integrates the Innovation Diffusion Theory, the Technology Acceptance Model (TAM), and the Unified Theory of Acceptance and Use of Technology (UTAUT), and proposes a structural model comprising 10 latent variables. A measurement model is then developed for each latent variable, forming the basis of a survey questionnaire. Through empirical research using the questionnaires of 202 middle school teachers, a validated structural equation model with strong model fitting is established. The findings indicate that the most influential factors positively affecting teachers’ willingness to use AI technologies, in descending order, are Interpersonal Relationships, Innovativeness, Mass Media, Compatibility, Perceived Usefulness, and Perceived Ease of Use. Similarly, factors positively influencing teachers’ actual usage behavior, ranked by impact, include teachers’ willingness, Facilitating Conditions, Career Aspiration, and Perceived Usefulness. Results involving the impact of teachers’ Interpersonal Relationships can update the theoretical understanding of the factors driving the integration of AI into teaching, and be used to put forward specific directions such as social network embedding for actionable practice recommendations. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

20 pages, 4911 KiB  
Article
Therapeutic Potential of Qilianxiaopi Formula: Targeting ADAM17-Mediated Chronic Inflammation in Atrophic Gastritis
by Sijing Du, Tianxiang Wang, Zhiqiang Li, Ting Li, Zelong Miao, Yuling Chen, Songbiao Zhu, Wei Wei and Haiteng Deng
Pharmaceuticals 2025, 18(3), 435; https://doi.org/10.3390/ph18030435 - 19 Mar 2025
Cited by 1 | Viewed by 1032
Abstract
Background: Gastric cancer (GC) is a leading cause of mortality worldwide, particularly in China. Chronic atrophic gastritis (CAG) and intestinal metaplasia (IM) are recognized as precancerous conditions contributing to GC development. Qilianxiaopi formula (QLXP), a traditional Chinese medicine (TCM), has demonstrated significant [...] Read more.
Background: Gastric cancer (GC) is a leading cause of mortality worldwide, particularly in China. Chronic atrophic gastritis (CAG) and intestinal metaplasia (IM) are recognized as precancerous conditions contributing to GC development. Qilianxiaopi formula (QLXP), a traditional Chinese medicine (TCM), has demonstrated significant therapeutic effects on CAG and IM; however, its underlying mechanisms remain poorly understood. Methods: This study utilized chromatography-mass spectrometry to identify the major compounds in QLXP. Network pharmacology was used to predict the associated targets of these components. Thermal proteome profiling (TPP) pinpointed the potential binding proteins of QLXP, which were validated by bioinformatic analyses. Bio-layer interferometry (BLI) was used to analyze the interactions between QLXP and its key target proteins, thereby determining their binding components. Molecular docking predicted the binding modes between the components and proteins. Results: ADAM17 was identified as a key binding protein for QLXP. Further investigation revealed that QLXP inhibits the enzymatic activity of ADAM17, thereby reducing the secretion of the pro-inflammatory cytokine TNF-α, contributing to the anti-inflammatory properties of QLXP. BLI confirmed direct and reversible binding interactions between QLXP and ADAM17. Narirutin, isolated from the ADAM17 binding fraction, displayed the highest affinity for QLXP. Conclusions: This study highlights ADAM17 as a key molecular target of QLXP and narirutin as its principal binding component. The integrated approach combining chromatography-mass spectrometry, network pharmacology, TPP, BLI, and molecular docking provides a robust framework for elucidating the mechanisms of action of TCM. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Internal Diseases)
Show Figures

Graphical abstract

31 pages, 17619 KiB  
Article
Investigating the Mechanism of Action of Ipomoea pes-caprae in the Treatment of Rheumatoid Arthritis Based on Serum Metabolomics and Network Pharmacology
by Fangfei Zhong, Siwei Li, Xianglong Pan, Juan Wen, Jinling Xie, Zhengcai Du, Erwei Hao, Jiagang Deng and Xiaotao Hou
Mar. Drugs 2025, 23(3), 114; https://doi.org/10.3390/md23030114 - 7 Mar 2025
Viewed by 1264
Abstract
Ipomoea pes-caprae (L.) Sweet (Convolvulaceae) is a commonly used marine Chinese medicine in the coastal areas of southern China. Traditionally, it has been used in the treatment of rheumatoid arthritis (RA). However, the mechanism of action against RA remains unclear. This study aimed [...] Read more.
Ipomoea pes-caprae (L.) Sweet (Convolvulaceae) is a commonly used marine Chinese medicine in the coastal areas of southern China. Traditionally, it has been used in the treatment of rheumatoid arthritis (RA). However, the mechanism of action against RA remains unclear. This study aimed to explore the mechanism of action of Ipomoea pes-caprae water extract (IPE) in the treatment of RA through serum metabolomics and network pharmacology. Rat models of RA with wind-dampness cold bi-syndrome (WCM) and wind-dampness heat bi-syndrome (WHM) were established to evaluate the therapeutic effect of IPE against RA. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technology was used to analyze the absorbed components of IPE in the plasma of the two models. Serum metabolomics was employed to identify potential biomarkers and metabolic pathways of IPE in the treatment of RA. The key targets and related pathways of RA were screened using network pharmacology and validated using molecular docking. The biomarker-pathway-target network was mapped via the combination of metabolomics and network pharmacology. A total of 10 chemical constituents were identified from WHM rat plasma, and eight chemical constituents were identified from WCM rat plasma. Serum metabolomics research identified 20 endogenous potential biomarkers, and 10 major metabolic pathways closely related to WHM and WCM. Network pharmacology analysis yielded 65 overlapping targets, with the core targets being ALB, AKT1, EGFR, and CASP3. Molecular docking showed that the four absorbed components in plasma had a strong binding activity with ALB and AKT1. Combining metabolomics and network pharmacology, two major biomarkers and two major pathways were identified. IPE can effectively relieve the symptoms of RA, and the potential mechanism of IPE in treating RA has been preliminarily elucidated. These results can provide a scientific basis for further drug research and development, as well as clinical application. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
Show Figures

Graphical abstract

23 pages, 1441 KiB  
Article
Stability Analysis and Mitigation of Thermo-Hydraulic Oscillations in Multi-Supplier District Heating Systems
by Pascal Friedrich, Kirill Kuroptev, Thanh Huynh and Stefan Niessen
Energies 2025, 18(5), 1126; https://doi.org/10.3390/en18051126 - 25 Feb 2025
Cited by 1 | Viewed by 507
Abstract
In fourth-generation district heating systems (DHSs), the supply temperature of modern heat sources such as heat pumps and waste heat can potentially be reduced by mixing in hot water from combustion-based producers, thereby increasing efficiency and facilitating integration into networks with unrenovated buildings. [...] Read more.
In fourth-generation district heating systems (DHSs), the supply temperature of modern heat sources such as heat pumps and waste heat can potentially be reduced by mixing in hot water from combustion-based producers, thereby increasing efficiency and facilitating integration into networks with unrenovated buildings. However, this approach introduces the risk of thermo-hydraulic oscillations driven by mixing dynamics, transport delays, and mass flow adjustments by consumers. These oscillations can increase wear and cost and may potentially lead to system failure. This study addresses the asymptotic stability of multi-supplier DHSs by combining theoretical analysis and practical validation. Through linearization and Laplace transformation, we derive the transfer function of a system with two suppliers. Using pole-zero analysis, we show that transport delay can cause instability. We identify a new control law, demonstrating that persisting oscillations depend on network temperatures and low thermal inertia and enabling stabilization through careful temperature selection, thorough choice of the slack supplier, or installation of buffer tanks. We validate our findings using dynamic simulations of a nonlinear delayed system in Modelica, highlighting the applicability of such systems to real-world DHSs. These results provide actionable insights for designing robust DHSs and mitigating challenges in multi-supplier configurations by relying on thoughtful system design rather than complex control strategies. Full article
(This article belongs to the Topic District Heating and Cooling Systems)
Show Figures

Figure 1

53 pages, 2559 KiB  
Article
Multiple-Valued Logic, Vocabulary Structure, and Linked List for Data Verification in Dialog Communications of Agents
by Alexey Bykovsky
Appl. Sci. 2025, 15(5), 2427; https://doi.org/10.3390/app15052427 - 24 Feb 2025
Viewed by 508
Abstract
Distant verification of the autonomous agent’s parameters in the dialog mode is a difficult multi-parametric task if the large-scale scene of action is characterized by a large number of collaborative and rival robots. The possible scheme to realize it for mass robots is [...] Read more.
Distant verification of the autonomous agent’s parameters in the dialog mode is a difficult multi-parametric task if the large-scale scene of action is characterized by a large number of collaborative and rival robots. The possible scheme to realize it for mass robots is to use non-exhaustive and selective data verification, combining the polling of internal subsystems and external data storage in collaborating network agents. Selective extraction of data for such checks is proposed to involve the special ordered set of vocabularies, containing coded digital words and classifying parameters of agents, tasks, objects, and events. The structure of such vocabularies is to be combined with various versions of the linked list scheme, known in blockchain and actual for protective documenting of critical data. Multiple-valued logic is used here as the convenient method to provide autonomous navigation in a multi-parametric structure of data and verification variables. Full article
(This article belongs to the Special Issue Blockchain and Intelligent Networking for Smart Applications)
Show Figures

Figure 1

18 pages, 8955 KiB  
Article
Exploring the Effects and Mechanisms of Valerian Volatile Oil in Treating Insomnia Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation-Based Approaches
by Halimulati Muhetaer, Huajian Li, Bingna Wang, Xinyi Cai, Yang Zhang, Yongxian Li, Chuwen Li and Bo Wu
Int. J. Mol. Sci. 2025, 26(4), 1726; https://doi.org/10.3390/ijms26041726 - 18 Feb 2025
Cited by 1 | Viewed by 2338
Abstract
Valerian possesses a multitude of pharmacological effects, including sedative and hypnotic properties, antihypertensive effects, antibacterial activity, and liver protection. Insomnia, one of the most prevalent disorders in contemporary society, significantly impacts people’s daily lives. This study aims to explore the anti-insomnia effects of [...] Read more.
Valerian possesses a multitude of pharmacological effects, including sedative and hypnotic properties, antihypertensive effects, antibacterial activity, and liver protection. Insomnia, one of the most prevalent disorders in contemporary society, significantly impacts people’s daily lives. This study aims to explore the anti-insomnia effects of valerian volatile oil (VVO) and investigate its potential mechanism of action through chemical analysis, network pharmacology, molecular docking, molecular dynamics simulations, and experimental validation. Through gas chromatography–mass spectrometry (GC-MS) analysis and drug-likeness screening, we identified 38 active compounds. Network pharmacology studies revealed that these 38 compounds might affect 103 targets associated with insomnia, such as monoamine oxidase B (MAOB), dopamine receptor D2 (DRD2), monoamine oxidase A (MAOA), interleukin 1β (IL1B), solute carrier family 6 member 4 (SLC6A4), prostaglandin-endoperoxide synthase 2 (PTGS2), and 5-hydroxytryptamine receptor 2A (HTR2A), which contribute to regulating the neuroactive ligand–receptor interaction, 5-hydroxytryptaminergic synapse, and calcium signaling pathways. The results of the molecular dynamics simulations indicated that bis[(6,6-dimethyl-3-bicyclo[3.1.1]hept-2-enyl)methyl] (E)-but-2-enedioate exhibited a stabilizing interaction with MAOB. The animal studies demonstrated that gavage administration of a high dose (100 mg/kg) of VVO significantly diminished autonomous activity, decreased sleep latency, and extended sleep duration in mice. Furthermore, the results of the Western blot experiment indicated that VVO interacts with MAOB, resulting in decreased expression levels of MAOB in the cerebral cortex. This study demonstrates the protective mechanism of VVO against insomnia through chemical analysis, network pharmacology, and experimental validation and extends the possible applications of VVO, which is a potential therapeutic ingredient for use in insomnia treatment. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 9142 KiB  
Article
Ethyl Acetate Extract of Cichorium glandulosum Activates the P21/Nrf2/HO-1 Pathway to Alleviate Oxidative Stress in a Mouse Model of Alcoholic Liver Disease
by Shuwen Qi, Chunzi Zhang, Junlin Yan, Xiaoyan Ma, Yewei Zhong, Wenhui Hou, Juan Zhang, Tuxia Pang and Xiaoli Ma
Metabolites 2025, 15(1), 41; https://doi.org/10.3390/metabo15010041 - 10 Jan 2025
Viewed by 1385
Abstract
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action [...] Read more.
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury. Methods: Ultra-Performance Liquid Chromatography coupled with Quadrupole-Orbitrap Mass Spectrometry (UPLC-Q-Orbitrap-MS) was used to identify CGE components. A C57BL/6J mouse model of ALD was established via daily oral ethanol (56%) for six weeks, with CGE treatment at low (100 mg/kg) and high doses (200 mg/kg). Silibinin (100 mg/kg) served as a positive control. Liver function markers, oxidative stress indicators, and inflammatory markers were assessed. Transcriptomic and network pharmacology analyses identified key genes and pathways, validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Results: UPLC-Q-Orbitrap-MS identified 81 CGE compounds, mainly including terpenoids, flavonoids, and phenylpropanoids. CGE significantly ameliorated liver injury by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels and enhancing antioxidative markers such as total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) while lowering hepatic malondialdehyde (MDA) levels. Inflammation was mitigated through reduced levels of Tumor Necrosis Factor Alpha (TNF-α), Interleukin-1 Beta (IL-1β), and C-X-C Motif Chemokine Ligand 10 (CXCL-10). Transcriptomic and network pharmacology analysis revealed seven key antioxidant-related genes, including HMOX1, RSAD2, BCL6, CDKN1A, THBD, SLC2A4, and TGFβ3, validated by RT-qPCR. CGE activated the P21/Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling axis, increasing P21, Nrf2, and HO-1 protein levels while suppressing Kelch-like ECH-associated Protein 1 (Keap1) expression. Conclusions: CGE mitigates oxidative stress and liver injury by activating the P21/Nrf2/HO-1 pathway and regulating antioxidant genes. Its hepatoprotective effects and multi-target mechanisms highlight CGE’s potential as a promising therapeutic candidate for ALD treatment. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

Back to TopTop