Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = martensite transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10923 KB  
Article
Effect of Electropolishing on the Microstructure and Tribological Properties of Electrolyte-Plasma Borided Layers on 30KhGSA Steel
by Laila Sulyubayeva, Nurbol Berdimuratov, Daryn Baizhan, Temirlan Alimbekuly and Balym Alibekova
Materials 2025, 18(21), 4867; https://doi.org/10.3390/ma18214867 - 24 Oct 2025
Viewed by 206
Abstract
The study investigates the effect of plasma-electrolytic polishing on the structure and wear resistance of 30KhGSA steel after plasma-electrolytic boriding. Plasma-electrolytic boriding was carried out in a boron-containing electrolyte at a temperature of 900 °C, which ensured the formation of a hardened modified [...] Read more.
The study investigates the effect of plasma-electrolytic polishing on the structure and wear resistance of 30KhGSA steel after plasma-electrolytic boriding. Plasma-electrolytic boriding was carried out in a boron-containing electrolyte at a temperature of 900 °C, which ensured the formation of a hardened modified layer consisting of a surface oxide layer, a subsequent zone composed of boride phases FeB and Fe2B, as well as a transitional martensitic zone. To remove brittle oxide phases and reduce surface roughness, plasma-electrolytic polishing in an alkaline solution was applied, which made it possible to form a smoother and more stable surface. The results showed that plasma-electrolytic boriding increases the microhardness up to 1500–1600 HV0.1, which is 5–6 times higher compared to untreated steel, and reduces the friction coefficient and wear rate. However, the borided layers exhibit brittleness and surface roughness. Subsequent plasma-electrolytic polishing made it possible to reduce surface roughness by nearly an order of magnitude, decrease the friction coefficient by more than 30%, and almost halve the wear rate. The obtained results confirm the high potential of this combined technology for strengthening structural steel components operating under high loads and severe wear conditions. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 9534 KB  
Article
Failure Analysis of Gear on Rail Transit
by An-Xia Pan, Chao Wen, Haoyu Wang, Ping Tao, Xuedong Liu, Yi Gong and Zhen-Guo Yang
Materials 2025, 18(20), 4773; https://doi.org/10.3390/ma18204773 - 18 Oct 2025
Viewed by 392
Abstract
The gear transmission system is a safety-critical component in rail transit, typically designed for a service life exceeding 20 years. Failure analysis of such systems remains a key focus for railway engineers. This study systematically investigates four representative cases of premature gear failure [...] Read more.
The gear transmission system is a safety-critical component in rail transit, typically designed for a service life exceeding 20 years. Failure analysis of such systems remains a key focus for railway engineers. This study systematically investigates four representative cases of premature gear failure in high-speed trains using a standardized analytical procedure that includes visual inspection, chemical analysis, metallographic examination, scanning electron microscopy, and hardness testing. The results identify four primary root causes: subsurface slag inclusions in raw materials, inadequate heat treatment leading to a non-martensitic layer (∼60 μm) at the tooth root, grinding-induced temper burns (crescent-shaped "black spots") accompanied by a hardness drop of ∼100–150 HV, and insufficient lubrication. The interdependencies between these factors and failure mechanisms, e.g., fatigue cracking, spalling, and thermal scuffing, are analyzed. This work provides an evidence-based framework for improving gear reliability and proposes targeted countermeasures, such as ultrasonic inclusion screening and real-time grinding temperature control, to extend operational lifespans. Full article
Show Figures

Figure 1

14 pages, 2909 KB  
Article
Research on Intermittent Tensile Deformation to Improve the Properties of Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Yong Huang, Xiaoliang Wu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(10), 1158; https://doi.org/10.3390/coatings15101158 - 4 Oct 2025
Viewed by 435
Abstract
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected [...] Read more.
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected by the degree of intermittent deformation. Small intermittent deformation can produce a good microstructure with uniform distribution, low martensite content, and weak texture, optimizing comprehensive mechanical properties by improving ductility, yield strength, and tensile strength. On the contrary, excessive intermittent deformation increases martensitic transformation and enhances texture, leading to a transition from ductile fracture to brittle fracture. In addition, small intermittent deformations improve corrosion resistance by promoting the formation of a stable passivation film. The microstructural changes affect the deformation mechanism and surface passivation film of stainless steel, making its mechanical strength and corrosion resistance superior to larger intermittent deformation amounts. Small intermittent deformation can improve the mechanical and corrosion properties of 304 stainless steel. This study provides a reference for the formation and performance control of metal materials and has certain practical value. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

21 pages, 32435 KB  
Article
Structure and Magnetic Properties of Vanadium-Doped Heusler Ni-Mn-In Alloys
by Dmitry Kuznetsov, Elena Kuznetsova, Alexey Mashirov, Alexander Kamantsev, Denis Danilov, Georgy Shandryuk, Sergey Taskaev, Irek Musabirov, Ruslan Gaifullin, Maxim Kolkov, Victor Koledov and Pnina Ari-Gur
Nanomaterials 2025, 15(19), 1466; https://doi.org/10.3390/nano15191466 - 24 Sep 2025
Viewed by 527
Abstract
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) [...] Read more.
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) confirm the main sensitivity of the martensitic transition temperature to vanadium doping and to an applied magnetic field. This makes this family of shape-memory alloys promising for use in numerous applications, such as magnetocaloric cooling and MEMS technology. Diffuse electron scattering was analyzed, and the structures of the austenite and martensite were determined, including the use of TEM in situ experiments during heating and cooling for an alloy with a 0.3 at.% concentration of V. In the austenitic state, the alloys are characterized by a high-temperature-ordered phase of the L21 type. The images show nanodomain structures in the form of tweed contrast and contrast from antiphase domains and antiphase boundaries. The alloy microstructure in the temperature range from the martensitic finish to 113 K consists of a six-layer modulated martensite, with 10 M and 14 M modulation observed in local zones. The morphology of the double structure of the modulated martensite structure inherits the morphology of the nanodomain structure in the parent phase. This suggests that it is possible to control the structure of the high-temperature austenite phase and the temperature of the martensitic transition by alloying and/or rapidly quenching from the high-temperature phase. In addition, attention is paid to maintaining fine interface structures. High-resolution transmission electron microscopy showed good coherence along the austenite–martensite boundary. Full article
Show Figures

Graphical abstract

23 pages, 18943 KB  
Article
Influence of Tramp Elements on Phase Transformations, Microstructure and Hardness of a 0.3 wt.%C Low-Alloyed Steel
by Marek Gocnik, Lukas Hatzenbichler, Michael Meindlhumer, Phillip Haslberger, Matthew Galler, Andreas Stark, Claes-Olof A. Olsson, Jozef Keckes and Ronald Schnitzer
Metals 2025, 15(9), 1053; https://doi.org/10.3390/met15091053 - 20 Sep 2025
Viewed by 652
Abstract
Decarbonizing the steel industry relies on a transition from carbon-intensive blast furnace technology to scrap-based secondary steelmaking using electric arc furnaces. This transition introduces tramp elements and leads to their gradual accumulation, which can significantly influence the functional properties of chemically sensitive steel [...] Read more.
Decarbonizing the steel industry relies on a transition from carbon-intensive blast furnace technology to scrap-based secondary steelmaking using electric arc furnaces. This transition introduces tramp elements and leads to their gradual accumulation, which can significantly influence the functional properties of chemically sensitive steel grades. In this study, the combined impact of several tramp element contents on the phase transformations, microstructure and mechanical properties of a 0.3 wt.% C low-alloyed steel was investigated. To achieve this, a reference alloy was produced using the conventional blast furnace production route. It was then compared with two trial alloys, which contained intentionally elevated levels of tramp elements and were produced through an experimental melting route designed to simulate scrap-based electric arc furnace production. The experimental characterization included light optical and electron microscopy, electron back-scatter diffraction, in situ synchrotron high-energy X-ray diffraction coupled with dilatometry, and Vickers hardness testing. The results revealed the formation of displacive transformation products such as martensite and showed that austenite was retained in the tramp element-enriched trial alloys. The combination of solid solution strengthening and martensitic transformation led to a gradual increase in hardness. These findings underscore the critical role of tramp elements in determining the microstructural and mechanical response of steels produced from scrap-based feedstock. Full article
Show Figures

Figure 1

15 pages, 4007 KB  
Article
Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling
by Huang Zhang, Pengxiang Yan, Haoran Guo, Ze Chen, Zihao Hou and Yaoming Li
J. Manuf. Mater. Process. 2025, 9(9), 319; https://doi.org/10.3390/jmmp9090319 - 20 Sep 2025
Viewed by 579
Abstract
The unique cutting–burnishing coupling effect in BTA deep hole drilling generates a high-hardness and -brittleness white layer (ultrafine martensitic layer), which will degrade component performance and accelerate tool wear. This work investigated the formation mechanism and the mechanical properties of the white layer [...] Read more.
The unique cutting–burnishing coupling effect in BTA deep hole drilling generates a high-hardness and -brittleness white layer (ultrafine martensitic layer), which will degrade component performance and accelerate tool wear. This work investigated the formation mechanism and the mechanical properties of the white layer generated in three distinct regions (the cutting edge radius zone, cutting–burnishing corner zone, and guide pad edge zone) through nanoindentation, SEM and BSE. The microstructure and thickness of the white layer under different feedrates are investigated. The correlations between the white layer, the structure of guide pads, and wear behaviors of the TiN- and TiCN/Al2O3-coated guide pads are revealed. Variations in hardness are observed across different zones. The white layer undergoes a soft-to-hard transition due to rapid quenching and the cutting–burnishing effect at the sharp corner. The highest hardness (9.758 GPa) was observed in the guide pad zone, accompanied by grain refinement. The chamfered TiN-coated guide pad exhibits superior wear resistance but suffers fatigue cracking and adhesive wear in the initial guiding zone. The TiCN/Al2O3-coated pad with rounded corners experiences brittle spalling in the mid-to-rear guiding zone. These findings enhance the understanding of the white layer formation in deep hole drilling and provide a foundation for tool optimization. Full article
Show Figures

Figure 1

14 pages, 4634 KB  
Article
Functionally Graded WC-Reinforced Stainless-Steel Composites via Casting: Microstructure and Wear Performance
by Aida B. Moreira, Laura M. M. Ribeiro and Manuel F. Vieira
J. Compos. Sci. 2025, 9(9), 495; https://doi.org/10.3390/jcs9090495 - 12 Sep 2025
Viewed by 607
Abstract
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired [...] Read more.
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired locations in sand molds and reacted in situ with the molten steel during casting. This process generated a metallurgically bonded reinforcement zone with a continuous microstructural and compositional gradient, characteristic of a Functionally Graded Material (FGM). Near the surface, the microstructure consisted of a martensitic matrix with WC particles and (W,Fe,Cr)6C carbides, while towards the base metal, it transitioned to austenitic dendrites with an interdendritic network of Cr- and W-rich carbides, including (W,Fe,Cr)6C, (Fe,Cr,W)7C3, and (Fe,Cr,W)23C6. Vickers hardness measurements revealed surface-adjacent values (969 ± 72 HV 30) approximately six times higher than those of the base alloy, and micro-abrasion tests demonstrated a 70% reduction in micro-abrasion wear rate in the reinforced zones. These findings show that WC dissolution during casting enables tailored hardness and abrasion wear performance, offering an accessible manufacturing solution for high-demand mechanical environments. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

16 pages, 22049 KB  
Article
Effect of Heat Treatment on Microstructures and Mechanical Properties of TC4 Alloys Prepared by Selective Laser Melting
by Jian Zhang, Yuhuan Shi, Su Shen, Shengdong Zhang, Honghui Ding and Xiaoming Pan
Materials 2025, 18(17), 4126; https://doi.org/10.3390/ma18174126 - 2 Sep 2025
Viewed by 855
Abstract
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress [...] Read more.
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress relief annealing at 600 °C and high-temperature annealing at 800 °C. The effects of heat treatment temperature on phase composition, microstructural morphology, grain orientation, and mechanical properties were investigated. Meanwhile, the microstructural evolution and fracture mechanisms during the heat treatment process were analyzed. The results indicate that after annealing at 600 °C, the needle-like α′ phase transforms into elongated α, and nano-β phase increases. When annealed at 800 °C, the α′ phase completely transforms into a more stable lath-shaped α phase and a short rod-shaped β phase, with the nano-β phase disappearing. The texture orientation gradually shifts from <0001> towards <01-10>, where slip systems are more active. Additionally, heat treatment promotes the transition of grain boundaries to high-angle grain boundaries, thereby alleviating stress concentration and enhancing solid-solution strengthening. After heat treatment, the ultimate tensile strength of the material slightly decreases, but the elongation significantly increases. As the annealing temperature increased, the elongation (EL) improved from 5.22% to 11.43%. Following high-temperature annealing at 800 °C, necking and larger dimples appear on the fracture surface, and the fracture mechanism shifts from a mixed brittle–ductile fracture to a ductile fracture. This work provides a theoretical basis for improving the microstructures and properties of SLM-fabricated TC4 alloys through heat treatment. Full article
Show Figures

Graphical abstract

16 pages, 9854 KB  
Article
Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering
by Bing Kong, Qian Jia, Guohuan Wang, Dong Tao and Zhong Yang
Metals 2025, 15(9), 970; https://doi.org/10.3390/met15090970 - 30 Aug 2025
Viewed by 797
Abstract
The induction quenching–tempering process typically enhances the surface strength and core toughness of alloy steels by utilizing the skin effect. However, the impact of parameters like quenching current and heating time on the microstructure and mechanical property of 34CrNiMo6 steel crankshafts remains unclear. [...] Read more.
The induction quenching–tempering process typically enhances the surface strength and core toughness of alloy steels by utilizing the skin effect. However, the impact of parameters like quenching current and heating time on the microstructure and mechanical property of 34CrNiMo6 steel crankshafts remains unclear. In this work, the microstructure of 34CrNiMo6 steel after induction quenching exhibits three distinct zones: a martensite hardened layer; a transition zone of martensite and tempered sorbite; and a matrix of tempered sorbite. As the induction current (400, 500, and 600 mA) and heating time (3, 5, and 7 s) increase, the hardened layer thickness enhances (up to 3.21 mm). Under the 600 mA and 7 s, the hardened layer reaches peak hardness and residual stress values of 521.48 HV and −330.12 MPa, showing a decreasing trend from surface to core. After tempering at 330 °C for 2 h, the hardened layer mainly consists of tempered martensite, and the surface hardness and residual stress decrease to 417.94 HV and −12.33 MPa. The temperature gradient from quenching balances after tempering, with martensitic phase transformation and stress redistribution reducing hardness and residual stress. Furthermore, the induction quenching–tempering process enhances the toughness of 34CrNiMo6 steel when compared to the untreated specimen, boosting its tensile yield strength, elongation, and tensile strength by 15.3%, 14.9%, and 19.5%, respectively. This work deepens the understanding of induction quenching–tempering process and provides valuable insights for designing alloy steels with excellent mechanical properties. Full article
Show Figures

Figure 1

17 pages, 3251 KB  
Article
Determination of Final Ferrite Grain Size During Multiple-Stage Controlled Cooling of Low-Carbon, Low-Alloy Steels
by Nathan Dixon, Carl Slater, Jinlong Du and Claire Davis
Metals 2025, 15(9), 956; https://doi.org/10.3390/met15090956 - 28 Aug 2025
Viewed by 701
Abstract
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a [...] Read more.
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a large undercooling, which is the driving force for ferrite to form. The second stage involves slow natural (air) cooling, where the cooling rates and the transition temperature from water to air cooling are carefully controlled. This is crucial to prevent the formation of bainite or martensite. Ferrite grain sizes can be predicted for continuous cooling and isothermal transformation based on the prior austenite grain size, composition and cooling rate/isothermal transformation temperature. However, predictions for multiple-cooling-stage transformations have not been reported. In this work, EN S355-grade steel was used to study ferrite grain size development during continuous cooling, isothermal holding and complex (two-stage or multi-stage) cooling. Dilatometry and microstructure assessment was used to study the relationship between the final ferrite grain size and undercooling at which 40% of the ferrite formed. It was found that any changes in cooling rate/temperature (including a possible ‘bounce back’ in temperature due to latent heat formation) after 40% of the ferrite had formed had a negligible effect on the final ferrite grain size, assuming that re-austenitization or bainite formation was avoided. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels (2nd Edition))
Show Figures

Figure 1

13 pages, 14139 KB  
Article
Low-Temperature Tempering to Tailor Microstructure, Mechanical and Contact Fatigue Performance in the Carburized Layer of an Alloy Steel for Heavy-Duty Gears
by Qingliang Li, Jian Wang, Gang Cheng and Qing Tao
Metals 2025, 15(9), 934; https://doi.org/10.3390/met15090934 - 22 Aug 2025
Viewed by 663
Abstract
Taking a typical carburized alloy steel for heavy-duty gears as the research object, this work regulates carburizing–quenching and tempering processes to conduct a layer-by-layer analysis of gradient-distributed microstructures and mechanical properties in the carburized layer. The effects of tempering temperature on martensite evolution, [...] Read more.
Taking a typical carburized alloy steel for heavy-duty gears as the research object, this work regulates carburizing–quenching and tempering processes to conduct a layer-by-layer analysis of gradient-distributed microstructures and mechanical properties in the carburized layer. The effects of tempering temperature on martensite evolution, mechanical properties, and wear resistance were specifically investigated. Results demonstrate that carburizing–quenching followed by cryogenic treatment generates high-carbon martensite at the surface, progressively transitioning to lath martensite towards the core. Low-temperature tempering promotes fine carbide precipitation, while elevated temperatures cause carbide coarsening. Specimens tempered at 175 °C achieve surface hardness of 800 HV and near-surface compressive yield strength of 2940 MPa. These samples exhibit 13% lower wear mass loss compared to 240 °C tempered counterparts, demonstrating superior wear resistance characterized by relatively flat wear surfaces, uniform contact stress distribution, and reduced cross-sectional plastic deformation zones. Key strengthening mechanisms at lower tempering temperatures involve solution strengthening, dislocation strengthening, and partial precipitation strengthening from carbides. Coherent carbides formed under these conditions impede fatigue dislocation motion via shearing mechanisms to suppress plastic deformation and fatigue crack initiation under contact fatigue stress, thereby enhancing wear performance. Full article
(This article belongs to the Special Issue Recent Advances in Fatigue and Corrosion Properties of Steels)
Show Figures

Figure 1

18 pages, 9049 KB  
Article
Study on the Wear Performance of 20CrMnTi Gear Steel with Different Penetration Gradient Positions
by Yingtao Zhang, Shaokui Wei, Wuxin Yang, Jiajian Guan and Gong Li
Materials 2025, 18(15), 3685; https://doi.org/10.3390/ma18153685 - 6 Aug 2025
Viewed by 527
Abstract
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results [...] Read more.
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results show that the microstructure composition in the gradient direction of the carburized layer gradually transitions from martensite and residual austenite to a martensite–bainite mixed structure, and eventually transforms to fully bainitic in the matrix. With the extension of carburizing time, both the effective carburized layer depth and the hardened layer depth significantly increase. Wear track morphology analysis reveals that the wear track depth gradually becomes shallower and narrower, and the wear rate increases significantly with increasing load. However, the friction coefficient shows little sensitivity to changes in carburizing time and load. Further investigations show that as the carburized layer depth increases, the carbon concentration and hardness of the samples gradually decrease, resulting in an increase in the average wear rate and a progressive worsening of wear severity. After the wear tests, different depths of plowing grooves, spalling, and fish-scale-like features were observed in the wear regions. Additionally, with the increase in load and carburized layer depth, both the width and depth of the wear tracks significantly increased. The research results provide a theoretical basis for optimizing the surface carburizing process of 20CrMnTi steel and improving its wear resistance. Full article
Show Figures

Figure 1

19 pages, 12177 KB  
Article
Comparison of Microstructure and Hardening Ability of DCI with Different Pearlite Contents by Laser Surface Treatment
by Zile Wang, Xianmin Zhou, Daxin Zeng, Wei Yang, Jianyong Liu and Qiuyue Shi
Metals 2025, 15(7), 734; https://doi.org/10.3390/met15070734 - 30 Jun 2025
Viewed by 436
Abstract
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to [...] Read more.
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to facilitate the scientific selection of DCI for specific applications. In this study, a Laserline-LDF3000 fiber-coupled semiconductor laser with a rectangular spot was used to harden the surface of ductile cast irons (DCIs) with different pearlite contents. The hardened surface layer having been solid state transformed (SST) and with or without being melted–solidified (MS) was obtained under various process parameters. The microstructure, hardened layer depth, hardness and hardening ability were analyzed and compared as functions of pearlite contents and laser processing parameters. The results show that the MS layers on the DCIs with varied pearlite contents have similar microstructures consisting of fine transformed ledeburite, martensite and residual austenite. The microstructure of the SST layer includes martensite, residual austenite and ferrite, whose contents vary with the pearlite content of DCI. In the pearlite DCI, martensite and residual austenite are found, while in ferrite DCI, there is only a small amount of martensite around the graphite nodule, with a large amount of unaltered ferrite remaining. There exists no significant difference in the hardness of MS layers among DCIs with different pearlite contents. Within the SST layer, the variation in the hardness value in the pearlite DCI is relatively small, but it gradually decreases along the depth in the ferrite DCI. In the transition region between the SST layer and the base metal (BM), there is a steep decrease in hardness in the pearlite DCI, but it decreases gently in the ferrite DCI. The depth of the hardened layer increases slightly with the increase in the pearlite content in the DCI; however, the effective hardened depth and the hardening ability increase significantly. When the pearlite content of DCI increases from 10% to 95%, its hardening ability increases by 1.1 times. Full article
Show Figures

Figure 1

14 pages, 1520 KB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 549
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

22 pages, 5716 KB  
Article
Order–Disorder-Type Transitions Through a Multifractal Procedure in Cu-Zn-Al Alloys—Experimental and Theoretical Design
by Constantin Plăcintă, Valentin Nedeff, Mirela Panainte-Lehăduş, Elena Puiu Costescu, Tudor-Cristian Petrescu, Sergiu Stanciu, Maricel Agop, Diana-Carmen Mirilă and Florin Nedeff
Entropy 2025, 27(6), 587; https://doi.org/10.3390/e27060587 - 30 May 2025
Viewed by 730
Abstract
Experimental and theoretical design on thermal and structural properties of Cu-Zn-Al alloys are established. As such, from an experimental point of view, differential thermal analysis has been performed with the help of a DSC Netzsch STA 449 F1 Jupiter calorimeter with high levels [...] Read more.
Experimental and theoretical design on thermal and structural properties of Cu-Zn-Al alloys are established. As such, from an experimental point of view, differential thermal analysis has been performed with the help of a DSC Netzsch STA 449 F1 Jupiter calorimeter with high levels of sensitivity, and the structural analysis has been accomplished through X-ray diffraction and SEM analysis. An unusual specific property for a metallic material has been discovered, which is known as “rubber-type behavior”, a characteristic determined by micro-structural changes. From the theoretical point of view, the thermal transfer in Cu-Zn-Al is presented by assimilating this alloy, both structurally and functionally, with a multifractal, situation in which the order–disorder transitions assimilated with thermal “dynamics” of Cu-Zn-Al, are mimed through transitions from non-multifractal to multifractal curves. In such a context, the thermal expansion velocity contains both the propagation speed of the phase transformation (be it a direct one: austenitic–martensitic transformation, or an indirect one: martensitic–austenitic transformation) and the thermal diffusion speed. Then, through self-modulations of the thermal field, the Cu-Zn-Al alloy will self-structure in channel-type or cellular-type thermal patterns, which can be linked to obtained experimental data. Consequently, since the thermal conductivity becomes a function of the observation scale, and heat transfer is modified to reflect the multifractal, non-differentiable paths in the material, it leads to anomalous diffusion and complex thermal behaviors. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

Back to TopTop