Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = maritime transport routes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 2143 KiB  
Article
Alternative Fuels in the Maritime Industry: Emissions Evaluation of Bulk Carrier Ships
by Diego Díaz-Cuenca, Antonio Villalba-Herreros, Teresa J. Leo and Rafael d’Amore-Domenech
J. Mar. Sci. Eng. 2025, 13(7), 1313; https://doi.org/10.3390/jmse13071313 - 8 Jul 2025
Viewed by 821
Abstract
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set [...] Read more.
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set of key performance indicators (KPIs) are evaluated, including total equivalent CO2 emissions (CO2eq), CO2eq emissions per unit of transport mass and CO2eq emissions per unit of transport mass per distance. The emissions analysis demonstrates that Liquified Natural Gas (LNG) paired with Marine Gas Oil (MGO) emerges as the most viable short-term solution in comparison with the conventional fuel oil propulsion. Synthetic methanol (eMeOH) paired with synthetic diesel (eDiesel) is identified as the most promising long-term fuel combination. When comparing the European Union (EU) emission calculation system (FuelEU) with the International Maritime Organization (IMO) emission metrics, a discrepancy in emissions reduction outcomes has been observed. The IMO approach appears to favor methanol (MeOH) and liquefied natural gas (LNG) over conventional fuel oil. This is attributed to the fact that the IMO metrics do not consider unburned methane emissions (methane slip) and emissions in the production of fuels (Well-to-Tank). Full article
Show Figures

Figure 1

23 pages, 1723 KiB  
Article
Navigational Risk Assessment in Offshore Wind Farms Using Spatial Ship Domain Models
by Grzegorz Rutkowski and Maria Kubacka
Appl. Sci. 2025, 15(12), 6943; https://doi.org/10.3390/app15126943 - 19 Jun 2025
Viewed by 457
Abstract
Navigation in offshore wind farm (OWF) areas is essential for construction, maintenance, safety, and traditional activities like fishing. However, the presence of OWFs extends to sea routes, negatively impacting maritime transport economics. This paper examines navigational risk indicators in the vertical and horizontal [...] Read more.
Navigation in offshore wind farm (OWF) areas is essential for construction, maintenance, safety, and traditional activities like fishing. However, the presence of OWFs extends to sea routes, negatively impacting maritime transport economics. This paper examines navigational risk indicators in the vertical and horizontal planes of the ship domain for three representative vessels navigating under different hydrometeorological conditions within the location of a proposed offshore wind farm in the Polish sector of the Baltic Sea. The study compares three types of domain parameters defined by the PIANC guidelines, Coldwell’s two-dimensional model, and Rutkowski’s three-dimensional model. The analysis includes navigational hazards located ahead of the ship’s bow and astern from the aft, as well as keeping under-keel and over-head clearance. Besides the main numerical indicators of navigational risk estimated for obstacles on the port and starboard sides, the study emphasizes the importance of such additional factors. The primary objective of this paper is to identify the ship types that can navigate and fish safely in proximity to and within the OWF area. The analysis employs hydrometeorological data, mathematical models, and operational data derived from maritime navigation and maneuvering simulators. This comprehensive approach aims to enhance maritime safety in OWF areas. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

22 pages, 2246 KiB  
Article
Modeling of Historical Marine Casualty on S-100 Electronic Navigational Charts
by Seojeong Lee, Hyewon Jeong and Changui Lee
Appl. Sci. 2025, 15(12), 6432; https://doi.org/10.3390/app15126432 - 7 Jun 2025
Viewed by 542
Abstract
With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for representing marine casualties has not [...] Read more.
With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for representing marine casualties has not yet been developed. As a result, past incident data—such as collisions or groundings—remain fragmented in unstructured formats and are excluded from electronic navigational systems, limiting their use in safety analysis and route planning. To address this gap, this paper proposes a data model for structuring and visualizing marine casualty information within the S-100 standard. The model was designed by defining an application schema, constructing a machine-readable feature catalogue, and developing a portrayal catalogue and custom symbology for integration into Electronic Navigational Charts (ENCs). A case study using actual casualty records was conducted to examine whether the model satisfies the structural and portrayal requirements of the S-100 framework. The proposed model enables previously unstructured casualty data to be standardized and spatially integrated into digital chart systems. This approach allows accident information to be used alongside other S-100-based data models, contributing to risk-aware route planning and future applications in smart ship operations and maritime safety services. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

18 pages, 2142 KiB  
Article
A Framework for Risk Evolution Path Forecasting Model of Maritime Traffic Accidents Based on Link Prediction
by Shaoyong Liu, Jian Deng and Cheng Xie
J. Mar. Sci. Eng. 2025, 13(6), 1060; https://doi.org/10.3390/jmse13061060 - 28 May 2025
Viewed by 367
Abstract
Water transportation is a critical component of the overall transportation system. However, the gradual increase in traffic density has led to a corresponding rise in accident occurrences. This study proposes a quantitative framework for analyzing the evolutionary paths of maritime traffic accident risks [...] Read more.
Water transportation is a critical component of the overall transportation system. However, the gradual increase in traffic density has led to a corresponding rise in accident occurrences. This study proposes a quantitative framework for analyzing the evolutionary paths of maritime traffic accident risks by integrating complex network theory and link prediction methods. First, 371 maritime accident investigation reports were analyzed to identify the underlying risk factors associated with such incidents. A risk evolution network model was then constructed, within which the importance of each risk factor node was evaluated. Subsequently, several node similarity indices based on node importance were proposed. The performance of these indices was compared, and the optimal indicator was selected. This indicator was then integrated into the risk evolution network model to assess the interdependence between risk factors and accident types, ultimately identifying the most probable evolution paths from various risk factors to specific accident outcomes. The results show that the risk evolution path shows obvious characteristics: “lookout negligence” is highly correlated with collision accidents; “improper route selection” plays a critical role in the risk evolution of grounding and stranding incidents; “improper on-duty” is closely linked to sinking accidents; and “illegal operation” show a strong association with fire and explosion events. Additionally, the average risk evolution paths for collisions, groundings, and sinking accidents are relatively short, suggesting higher frequencies of occurrence for these accident types. This research provides crucial insights for managing water transportation systems and offers practical guidance for accident prevention and mitigation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

43 pages, 2191 KiB  
Article
Carbon Dioxide Storage Site Location and Transport Assignment Optimization for Sustainable Maritime Transport
by Yanmeng Tao, Ying Yang, Yuquan Du and Shuaian Wang
J. Mar. Sci. Eng. 2025, 13(6), 1055; https://doi.org/10.3390/jmse13061055 - 27 May 2025
Viewed by 467
Abstract
Maritime carbon dioxide (CO2) transport plays a pivotal role in facilitating carbon capture and storage (CCS) systems by connecting emission sources with appropriate storage sites. This process often incurs significant transportation costs, which must be carefully balanced against penalties for untransported [...] Read more.
Maritime carbon dioxide (CO2) transport plays a pivotal role in facilitating carbon capture and storage (CCS) systems by connecting emission sources with appropriate storage sites. This process often incurs significant transportation costs, which must be carefully balanced against penalties for untransported CO2 resulting from cost-driven decisions. This study addresses the CO2 storage site location and transport assignment (CSSL-TA) problem, aiming to minimize total tactical costs, including storage site construction, ship chartering, transportation, and penalties for direct CO2 emissions. We formulate the problem as a mixed-integer programming (MIP) model and demonstrate that the objective function exhibits submodularity, reflecting diminishing returns in facility investment and ship operations. A case study demonstrates the model’s effectiveness and practical value, revealing that optimal storage siting, strategic ship chartering, route allocation, and efficient transportation significantly reduce both transportation costs and emissions. To enhance practical applicability, a two-stage planning framework is proposed, where the first stage selects storage sites, and the second employs a genetic algorithm (GA) for transport assignment. The GA-based solution achieves a total cost only 2.4% higher than the exact MIP model while reducing computational time by 57.9%. This study provides a practical framework for maritime CO2 transport planning, contributing to cost-effective and sustainable CCS deployment. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

30 pages, 20750 KiB  
Article
A Proposal for Alternative Navigation Routes Following the Development of Offshore Wind Farms in the Waters of the Republic of Korea
by Sung-Wook Ohn and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(5), 980; https://doi.org/10.3390/jmse13050980 - 19 May 2025
Viewed by 892
Abstract
In the future, electricity generation through eco-friendly renewable energy will accelerate. Surrounded by sea on three sides, the Republic of Korea is gaining attention for offshore wind power as a future industry, leveraging advantages of its maritime environment. However, maritime navigation remains active [...] Read more.
In the future, electricity generation through eco-friendly renewable energy will accelerate. Surrounded by sea on three sides, the Republic of Korea is gaining attention for offshore wind power as a future industry, leveraging advantages of its maritime environment. However, maritime navigation remains active in waters, with maritime transportation being crucial, as it accounts for over 95% of the country’s cargo volume. Therefore, ensuring the safety of vessel operations is vital when constructing offshore wind farms. This study proposed alternative routes to ensure the safety of vessels and secure existing routes in the waters of the southwestern sea, where intensive development of OWFs is expected. The routes were determined based on the Permanent International Association of Navigation Congresses (PIANC) Guidelines and Maritime Traffic Safety Act’s implementation guidelines. Clearance between a maritime route and OWF was set to the rule of 6 L + 0.3 NM + 500 m for safety. The route width was calculated while considering vessel maneuverability, environmental factors, seabed conditions, the depth-to-draft ratio, and two-way traffic. The alternative routes were categorized into four types—maritime highways, maritime provincial routes, approach routes for departure/arrival, and recommended routes based on vessel positions, engine status, and route function. By considering traffic flow and applying international and domestic standards, these routes will ensure safe, efficient, and orderly vessel operations. Full article
(This article belongs to the Special Issue Maritime Traffic Engineering)
Show Figures

Figure 1

21 pages, 2122 KiB  
Article
Quantifying the Influence of Market Concentration on Maritime Freight Rates for Sustainable Transport: A Case Study of the Asia–North America Container Route
by Abdullah Acik, Can Atacan, Oguzhan Der and Ramazan Ozkan Yildiz
Sustainability 2025, 17(10), 4424; https://doi.org/10.3390/su17104424 - 13 May 2025
Viewed by 596
Abstract
The determination of freight rates in liner shipping is influenced by the market dynamics and the strategic decisions of shipping alliances. This study investigates the effect of non-alliance tonnage on freight rates along the Asia–North America West Coast route, employing a quantile regression [...] Read more.
The determination of freight rates in liner shipping is influenced by the market dynamics and the strategic decisions of shipping alliances. This study investigates the effect of non-alliance tonnage on freight rates along the Asia–North America West Coast route, employing a quantile regression method. A dataset covering July 2021 to June 2023 was used, with bunker prices and the Dow Jones Index serving as control variables. The results reveal that the non-alliance share has a significant and negative impact on lower quantiles, suggesting that enhanced competition reduces freight rates when the prices are low. In contrast, this effect disappears at higher freight levels. Bunker prices and the stock market index also exhibit varying effects, depending on the quantile, with demand-side variables being more influential during low-freight conditions. These findings suggest that market concentration affects price-setting power, and quantile-based approaches offer deeper insights into these complex relationships than linear models. These insights contribute to the sustainable development of maritime transport by promoting fair competition, improving pricing transparency, and supporting efficient policy interventions in global liner shipping. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

11 pages, 4122 KiB  
Proceeding Paper
UKSBAS Testbed Performance Assessment of Two Years of Operations
by Javier González Merino, Fernando Bravo Llano, Michael Pattinson, Madeleine Easom, Juan Ramón Campano Hernández, Ignacio Sanz Palomar, María Isabel Romero Llapa, Sangeetha Priya Ilamparithi, David Hill and George Newton
Eng. Proc. 2025, 88(1), 35; https://doi.org/10.3390/engproc2025088035 - 21 Apr 2025
Viewed by 340
Abstract
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. [...] Read more.
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. The development of operational SBAS systems is in transition due to the extension of L1 SBAS services to new regions and the improvements expected by the introduction of dual frequency multi-constellation (DFMC) services, which allow the use of more core constellations such as Galileo and the use of ionosphere-free L1/L5 signal combination. The UKSBAS Testbed is a demonstration and feasibility project in the framework of ESA’s Navigation Innovation Support Programme (NAVISP), which is sponsored by the UK’s HMG with the participation of the Department for Transport and the UK Space Agency. UKSBAS Testbed’s main objective is to deliver a new L1 SBAS signal in space (SIS) from May 2022 in the UK region using Viasat’s Inmarsat-3F5 geostationary (GEO) satellite and Goonhilly Earth Station as signal uplink over PRN 158, as well as L1 SBAS and DFMC SBAS services through the Internet. SBAS messages are generated by GMV’s magicSBAS software and fed with data from the Ordnance Survey’s station network. This paper provides an assessment of the performance achieved by the UKSBAS Testbed during the last two years of operations at the SIS and user level, including a number of experimentation campaigns performed in the aviation and maritime domains, comprising ground tests at airports, flight tests on aircraft and sea trials on a vessel. This assessment includes, among others, service availability (e.g., APV-I, LPV-200), protection levels (PL), and position errors (PE) statistics over the service area and in a network of receivers. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

22 pages, 2390 KiB  
Article
Tramp Ship Routing and Scheduling with Integrated Carbon Intensity Indicator (CII) Optimization
by Haiying Yang, Feiyang Ren, Jingbo Yin, Siqi Wang and Rafi Ullah Khan
J. Mar. Sci. Eng. 2025, 13(4), 752; https://doi.org/10.3390/jmse13040752 - 9 Apr 2025
Cited by 1 | Viewed by 807
Abstract
In response to growing environmental concerns and regulatory pressures, reducing carbon emissions in maritime transport has become a priority. Shipping companies face the challenge of balancing profitability objectives with the imperative to minimize their environmental footprint. This study addresses the tramp ship routing [...] Read more.
In response to growing environmental concerns and regulatory pressures, reducing carbon emissions in maritime transport has become a priority. Shipping companies face the challenge of balancing profitability objectives with the imperative to minimize their environmental footprint. This study addresses the tramp ship routing and scheduling problem by incorporating the carbon intensity indicator (CII) into the optimization framework. A bi-objective optimization model is developed, with two objective functions aimed at maximizing fleet profit and improving CII ratings. The Gale–Shapley algorithm is employed to achieve stable vessel–cargo matching, and the genetic algorithm is adopted for iterative optimization. This computational study, based on real historical data, verifies the effectiveness of the proposed model and algorithm. The results demonstrate notable improvements in fleet efficiency and environmental performance, increasing profitability by 4.38% while maintaining favorable CII ratings. The findings provide valuable theoretical guidance for shipping companies navigating increasingly stringent CII regulations. Full article
Show Figures

Figure 1

17 pages, 6896 KiB  
Article
Development of a Maritime Transport Emulator to Mitigate Data Loss from Shipborne IoT Sensors
by Chae-Rim Park, Do-Myeong Park, Tae-Hoon Kim, Byung O Kang and Byung-Kwon Park
J. Mar. Sci. Eng. 2025, 13(4), 637; https://doi.org/10.3390/jmse13040637 - 22 Mar 2025
Viewed by 455
Abstract
Recently, the maritime logistics industry has been transitioning to smart logistics by leveraging such technologies as AI and IoT. In particular, maritime big data plays a significant role in providing various services, including ship operation monitoring and greenhouse gas emissions assessment, and is [...] Read more.
Recently, the maritime logistics industry has been transitioning to smart logistics by leveraging such technologies as AI and IoT. In particular, maritime big data plays a significant role in providing various services, including ship operation monitoring and greenhouse gas emissions assessment, and is considered essential for delivering maritime logistics services. Marine big data comprise real-world data collected during ship operations, but it is susceptible to loss due to temporal and environmental constraints. To address this issue, an Emulator is proposed to generate supplemental data, including location data, data count, and average distance, using accumulated maritime transport data. This study proposes an Emulator that repetitively generates new data such as location data, data count, and average distance using maritime transport data accumulated up to now. The location data is generated using the cumulative distance and trigonometric ratios based on the location information of standard routes. The data count and average distance are calculated based on user-input parameters such as voyage time and data interval. The generated data is inserted into a database and monitored on a map in real time. Experiments were conducted using maritime transport route data, and the results validated the effectiveness of the Emulator. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2296 KiB  
Article
Bayesian Networks Applied to the Maritime Emissions Trading System: A Tool for Decision-Making in European Ports
by Javier Vaca-Cabrero, Nicoletta González-Cancelas, Alberto Camarero-Orive and Jorge Quijada-Alarcón
Inventions 2025, 10(2), 28; https://doi.org/10.3390/inventions10020028 - 19 Mar 2025
Viewed by 720
Abstract
This study examines the impact of monitoring, reporting, and verification (MRV) system indicators on the costs associated with the emissions trading system (ETS) of the maritime sector in the European Union. Since maritime transport has recently been incorporated into the ETS, it becomes [...] Read more.
This study examines the impact of monitoring, reporting, and verification (MRV) system indicators on the costs associated with the emissions trading system (ETS) of the maritime sector in the European Union. Since maritime transport has recently been incorporated into the ETS, it becomes essential to understand how different operational and environmental factors affect the economic burden of shipping companies and port competitiveness. To this end, a model based on Bayesian networks is used to analyse the interdependencies between key variables, facilitating the identification of the most influential factors in the determination of the costs of the ETS. The results show that fuel efficiency and CO2 emissions in port are decisive in the configuration of costs. In particular, it was identified that emissions during the stay in port have a greater weight than expected, which suggests that strategies such as the use of electrical connections in port (cold ironing) may be key to mitigating costs. Likewise, navigation patterns and traffic regionalisation show a strong correlation with ETS exposure, which could lead to adjustments in maritime routes. This probabilistic model offers a valuable tool for strategic decision-making in the maritime sector, benefiting shipping companies, port operators, and policymakers. However, future research could integrate new technologies and regulatory scenarios to improve the accuracy of the analysis and anticipate changes in the ETS cost structure. Full article
(This article belongs to the Special Issue Innovations and Inventions in Ocean Energy Engineering)
Show Figures

Figure 1

21 pages, 1329 KiB  
Article
Solving Logistical Challenges in Raw Material Reception: An Optimization and Heuristic Approach Combining Revenue Management Principles with Scheduling Techniques
by Reinaldo Gomes, Ruxanda Godina Silva and Pedro Amorim
Mathematics 2025, 13(6), 919; https://doi.org/10.3390/math13060919 - 10 Mar 2025
Cited by 1 | Viewed by 673
Abstract
The cost of transportation of raw materials is a significant part of the procurement costs in the forestry industry. As a result, routing and scheduling techniques were introduced to the transportation of raw materials from extraction sites to transformation mills. However, little to [...] Read more.
The cost of transportation of raw materials is a significant part of the procurement costs in the forestry industry. As a result, routing and scheduling techniques were introduced to the transportation of raw materials from extraction sites to transformation mills. However, little to no attention has been given to date to the material reception process at the mill. Another factor that motivated this study was the formation of large waiting queues at the mill gates and docks. Queues increase the reception time and associated costs. This work presents the development of a scheduling and reception system for deliveries at a mill. The scheduling system is based on Trucking Appointment Systems (TAS), commonly used at maritime ports, and on revenue management concepts. The developed system allocates each delivery to a timeslot and to an unloading dock using revenue management concepts. Each delivery is segmented according to its priority. Higher-segment deliveries have priority when there are multiple candidates to be allocated for one timeslot. The developed scheduling system was tested on a set of 120 daily deliveries at a Portuguese paper pulp mill and led to a reduction of 66% in the daily reception cost when compared to a first-in, first-out (FIFO) allocation approach. The average waiting time was also significantly reduced, especially in the case of high-priority trucks. Full article
Show Figures

Figure 1

22 pages, 2721 KiB  
Article
Multimodal Livestock Operations Analysis Using Business Process Modeling: A Case Study of Romanian Black Sea Ports
by Catalin Popa, Ovidiu Stefanov and Ionela Goia
Economies 2025, 13(3), 69; https://doi.org/10.3390/economies13030069 - 7 Mar 2025
Cited by 1 | Viewed by 1061
Abstract
In spite of its strong increase and relevant position in the evolution of international maritime routes, the global livestock trade is still a poorly treated topic in the maritime business domain of research. Aiming to cover this gap, the authors are focused on [...] Read more.
In spite of its strong increase and relevant position in the evolution of international maritime routes, the global livestock trade is still a poorly treated topic in the maritime business domain of research. Aiming to cover this gap, the authors are focused on revealing the livestock logistics technology in intermodal transports, approaching both equipment reliability and operation flow design, applying the business processes modeling method to map the most relevant stages in animals’ port operation, transfer, and maritime transportation. This paper examines the intricate logistics of maritime livestock transportation through a case study on the Port of Midia, administrated by the Constanța Maritime Port Administration, one of Romania’s primary export hubs for livestock operations, using BPM software, seeking to identify the most important deficiencies and alternatives in improving the technical and technological effectiveness. Key findings indicate that improving ramp availability, automating document verification, and implementing RFID-based animal tracking systems could significantly enhance operational efficiency. By integrating workflow models, real-time monitoring, and simulation-based optimization, the study offers a comprehensive framework for streamlining multimodal livestock transportation. The implications extend to policymakers, port authorities, and logistics operators, emphasizing the necessity of digital transformation, regulatory harmonization, and technological integration in livestock maritime transportation. This research contributes to the expansion of intermodal transportation studies, providing practical recommendations for enhancing livestock logistics efficiency while ensuring compliance with European animal welfare regulations. The findings pave the way for further research into AI-driven risk assessments, smart logistics solutions, and sustainable livestock transportation alternatives. Full article
Show Figures

Figure 1

15 pages, 1521 KiB  
Article
Application of Three-Dimensional Hierarchical Density-Based Spatial Clustering of Applications with Noise in Ship Automatic Identification System Trajectory-Cluster Analysis
by Shih-Ming Wang, Wen-Rong Yang, Qian-Yi Zhuang, Wei-Hong Lin, Mau-Yi Tian, Te-Jen Su and Jui-Chuan Cheng
Appl. Sci. 2025, 15(5), 2621; https://doi.org/10.3390/app15052621 - 28 Feb 2025
Cited by 1 | Viewed by 1896
Abstract
Clustering algorithms are widely used in statistical data analysis as a form of unsupervised machine learning, playing a crucial role in big data mining research for Maritime Intelligent Transportation Systems. While numerous studies have explored methods for optimizing ship trajectory clustering, such as [...] Read more.
Clustering algorithms are widely used in statistical data analysis as a form of unsupervised machine learning, playing a crucial role in big data mining research for Maritime Intelligent Transportation Systems. While numerous studies have explored methods for optimizing ship trajectory clustering, such as narrowing dynamic time windows to prevent errors in time warp calculations or employing the Mahalanobis distance, these methods enhance DBSCAN (Density-Based Spatial Clustering of Applications with Noise) by leveraging trajectory similarity features for clustering. In recent years, machine learning research has rapidly accumulated, and multiple studies have shown that HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) outperforms DBSCAN in achieving accurate and efficient clustering results due to its hierarchical density-based clustering processing technique, particularly in big data mining. This study focuses on the area near Taichung Port in central Taiwan, a crucial maritime shipping route where ship trajectories naturally exhibit a complex and intertwined distribution. Using ship coordinates and heading, the experiment normalized and transformed them into three-dimensional spatial features, employing the HDBSCAN algorithm to obtain optimal clustering results. These results provided a more nuanced analysis compared to human visual observation. This study also utilized O notation and execution time to represent the performance of various methods, with the literature review indicating that HDBSCAN has the same time complexity as DBSCAN but outperforms K-means and other methods. This research involved approximately 293,000 real historical data points and further employed the Silhouette Coefficient and Davies–Bouldin Index to objectively analyze the clustering results. The experiment generated eight clusters with a noise ratio of 12.7%, and the evaluation results consistently demonstrate that HDBSCAN outperforms other methods for big data analysis of ship trajectory clustering. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

Back to TopTop