Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering
Abstract
1. Introduction
2. Experiments
2.1. Material Preparation
2.2. Microstructural Characterization
2.3. Mechanical Property Measurement
3. Results and Discussion
3.1. Microstructural Evolution
3.1.1. Quenching Current Effect
3.1.2. Quenching Duration Effect
3.1.3. Hardened Layer Analysis
3.2. Microhardness Evolution
3.2.1. Quenching Current Effect
3.2.2. Quenching Duration Effect
3.3. Residual Stress Evolution
3.4. Tensile Property Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, A.; Ali, M.; Ghosh, S.; Jaskari, M.; Allam, T.; Schwaiger, R.; Eissa, M.; Mattar, T. Comparative study of high-cycle fatigue and failure mechanisms in ultrahigh-strength CrNiMoWMnV low-alloy steels. Metals 2024, 14, 1238. [Google Scholar] [CrossRef]
- Mahdavi, Y.; Qods, F.; Ghasemi, B. Investigation of wear behavior of 34CrNiMo6 low alloy steel coated by PACVD method. JOM 2024, 76, 2189–2200. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Jing, G.; Zhang, L.; Hou, Y.; Pang, J. Low cycle fatigue behavior and failure mechanism of 34CrNiMo6 steel used as connecting rod for diesel engine. J. Phys. Conf. Ser. 2024, 2842, 012056. [Google Scholar] [CrossRef]
- Macek, W.; Branco, R.; Podulka, P.; Masoudi Nejad, R.; Costa, J.D.; Ferreira, J.A.M.; Capela, C. The correlation of fractal dimension to fracture surface slope for fatigue crack initiation analysis under bending-torsion loading in high-strength steels. Measurement 2023, 218, 113169. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Awd, M.; Walther, F.; Pereira, M.V. Influence of the loading frequency on very high cycle fatigue behavior of structural steels. Fatigue Fract. Eng. Mater. Struct. 2024, 48, 751–763. [Google Scholar] [CrossRef]
- Qiu, C.; Liu, F.; Huang, C.; Liu, F.; Shu, Z.; You, Q.; Zheng, H.; Wang, L.; Yu, D. Effect of Y2O3 on microstructure and mechanical properties of 34CrNiMo6 steel fabricated by laser-directed energy deposition. J. Manuf. Process. 2024, 119, 270–281. [Google Scholar] [CrossRef]
- Shi, X.; Lv, C.; Li, G.; Wang, K.; Chen, J.; Tang, J. Study on induction hardening performance of 34CrNi3MoA steel crankshaft. Front. Mater. 2023, 10, 1240087. [Google Scholar] [CrossRef]
- Topuz, P. Microstructure of a chrome-boriding of induction hardened DIN Ck 45 steel. Mater. Test. 2022, 64, 1645–1650. [Google Scholar] [CrossRef]
- Prisco, U. Case microstructure in induction surface hardening of steels: An overview. Int. J. Adv. Manuf. Technol. 2018, 98, 2619–2637. [Google Scholar] [CrossRef]
- Fisk, M.; Lindgren, L.E.; Datchary, W.; Deshmukh, V. Modelling of induction hardening in low alloy steels. Finite Elem. Anal. Des. 2018, 144, 61–75. [Google Scholar] [CrossRef]
- Šapek, A.; Kalin, M.; Godec, M.; Donik, Č.; Markoli, B. Effect of feed rate during induction hardening on the hardening depth, microstructure, and wear properties of tool-grade steel work roll. J. Mater. Sci. Mater. Eng. 2024, 19, 42. [Google Scholar] [CrossRef]
- Tang, C.; Chen, B.; Fan, H. Induction hardening process of G18NiMoCr3-6 steel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 022085. [Google Scholar] [CrossRef]
- Areitioaurtena, M.; Segurajauregi, U.; Fisk, M.; Cabello, M.J.; Ukar, E. Numerical and experimental investigation of residual stresses during the induction hardening of 42CrMo4 steel. Eur. J. Mech.-A/Solids 2022, 96, 104766. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, S.; Ao, N.; Zhang, J.; Li, H.; Zhou, L.; Xu, P.; Su, Y. Fatigue crack non-propagation behavior of a gradient steel structure from induction hardened railway axles. Int. J. Fatigue 2023, 166, 107296. [Google Scholar] [CrossRef]
- Xing, X.; Huang, S.; Li, L.; Ouyang, J.; Gao, J.; Chen, S.; Peng, Z. Optimizing dislocation strengthening in high-strength medium-carbon steel via fast induction heating quenching & tempering. J. Mater. Res. Technol. 2023, 25, 832–839. [Google Scholar]
- Rodman, D.; Nürnberger, F.; Dalinger, A.; Schaper, M.; Krause, C.; Kästner, M.; Reithmeier, E. Tempering induction hardened 42CrMo4 steel helical gearwheels from residual heat using spray cooling. Steel Res. Int. 2013, 85, 415–425. [Google Scholar] [CrossRef]
- Zabihi, A.; Juoksukangas, J.; Hintikka, J.; Salminen, T.; Mäntylä, A.; Vaara, J.; Frondelius, T.; Vippola, M. Influence of displacement amplitude on fretting-induced friction and wear of steel in oil-lubricated contact. Tribol. Int. 2024, 193, 109451. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, C.; Liu, F.; Xia, C.; Ke, L. Microstructure and mechanical properties of 34CrNiMo6 steel repaired by friction stir processing. Materials 2019, 12, 279. [Google Scholar] [CrossRef]
- Gu, J.; Qin, Y.; Chen, Z.; Lu, Q. Effects of high frequency induction heating quenching and tempering on microstructure and hardness of 42CrMo Steel. Hot Work. Technol. 2010, 39, 160–162. [Google Scholar]
- Gong, B.; Duan, X.W.; Liu, J.S.; Liu, J.J. A physically based constitutive model of As-forged 34CrNiMo6 steel and processing maps for hot working. Vacuum 2018, 155, 345–357. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Wang, D.; Liu, Y.; Wu, Y.; Guo, Y. Research on erosion wear behavior of NiTi alloy coating fabricated via high-frequency induction heating technology. Wear 2024, 556–557, 205506. [Google Scholar] [CrossRef]
- Lu, S.-Q.; Chiu, L.-H.; Chang, P.-J.; Lin, C.-K. Effects of prior heat treatment and induction hardening on the properties of JIS SUJ3 bearing steel. Materials 2025, 18, 1797. [Google Scholar] [CrossRef]
- Wang, F.; Mao, K.; Li, B. Prediction of residual stress fields from surface stress measurements. Int. J. Mech. Sci. 2018, 140, 68–82. [Google Scholar] [CrossRef]
- Sun, J.; Dilger, K. Influence of initial residual stresses on welding residual stresses in ultra-high strength steel S960. J. Manuf. Process. 2023, 101, 259–268. [Google Scholar] [CrossRef]
- Peng, K.; Yu, D.; Zhang, P.; Wang, L.; Liao, Z.; Lu, Z.; Wu, G.; Song, C.; Li, L. Laminar plasma quenching-tempering: A rapid surface heat treatment technique for controllable modification of the rail steel. Surf. Coat. Technol. 2023, 473, 130029. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Han, E.-H.; Yang, C. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint. J. Nucl. Mater. 2018, 498, 9–19. [Google Scholar] [CrossRef]
- Holmberg, J.; Wendel, J.; Stormvinter, A. Progressive Induction Hardening: Measurement and Alteration of Residual Stresses. J. Mater. Eng. Perform. 2024, 33, 7770–7780. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Dong, L.; Liu, B.; Wang, H.; Shi, T.; Yuan, S.; Zhang, Y.; Ma, C. Study of microstructure evolution and fatigue crack extension properties of 42CrMo steel strengthened by induction hardening. J. Mater. Res. Technol. 2025, 35, 3887–3901. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Cheng, X.; Wang, H. Microstructural evolution of aerMet100 steel coating on 300M steel fabricated by laser cladding technique. Metall. Mater. Trans. A 2018, 49, 595–603. [Google Scholar] [CrossRef]
- Wang, W.; Liang, C.; Zeng, J.; Zhou, Y.; Chen, B.; He, H. Mechanism of tempered sorbite formation and related enhanced mechanical properties for a typical high carbon steel billet under strong cooling intensity. Metall. Mater. Trans. B 2021, 52, 4061–4069. [Google Scholar] [CrossRef]
- Hao, Q.; Qin, S.; Liu, Y.; Zuo, X.; Chen, N.; Huang, W.; Rong, Y. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Mater. Sci. Eng. A 2016, 662, 16–25. [Google Scholar] [CrossRef]
- Yen, H.-W.; Chiang, M.-H.; Lin, Y.-C.; Chen, D.; Huang, C.-Y.; Lin, H.-C. High-temperature tempered martensite embrittlement in quenched and tempered offshore steels. Metals 2017, 7, 253. [Google Scholar] [CrossRef]
- Huang, C.; Lin, X.; Liu, F.; Yang, H.; Huang, W. High strength and ductility of 34CrNiMo6 steel produced by laser solid forming. J. Mater. Sci. Technol. 2019, 35, 377–387. [Google Scholar] [CrossRef]
- Murdoch, H.A.; Field, D.M.; Szajewski, B.A.; McClenny, L.D.; Garza, A.; Rinderspacher, B.C.; Haile, M.A.; Limmer, K.R. Tempered hardness optimization of martensitic alloy steels. Integr. Mater. Manuf. Innov. 2023, 12, 301–320. [Google Scholar] [CrossRef]
- Li, H.Y.; Sun, H.L.; Bowen, P.; Knott, J.F. Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy. Int. J. Fatigue 2018, 108, 53–61. [Google Scholar] [CrossRef]
- Lu, S.-Q.; Chiu, L.-H. Effect of different microstructures on surface residual stress of induction-hardened bearing steel. Metals 2024, 14, 201. [Google Scholar] [CrossRef]
- Shi, X.-L.; Xiu, S.-C.; Su, H.-L. Residual stress model of pre-stressed dry grinding considering coupling of thermal, stress, and phase transformation. Adv. Manuf. 2019, 7, 401–410. [Google Scholar] [CrossRef]
Hardened Layer Thickness (mm) | 3 s Quenching | 3 s Tempering | 5 s Quenching | 5 s Tempering | 7 s Quenching | 7 s Tempering |
---|---|---|---|---|---|---|
400 mA | 0 | 0 | 0.71 | 1.02 | 2.11 | 2.03 |
500 mA | 0.51 | 1.18 | 1.32 | 1.71 | 2.64 | 2.24 |
600 mA | 0.63 | 1.40 | 1.75 | 2.13 | 2.93 | 3.21 |
Residual Stress | Hardened Layer (MPa) | Transition Zone (MPa) | Matrix (MPa) |
---|---|---|---|
500 mA, 7 s, quenching | −304.25 | −279.61 | −253.82 |
600 mA, 7 s, quenching | −330.12 | −288.72 | −270.18 |
500 mA, 7 s, tempering | −15.26 | −32.81 | −56.21 |
600 mA, 7 s, tempering | −12.33 | −44.49 | −73.48 |
Q&T | −273.12 | −277.54 | −276.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, B.; Jia, Q.; Wang, G.; Tao, D.; Yang, Z. Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering. Metals 2025, 15, 970. https://doi.org/10.3390/met15090970
Kong B, Jia Q, Wang G, Tao D, Yang Z. Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering. Metals. 2025; 15(9):970. https://doi.org/10.3390/met15090970
Chicago/Turabian StyleKong, Bing, Qian Jia, Guohuan Wang, Dong Tao, and Zhong Yang. 2025. "Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering" Metals 15, no. 9: 970. https://doi.org/10.3390/met15090970
APA StyleKong, B., Jia, Q., Wang, G., Tao, D., & Yang, Z. (2025). Microstructure and Mechanical Property Evolution of 34CrNiMo6 Steel via Induction Quenching and Tempering. Metals, 15(9), 970. https://doi.org/10.3390/met15090970