Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = mass action kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1081 KiB  
Article
Effect of Monomer Mixture Composition on TiCl4-Al(i-C4H9)3 Catalytic System Activity in Butadiene–Isoprene Copolymerization: A Theoretical Study
by Konstantin A. Tereshchenko, Rustem T. Ismagilov, Nikolai V. Ulitin, Yana L. Lyulinskaya and Alexander S. Novikov
Computation 2025, 13(8), 184; https://doi.org/10.3390/computation13080184 - 1 Aug 2025
Viewed by 77
Abstract
Divinylisoprene rubber, a copolymer of butadiene and isoprene, is used as raw material for rubber technical products, combining isoprene rubber’s elasticity and butadiene rubber’s wear resistance. These properties depend quantitatively on the copolymer composition, which depends on the kinetics of its synthesis. This [...] Read more.
Divinylisoprene rubber, a copolymer of butadiene and isoprene, is used as raw material for rubber technical products, combining isoprene rubber’s elasticity and butadiene rubber’s wear resistance. These properties depend quantitatively on the copolymer composition, which depends on the kinetics of its synthesis. This work aims to theoretically describe how the monomer mixture composition in the butadiene–isoprene copolymerization affects the activity of the TiCl4-Al(i-C4H9)3 catalytic system (expressed by active sites concentration) via kinetic modeling. This enables development of a reliable kinetic model for divinylisoprene rubber synthesis, predicting reaction rate, molecular weight, and composition, applicable to reactor design and process intensification. Active sites concentrations were calculated from experimental copolymerization rates and known chain propagation constants for various monomer compositions. Kinetic equations for active sites formation were based on mass-action law and Langmuir monomolecular adsorption theory. An analytical equation relating active sites concentration to monomer composition was derived, analyzed, and optimized with experimental data. The results show that monomer composition’s influence on active sites concentration is well described by a two-step kinetic model (physical adsorption followed by Ti–C bond formation), accounting for competitive adsorption: isoprene adsorbs more readily, while butadiene forms more stable active sites. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

26 pages, 491 KiB  
Article
Remarkable Scale Relation, Approximate SU(5), Fluctuating Lattice
by Holger B. Nielsen
Universe 2025, 11(7), 211; https://doi.org/10.3390/universe11070211 - 26 Jun 2025
Viewed by 171
Abstract
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to [...] Read more.
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to be defined in the article. These terms in the action are related to the energy scales in question. So, for example, the dimensionality of the Einstein–Hilbert action coefficient is one related to the Planck scale. In fact, we suppose that, in the cases described with quantum field theory, there is, for each of our energy scales, a pair of associated terms in the Lagrangian density, one “kinetic” and one “mass or current” term. To plot the energy scales, we use the ratio of the dimensionality of, say, the “non-kinetic” term to the dimensionality of the “kinetic” one. For an explanation of our phenomenological finding that the logarithm of the energies depends, as a straight line, on the dimensionality defined integer q, we give an ontological—i.e., it really exists in nature in our model—“fluctuating lattice” with a very broad distribution of, say, the link size a. We take the Gaussian in the logarithm, ln(a). A fluctuating lattice is very natural in a theory with general relativity, since it corresponds to fluctuations in the gauge depth of the field of general relativity. The lowest on our energy scales are intriguing, as they are not described by quantum field theory like the others but by actions for a single particle or single string, respectively. The string scale fits well with hadronic strings, and the particle scale is presumably the mass scale of Standard Model group monopoles, the bound state of a couple of which might be the dimuon resonance (or statistical fluctuation) found in LHC with a mass of 28 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

18 pages, 3833 KiB  
Article
Protective ALD Thin Films for Morphologically Diverse Types of Limestone
by Gillian P. Boyce, Suveena Sreenilayam, Eleonora Balliana, Elisabetta Zendri and Raymond J. Phaneuf
Coatings 2025, 15(6), 698; https://doi.org/10.3390/coatings15060698 - 10 Jun 2025
Viewed by 443
Abstract
We report on the results of investigations of atomic layer deposited (ALD) amorphous alumina (Al2O3) coatings for the protection of limestone with a wide range of porosity against acid-based dissolution. The protective effects of the ALD coatings were investigated [...] Read more.
We report on the results of investigations of atomic layer deposited (ALD) amorphous alumina (Al2O3) coatings for the protection of limestone with a wide range of porosity against acid-based dissolution. The protective effects of the ALD coatings were investigated by aqueous acid immersion. The solution pH was tracked over time for a constant volume of acetic acid solution with an initial pH of 4 with the stone samples immersed. We find the protective effect of ALD alumina coatings is extremely promising, with 90 nm thick coatings slowing the initial and total rate of substrate mass loss significantly by up to two orders of magnitude. The eventual failure of the ALD coatings during immersion was also investigated. Pitted areas on the substrate were discovered and were found to have an area fraction that correlates to the changing pH of the acid solution during immersion. The variation of the protective action of the films with thickness is consistent with kinetics, which are limited by diffusion within the pits rather than through the films. Our findings point to the dominant role of defects in the coatings in their eventual failure. We also show that the appearance of the stone does not change significantly for the thickest and most protective ALD films, making the treatment promising for cultural heritage applications. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 1813 KiB  
Article
Research on Catalysts for Online Ammonia Hydrogen Production in Marine Engines: Performance Evaluation and Reaction Kinetic Modeling
by Jin Wu, Liang Yang, Chuang Xiang, Junjie Liang, He Yang, Dilong Li, Ying Sun, Lin Lv and Neng Zhu
Catalysts 2025, 15(5), 488; https://doi.org/10.3390/catal15050488 - 17 May 2025
Viewed by 521
Abstract
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects [...] Read more.
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects of temperature and space velocity on Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts. Based on the experimental data obtained, the kinetic parameters of ammonia decomposition were fitted using four different models: mass action law, first-order reaction, Langmuir, and Temkin–Pyzhev kinetics across two catalysts, with the subsequent mechanistic analysis of catalytic reaction processes within the reactor. The results revealed that the NH3 conversion rate of the Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 catalyst was superior to that of the Ni/Ce0.36Zr0.64O2 catalyst, with temperature activity windows of 250–450 °C and 400–600 °C, respectively. Within the range of 2000–32,000 mL·g−1·h−1), an increase in space velocity led to a decrease in NH3 conversion rate by approximately half. All four models were able to predict NH3 conversion rates for the different catalysts with reasonable accuracy. The activation energies for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts were found to be 37.7 kJ·mol−1 and 66 kJ·mol−1, respectively. Targeting hydrogen requirements of 10–40% vol for ammonia engines, the corresponding catalytic temperatures for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 were above 267 °C and 500 °C, respectively. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

26 pages, 7326 KiB  
Article
Hybrid Drying Method: Influence of Pre-Treatment and Process Conditions of Ultrasound-Assisted Drying on Apple Quality
by Aleksandra Jedlińska, Katarzyna Rybak, Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Skarżyńska, Magdalena Trusińska, Dorota Witrowa-Rajchert and Małgorzata Nowacka
Appl. Sci. 2025, 15(10), 5309; https://doi.org/10.3390/app15105309 - 9 May 2025
Viewed by 552
Abstract
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 [...] Read more.
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 kHz; 180 W; 10 min, 20 min, 30 min) and the subsequent hybrid drying process—ultrasound-assisted hot-air drying (temperature of 70 °C, frequency of 36 kHz; ultrasound power of 120 W, 160 W, 200 W)—on the drying kinetics and quality attributes of dried Gloster apples. The experimental design was optimized using the response surface methodology (RSM). The effects of ultrasound parameters on drying time, dry matter content, water activity, rehydration and hygroscopic properties, color change, textural properties, content of vitamin C, polyphenols and flavonoids, and antioxidant activity were evaluated. Among the analyzed variants, the most effective combinations were longer US duration (30 min) with lower US power (120 W) or shorter US duration (10 min) with higher US power (200 W). To obtain dried material with the most desirable rehydration and hygroscopic properties, a US power in the range of 120–160 W, preceded by a US pre-treatment lasting 20 min, should be selected. Conversely, optimizing the content of bioactive components would involve choosing the longest US treatment time and medium to high ultrasonic power during drying. These results provide actionable insights for the industry to tailor drying parameters based on the desired product attributes. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Graphical abstract

20 pages, 4883 KiB  
Article
Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor
by Gaoan Zheng, Pu Xu, Tong Wang and Qing Yan
Processes 2025, 13(1), 281; https://doi.org/10.3390/pr13010281 - 20 Jan 2025
Cited by 11 | Viewed by 1322
Abstract
Microreactors have the advantages of high heat and mass transfer efficiency, strict control of reaction parameters, easy amplification, and good safety performance, and have been widely used in various fields such as chip manufacturing, fine chemicals, and biomanufacturing. However, narrow microchannels in microreactors [...] Read more.
Microreactors have the advantages of high heat and mass transfer efficiency, strict control of reaction parameters, easy amplification, and good safety performance, and have been widely used in various fields such as chip manufacturing, fine chemicals, and biomanufacturing. However, narrow microchannels in microreactors often become filled with catalyst particles, leading to blockages. To address this challenge, this study proposes a multiphase flow heat transfer model based on the lattice Boltzmann method (LBM) to investigate the dynamic changes during the bubble collapse process and temperature distribution regularities. Based on the developed three-phase flow dynamics model, this study delves into the shock dynamic evolution process of bubble collapse and analyzes the temperature distribution regularities. Then, the flow patterns under different particle density conditions are explored. The study found that under the action of shock wave, the stable structure of the liquid film of the bubble is destroyed, and the bubble deforms and collapses. At the moment of bubble collapse, energy is rapidly transferred from the potential energy of the bubble to the kinetic energy of the flow field. Subsequently, the kinetic energy is converted into pressure waves. This results in the rapid generation of extremely high pressure in the flow field, creating high-velocity jets and intense turbulent vortices, which can enhance the mass transfer effects of the multiphase flows. At the moment of bubble collapse, a certain high temperature phenomenon will be formed at the collapse, and the high temperature phenomenon in this region is relatively chaotic and random. The pressure waves generated during bubble collapse have a significant impact on the motion trajectories of particles, while the influence on high-density particles is relatively small. The results offer a theoretical basis for understanding mass transfer mechanisms and particle flow patterns in three-phase flow. Moreover, these findings have significant practical implications for advancing technologies in industrial applications, including chip manufacturing and chemical process transport. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 4247 KiB  
Article
Removal of TP, COD, and NH4+-N in Simulated Slaughtering Wastewater by Two Kinds of Immobilized Microalgal Spheres
by Wei Xu, Xiaoping Zhang, Guichang Zhang and Xin Zhang
Water 2025, 17(2), 179; https://doi.org/10.3390/w17020179 - 10 Jan 2025
Viewed by 881
Abstract
The treatment of wastewater using microalgae is regarded as a green and potential technology. However, its engineering application has been largely hindered because of the limitation of microalgae separation and harvesting. Therefore, immobilization technology has been widely used to embed microalgae for wastewater [...] Read more.
The treatment of wastewater using microalgae is regarded as a green and potential technology. However, its engineering application has been largely hindered because of the limitation of microalgae separation and harvesting. Therefore, immobilization technology has been widely used to embed microalgae for wastewater treatment. In this paper, sodium alginate (SA) and polyvinyl alcohol (PVA) as the common immobilized carriers were used to immobilize ankistrodesmus falcatus for simulated slaughtering wastewater (SSW) treatment. The experimental results of the mass transfer and adsorption of immobilized carriers were found to show that the mass transfer of SA-SiO2 gel balls (SS-GB) was better than PVA-SA gel balls (PS-GB) and that the adsorption of PS-GB was better than SS-GB. When immobilizing microalgae with the two kinds of carriers, it was found that SA-SiO2 microalgal spheres (SS-MS) were better than PVA-SA microalgal spheres (PS-MS) for the maintenance of microalgal cell activity and that PS-MS were better than SS-MS for the resistance to biodegradation. This is because the carrier of PS-MS had a thick shell and dense structure, while the carrier of SS-MS had a thin shell and loose structure. The results of SSW treatment by PS-MS and SS-MS were found to show that the total phosphorus (TP) removal rates of PS-MS and SS-MS were 90.31% and 86.60%, respectively. This indicates that the TP removal effect of PS-MS was superior to that of SS-MS. The adsorption kinetics simulation showed that the adsorption of TP onto PS-GB was controlled by chemisorption and that the adsorption of TP onto SS-GB was controlled by physical adsorption. The chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N) removal of PS-MS were 9.30% and 10.70%, respectively, and the COD and NH4+-N removal of SS-MS were 54.60% and 62.08%, respectively. This indicates that the COD and NH4+-N removal effect of SS-MS were superior to PS-MS. This is the result of the combined action of the degradation by microalgal cells and adsorption by the carrier. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 5300 KiB  
Article
Numerical Simulation of the Basal Scraping Effect of Debris Flows Based on the Distance-Potential Discrete-Element Method
by Nan Ru, Xunnan Liu, Qiujing Zhou and Yintao Hu
Water 2025, 17(1), 27; https://doi.org/10.3390/w17010027 - 26 Dec 2024
Viewed by 768
Abstract
High-speed and long-runout landslides constitute one of the most devastating natural disasters. The scraping and erosion of the foundation by these landslides significantly alter the dynamic and catastrophic properties of the landslide mass. This study centered on the movement process of the landslide [...] Read more.
High-speed and long-runout landslides constitute one of the most devastating natural disasters. The scraping and erosion of the foundation by these landslides significantly alter the dynamic and catastrophic properties of the landslide mass. This study centered on the movement process of the landslide mass, utilizing numerical simulations to delve into the interactions and dynamic mechanisms between the landslide mass and the foundation. It examined how the erosion of the foundation by the landslide mass impacts its movement distance and accumulation pattern. By employing the distance-potential discrete-element method, which was proposed by the authors, this research simulated the movement process of the landslide mass from a mesoscopic viewpoint. Through precise characterization of the contact forces between blocks, the study sheds light on the interactions among blocks and the energy transfer process during the landslide movement. Furthermore, a comparative analysis was performed to assess the movement distance and accumulation pattern of the landslide mass under varying foundation conditions. The findings revealed that the distance-potential discrete-element method effectively captures the impact and scraping action of the landslide mass on the foundation. The block units within the scraping zone, stimulated by the landslide’s impact and scraping, transition from a stable to a dynamic state. Under the influence of unbalanced forces, these units exhibit rotational and forward-moving motions. The kinetic energy among the blocks is progressively transferred from the rear of the scraping zone to the front through contact interactions and is continuously dissipated through contact, friction, and other mechanical processes, ultimately resulting in a stable accumulation. Due to the scraping zone’s influence, the movement distance of the landslide mass decreases compared to rigid foundations, but the volume of the accumulation increases. Full article
Show Figures

Figure 1

16 pages, 1510 KiB  
Article
Enhanced Stability and Prolonged Insect-Repellent Action of Essential Oil-Loaded Nanostructured Lipid Carriers
by Aspasia Kechagia, Virginia D. Dimaki, Elena Mourelatou, Konstantinos Avgoustakis, Fotini N. Lamari and Sophia Hatziantoniou
Appl. Sci. 2024, 14(23), 11309; https://doi.org/10.3390/app142311309 - 4 Dec 2024
Viewed by 1777
Abstract
Mosquito-borne diseases are a global health concern, necessitating effective and long-lasting insect repellents. This study investigated the physicochemical properties, stability, release kinetics, and efficacy of nanostructured lipid carriers (NLCs) and conventional emulsions (CEs) containing essential oils (NLC EOs) for insect-repellent applications. The droplet [...] Read more.
Mosquito-borne diseases are a global health concern, necessitating effective and long-lasting insect repellents. This study investigated the physicochemical properties, stability, release kinetics, and efficacy of nanostructured lipid carriers (NLCs) and conventional emulsions (CEs) containing essential oils (NLC EOs) for insect-repellent applications. The droplet size of the CE was 18.46 ± 1.78 μm (Span 0.27 ± 0.06), while the NLC measured 136 ± 10.7 nm (PDI 0.26 ± 0.2) with a ζ-potential of –68 mV ± 2.2 mV (width 4.3 ± 0.1). EO incorporation did not significantly alter droplet size or ζ-potential. Gas chromatography–mass spectrometry confirmed an EO content of 8.57 ± 0.15 mg/mL in the CE EO and 7.75 ± 0.05 mg/mL in the NLC EO, with the NLC retaining a higher EO content over 90 days. Stability tests demonstrated consistent droplet sizes and ζ-potential for both formulations during storage. Release kinetics revealed diffusion-based release mechanisms, with the NLC providing a more sustained release than the CE. In a field test against mosquito species most frequently found in Greece, the NLC EO exhibited a significantly longer complete protection time (CPT) of 45 min, demonstrating more effective, long-lasting insect-repellent action. These findings revealed the NLC’s ability to retain volatile EO components efficiently, offering promising implications for long-lasting insect-repellent action. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

20 pages, 2905 KiB  
Article
(E)-2-Benzylidenecyclanones: Part XX—Reaction of Cyclic Chalcone Analogs with Cellular Thiols: Unexpected Increased Reactivity of 4-Chromanone- Compared to 1-Tetralone Analogs in Thia-Michael Reactions
by Gábor Bognár, Fatemeh Kenari, Zoltán Pintér, Igor D. Borges, Ademir J. Camargo, Heibbe C. B. Oliveira, Flávio Olimpio Sanches-Neto, Valter H. Carvalho-Silva, Hamilton B. Napolitano and Pál Perjési
Molecules 2024, 29(23), 5493; https://doi.org/10.3390/molecules29235493 - 21 Nov 2024
Viewed by 1022
Abstract
In vitro relative cytotoxicity (IC50 (IIb)/IC50 (IIIb) of (E)-3-(4′-methylbenzylidene)-4-chromanone (IIIb) towards human Molt 4/C8 and CEM T-lymphocytes showed a >50-fold increase in comparison to those of the respective tetralone derivative (IIb). [...] Read more.
In vitro relative cytotoxicity (IC50 (IIb)/IC50 (IIIb) of (E)-3-(4′-methylbenzylidene)-4-chromanone (IIIb) towards human Molt 4/C8 and CEM T-lymphocytes showed a >50-fold increase in comparison to those of the respective tetralone derivative (IIb). On the other hand, such an increase was not observed in the analogous 4-OCH3 (IIc and IIIc) derivatives. In order to study whether thiol reactivity—as a possible basis of the mechanism of action—correlates with the observed cytotoxicities, the kinetics of the non-enzyme catalyzed reactions with reduced glutathione (GSH) and N-acetylcysteine (NAC) of IIIb and IIIc were investigated. The reactivity of the compounds and the stereochemical outcome of the reactions were evaluated using high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Molecular modeling calculations were performed to rationalize the unexpectedly higher thiol reactivity of the chromanones (III) compared to the carbocyclic analog tetralones (II). The results indicate the possible role of spontaneous thiol reactivity of compounds III in their recorded biological effects. Full article
Show Figures

Figure 1

23 pages, 4260 KiB  
Article
A Thermogravimetric Analysis of Biomass Conversion to Biochar: Experimental and Kinetic Modeling
by Cătălina Călin, Elena-Emilia Sîrbu, Maria Tănase, Romuald Győrgy, Daniela Roxana Popovici and Ionuț Banu
Appl. Sci. 2024, 14(21), 9856; https://doi.org/10.3390/app14219856 - 28 Oct 2024
Cited by 12 | Viewed by 3780
Abstract
This study investigates the pyrolytic decomposition of apple and potato peel waste using thermogravimetric analysis (TGA). In addition, using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the influence of pyrolysis temperature on the physicochemical characteristics [...] Read more.
This study investigates the pyrolytic decomposition of apple and potato peel waste using thermogravimetric analysis (TGA). In addition, using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the influence of pyrolysis temperature on the physicochemical characteristics and structural properties of biochar was studied. The degradation of biomass samples was studied between 25 °C and 800 °C. Although apple and potato peel decomposition present similar thermogravimetric profiles, there are some differences that can be evidenced from DTG curves. Potato peel showed one degradation peak in the range 205–375 °C with 50% weight loss; meanwhile, the apple peel exhibited two stages: one with a maximum at around 220 °C and about 38% weight loss caused by degradation of simple carbohydrates and a second peak between 280 °C and 380 °C with a maximum at 330 °C, having a weight loss of approximately 24%, attributed to cellulose degradation. To gain more insight into the phenomena involved in biomass conversion, the kinetics of the reaction were analyzed using thermal data collected in non-isothermal conditions with a constant heating rate of 5, 10, 20, or 30 °C /min. The kinetic analysis for each decomposed biomass (apple and potato) was carried out based on single-step and multi-step type techniques by combining the Arrhenius form of the decomposition rate constant with the mass action law. The multi-step approaches provided further insight into the degradation mechanisms for the whole range of the decomposition temperatures. The effect of temperature on biomass waste structure showed that the surface morphologies and surface functional groups of both samples are influenced by the pyrolysis temperature. A higher pyrolysis temperature of 800 °C results in the disappearance of the bands characteristic of the hydroxyl, aliphatic, ether, and ester functional groups, characteristic of a porous surface with increased adsorption capacity. Therefore, this study concludes that biomass waste samples (apple and potato) can produce high yields of biochar and are a potential ecological basis for a sustainable approach. The preliminary adsorption tests show a reasonably good nitrate removal capacity for our biochar samples. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

18 pages, 739 KiB  
Article
Basal State Calibration of a Chemical Reaction Network Model for Autophagy
by Bence Hajdú, Orsolya Kapuy and Tibor Nagy
Int. J. Mol. Sci. 2024, 25(20), 11316; https://doi.org/10.3390/ijms252011316 - 21 Oct 2024
Viewed by 1131
Abstract
The modulation of autophagy plays a dual role in tumor cells, with the potential to both promote and suppress tumor proliferation. In order to gain a deeper understanding of the nature of autophagy, we have developed a chemical reaction kinetic model of autophagy [...] Read more.
The modulation of autophagy plays a dual role in tumor cells, with the potential to both promote and suppress tumor proliferation. In order to gain a deeper understanding of the nature of autophagy, we have developed a chemical reaction kinetic model of autophagy and apoptosis based on the mass action kinetic models that have been previously described in the literature. It is regrettable that the authors did not provide all of the information necessary to reconstruct their model, which made their simulation results irreproducible. In this study, based on an extensive literature review, we have identified concentrations for each species in the stress-free, homeostatic state. These ranges were randomly sampled to generate sets of initial concentrations, from which the simulations were run. In every case, abnormal behavior was observed, with apoptosis and autophagy being activated, even in the absence of stress. Consequently, the model failed to reproduce even the basal conditions. Detailed examination of the model revealed erroneous reactions, which were corrected. The influential kinetic parameters of the corrected model were identified and optimized using the Optima++ code. The model is now capable of simulating homeostatic states, and provides a suitable basis for further model development to describe cell response to various stresses. Full article
(This article belongs to the Special Issue Advances in Cell Signaling Pathways and Signal Transduction)
Show Figures

Figure 1

16 pages, 5445 KiB  
Article
Pharmaceutically Active Compound (PhAC) Degradation by Means of Cold Plasma Jet Treatment
by Alkistis Kanteraki, Ekavi Aikaterini Isari, Eleni Grilla, Konstantinos Giotis, Ioannis Kalavrouziotis and Panagiotis Svarnas
Plasma 2024, 7(3), 733-748; https://doi.org/10.3390/plasma7030038 - 16 Sep 2024
Viewed by 1551
Abstract
The occurrence of emerging micropollutants of pharmaceutically active compounds (PhACs) in the environment poses a public health concern. Due to PhAC persistence and toxicity even at low concentrations, advanced oxidation processes (AOPs) have gained interest as effective treatment methods. In this context, the [...] Read more.
The occurrence of emerging micropollutants of pharmaceutically active compounds (PhACs) in the environment poses a public health concern. Due to PhAC persistence and toxicity even at low concentrations, advanced oxidation processes (AOPs) have gained interest as effective treatment methods. In this context, the present study focuses on the application of a dielectric barrier discharge (DBD)-based plasma jet to Diclofenac (DCF) and Sulfamethoxazole (SMX) degradation in aqueous media. Plasma is sustained by continuous-wave sinusoidal high-voltage of audio frequencies, and negligible total harmonic distortion, in a helium–air mixture. The target pharmaceuticals are chosen based on anticipation of their occurrence due to rehabilitation center (DCF) and hospital (SMX) effluents in sewage systems. The degradation rates are determined by Liquid Chromatography Triple-Quadrupole Mass Spectroscopy (LC-MS/MS). Removal efficiency close to 100%, after 20 min of plasma treatment in the case of DCF at an initial concentration of 50 ppb, is achieved. The post-treatment action of the plasma-induced reactants on PhAC degradation over a day-scale period is studied. The results provide an insight into the dynamic degradation (kinetics) of both DCF and SMX, and they overall highlight the potentiality of the process under consideration for sewage remediation. Full article
Show Figures

Graphical abstract

21 pages, 8291 KiB  
Article
Enrichment and Evaluation of Antitumor Properties of Total Flavonoids from Juglans mandshurica Maxim
by Shuli Yang, Guodong Chu, Jiacheng Wu, Guofeng Zhang, Linna Du and Ruixin Lin
Molecules 2024, 29(9), 1976; https://doi.org/10.3390/molecules29091976 - 25 Apr 2024
Cited by 4 | Viewed by 1499
Abstract
Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs [...] Read more.
Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs by macroporous resins were first obtained. The loading concentration, flow rate, and loading volume of raw flavonoid extracts were 1.4 mg/mL, 2.4 BV/h, and 5 BV, respectively, and for desorption, 60% ethanol (4 BV) was selected to elute JMFs-loaded AB-8 resin at a flow rate of 2.4 BV/h. This adsorption behavior can be explained by the pseudo-second-order kinetic model and Langmuir isotherm model. Subsequently, JMFs were identified using Fourier transform infrared combined with high-performance liquid chromatography and tandem mass spectrometry, and a total of 156 flavonoids were identified. Furthermore, the inhibitory potential of JMFs on the proliferation, migration, and invasion of HepG2 cells was demonstrated. The results also show that exposure to JMFs induced apoptotic cell death, which might be associated with extrinsic and intrinsic pathways. Additionally, flow cytometry detection found that JMFs exposure triggered S phase arrest and the generation of reactive oxygen species in HepG2 cells. These findings suggest that the JMFs purified in this study represent great potential for the treatment of liver cancer. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

20 pages, 5080 KiB  
Article
A Study on the Pyrolysis Behavior and Product Evolution of Typical Wood Biomass to Hydrogen-Rich Gas Catalyzed by the Ni-Fe/HZSM-5 Catalyst
by Xueqin Li, Yan Lu, Peng Liu, Zhiwei Wang, Taoli Huhe, Zhuo Chen, Youqing Wu and Tingzhou Lei
Catalysts 2024, 14(3), 200; https://doi.org/10.3390/catal14030200 - 19 Mar 2024
Cited by 6 | Viewed by 2467
Abstract
The thermo-chemical conversion of biomass wastes is a practical approach for the value-added reclamation of bioenergy in large quantities, and pyrolysis plays a core role in this process. In this work, poplar (PR) and cedar (CR) were used as staple wood biomasses to [...] Read more.
The thermo-chemical conversion of biomass wastes is a practical approach for the value-added reclamation of bioenergy in large quantities, and pyrolysis plays a core role in this process. In this work, poplar (PR) and cedar (CR) were used as staple wood biomasses to investigate the apparent kinetics of TG/DTG at different heating rates. Secondly, miscellaneous wood chips (MWC), in which PR and CR were mixed in equal proportion, were subjected to comprehensive investigations on their pyrolysis behavior and product evolution in a fixed bed reactor with pyrolysis temperature, catalyst, and the flow rate H2O steam as influencing factors. The results demonstrated that both PR and CR underwent three consecutive pyrolysis stages, the TG/DTG curves shifted to higher temperatures, and the peak temperature intervals also enhanced as the heating rate increased. The kinetic compensation effect expression and apparent reaction kinetic model of CR and PR pyrolysis were obtained based on the law of mass action and the Arrhenius equation; the reaction kinetic parameter averages of Ea and A of its were almost the same, which were about 72.38 kJ/mol and 72.36 kJ/mol and 1147.11 min−1 and 1144.39 min−1, respectively. The high temperature was beneficial for the promotion of the pyrolysis of biomass, increased pyrolysis gas yield, and reduced tar yield. This process was strengthened in the presence of the catalyst, thus significantly increasing the yield of hydrogen-rich gas to 117.9 mL/g-biomass. It was observed that H2O steam was the most effective activator for providing a hydrogen source for the whole reaction process, promoted the reaction to proceed in the opposite direction of H2O steam participation, and was beneficial to the production of H2 and other hydrocarbons. In particular, when the flow rate of H2O steam was 1 mL/min, the gas yield and hydrogen conversion were 76.94% and 15.90%, and the H2/CO was 2.07. The yields of H2, CO, and CO2 in the gas formation were significantly increased to 107.35 mL/g-biomass, 53.70 mL/g-biomass, and 99.31 mL/g-biomass, respectively. Therefore, H2 was the most dominant species among gas products, followed by C-O bond-containing species, which provides a method for the production of hydrogen-rich gas and also provides ideas for compensating or partially replacing the fossil raw material for hydrogen production. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

Back to TopTop