Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = maritime health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 605 KiB  
Article
Enhancing the Regulatory Framework for Incineration at Sea in Peru: Implementing the 1996 London Protocol for Effective Maritime Environmental Governance
by Carlos Gonzalo Carranza Rodriguez, Yeon S. Chang and Hyewon Jang
Sustainability 2025, 17(15), 7060; https://doi.org/10.3390/su17157060 - 4 Aug 2025
Viewed by 162
Abstract
Incineration at sea is a significant source of marine pollution, threatening biodiversity and public health. Although Peru ratified the 1996 London Protocol in 2018, key deficiencies persist in its domestic legal framework, particularly the absence of clear and internationally aligned definitions for “incineration” [...] Read more.
Incineration at sea is a significant source of marine pollution, threatening biodiversity and public health. Although Peru ratified the 1996 London Protocol in 2018, key deficiencies persist in its domestic legal framework, particularly the absence of clear and internationally aligned definitions for “incineration” and “incinerator.” These gaps hinder effective enforcement by the National Maritime Authority (NMA-DICAPI) and limit regulatory compliance with international obligations. This study analyzes Peru’s current legislation in light of the London Protocol and includes a comparative overview of regional regulatory approaches in Latin America. Based on this analysis, the study identifies regulatory inconsistencies that compromise environmental protection and proposes three key legal reforms: (1) refining the definition of “incineration” to reflect international standards; (2) formally incorporating a definition for “incinerator”; and (3) establishing specific administrative and economic sanctions for related infractions. Through comparative analysis with Mexico and Colombia’s approaches, we propose targeted amendments including refined definitions aligned with IMO standards and explicit administrative/economic sanctions. Implementing these recommendations would enhance Peru’s legal clarity, enforcement capacity, and compliance with international maritime law, reinforcing its role as a responsible actor in marine environmental governance. Full article
17 pages, 4557 KiB  
Article
Potential of LiDAR and Hyperspectral Sensing for Overcoming Challenges in Current Maritime Ballast Tank Corrosion Inspection
by Sergio Pallas Enguita, Jiajun Jiang, Chung-Hao Chen, Samuel Kovacic and Richard Lebel
Electronics 2025, 14(15), 3065; https://doi.org/10.3390/electronics14153065 - 31 Jul 2025
Viewed by 229
Abstract
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, [...] Read more.
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, especially under coatings. This paper critically examines these challenges and explores the potential of Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) to form the basis of improved inspection approaches. We discuss LiDAR’s utility for accurate 3D mapping and providing a spatial framework and HSI’s potential for objective material identification and surface characterization based on spectral signatures along a wavelength range of 400-1000nm (visible and near infrared). Preliminary findings from laboratory tests are presented, demonstrating the basic feasibility of HSI for differentiating surface conditions (corrosion, coatings, bare metal) and relative coating thickness, alongside LiDAR’s capability for detailed geometric capture. Although these results do not represent a deployable system, they highlight how LiDAR and HSI could address key limitations of current practices and suggest promising directions for future research into integrated sensor-based corrosion assessment strategies. Full article
Show Figures

Figure 1

21 pages, 2854 KiB  
Article
Unseen Threats at Sea: Awareness of Plastic Pellets Pollution Among Maritime Professionals and Students
by Špiro Grgurević, Zaloa Sanchez Varela, Merica Slišković and Helena Ukić Boljat
Sustainability 2025, 17(15), 6875; https://doi.org/10.3390/su17156875 - 29 Jul 2025
Viewed by 214
Abstract
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, [...] Read more.
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, owing to its frequent release into the marine environment during handling, storage, and marine transportation, all of which play a crucial role in global trade. The aim of this paper is to contribute to the ongoing discussions by highlighting the environmental risks associated with plastic pellets, which are recognized as a significant source of microplastics in the marine environment. It will also explore how targeted education and awareness-raising within the maritime sector can serve as key tools to address this environmental challenge. The study is based on a survey conducted among seafarers and maritime students to raise their awareness and assess their knowledge of the issue. Given their operational role in ensuring safe and responsible shipping, seafarers and maritime students are in a key position to prevent the release of plastic pellets into the marine environment through increased awareness and initiative-taking practices. The results show that awareness is moderate, but there is a significant lack of knowledge, particularly in relation to the environmental impact and regulatory aspects of plastic pellet pollution. These results underline the need for improved education and training in this area, especially among future and active maritime professionals. Full article
Show Figures

Figure 1

25 pages, 1840 KiB  
Article
Airborne Measurements of Real-World Black Carbon Emissions from Ships
by Ward Van Roy, Jean-Baptiste Merveille, Kobe Scheldeman, Annelore Van Nieuwenhove and Ronny Schallier
Atmosphere 2025, 16(7), 840; https://doi.org/10.3390/atmos16070840 - 10 Jul 2025
Viewed by 398
Abstract
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter [...] Read more.
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter (PM2.5), particularly in sectors such as energy production, industry, and road transport. In contrast, the maritime shipping industry has made limited progress in reducing BC emissions from ships, mainly due to the absence of stringent BC emission regulations. While the International Maritime Organization (IMO) has established emission limits for pollutants such as SOx, NOx, and VOCs under MARPOL Annex VI, as of today, BC emissions from ships are still unregulated at the international level. Whereas it was anticipated that PM2.5 and BC emissions would be reduced with the adoption of the SOx regulations, especially within the sulfur emission control areas (SECA), this study reveals that BC emissions are only partially affected by the current MARPOL Annex VI regulations. Based on 886 real-world black carbon (BC) emission measurements from ships operating in the southern North Sea, the study demonstrates that SECA-compliant fuels do contribute to a notable decrease in BC emissions. However, it is important to note that the average BC emission factors (EFs) within the SECA remain comparable in magnitude to those reported for non-compliant fuels in earlier studies. Moreover, ships using exhaust gas cleaning systems (EGCSs) as a SECA-compliant measure were found to emit significantly higher levels of BC, raising concerns about the environmental sustainability of EGCSs as an emissions mitigation strategy. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
Show Figures

Figure 1

21 pages, 1764 KiB  
Article
Machine Learning-Based Predictive Maintenance at Smart Ports Using IoT Sensor Data
by Sheraz Aslam, Alejandro Navarro, Andreas Aristotelous, Eduardo Garro Crevillen, Alvaro Martınez-Romero, Álvaro Martínez-Ceballos, Alessandro Cassera, Kyriacos Orphanides, Herodotos Herodotou and Michalis P. Michaelides
Sensors 2025, 25(13), 3923; https://doi.org/10.3390/s25133923 - 24 Jun 2025
Viewed by 1736
Abstract
Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend [...] Read more.
Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend on the performance of the container handling equipment (CHE). Inefficient maintenance strategies and unplanned maintenance of the port equipment can lead to operational disruptions, including unexpected delays and long waiting times in the supply chain. Therefore, the maritime industry must adopt intelligent maintenance strategies at the port to optimize operational efficiency and resource utilization. Towards this end, this study presents a machine learning (ML)-based approach for predicting faults in CHE to improve equipment reliability and overall port performance. Firstly, a statistical model was developed to check the status and health of the hydraulic system, as it is crucial for the operation of the machines. Then, several ML models were developed, including artificial neural networks (ANNs), decision trees (DTs), random forest (RF), Extreme Gradient Boosting (XGBoost), and Gaussian Naive Bayes (GNB) to predict inverter over-temperature faults due to fan failures, clogged filters, and other related issues. From the tested models, the ANNs achieved the highest performance in predicting the specific faults with a 98.7% accuracy and 98.0% F1-score. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

17 pages, 15281 KiB  
Article
Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold
by Yulong Yang, Jin Yan, Jin Xu, Xinqi Zhong, Yumiao Huang, Jianxun Rui, Min Cheng, Yuanyuan Huang, Yimeng Wang, Tao Liang, Zisen Lin and Peng Liu
J. Mar. Sci. Eng. 2025, 13(6), 1178; https://doi.org/10.3390/jmse13061178 - 16 Jun 2025
Viewed by 391
Abstract
Marine oil spills pose a serious and persistent threat to marine ecosystems, coastal resources, and global environmental health. These incidents not only disrupt ecological balance by damaging marine flora and fauna but also lead to long-term economic consequences for fisheries, tourism, and maritime [...] Read more.
Marine oil spills pose a serious and persistent threat to marine ecosystems, coastal resources, and global environmental health. These incidents not only disrupt ecological balance by damaging marine flora and fauna but also lead to long-term economic consequences for fisheries, tourism, and maritime industries. Owing to their rapid spread and often unpredictable occurrence, timely and accurate detection is essential for effective containment and mitigation. An efficient detection system can significantly enhance the responsiveness of emergency teams, enabling targeted interventions that minimize ecological damage and economic loss. This paper proposes a marine radar-based oil spill detection method that combines the Significance-to-Boundary Ratio (SBR) feature with an improved Sauvola adaptive thresholding algorithm. The raw radar data was firstly preprocessed through mean and median filtering, grayscale correction, and contrast enhancement. SBR features were then employed to extract coarse oil spill regions, which were further refined using an improved Sauvola thresholding algorithm followed by a denoising step to obtain fine-grained segmentation. Comparative experiments using different threshold values demonstrate that the proposed method achieves superior segmentation performance by better preserving oil spill boundaries and reducing background noise. Overall, the approach provides a robust and efficient solution for marine oil spill detection and monitoring. Full article
(This article belongs to the Special Issue Remote Sensing for Maritime Monitoring and Ship Surveillance)
Show Figures

Figure 1

16 pages, 535 KiB  
Review
Too Much of a Good Thing? Navigating the Abundance of E&S Metrics in Ports’ Sustainability
by Frank Oswald, Seyedeh Azadeh Alavi-Borazjani, Michelle Adams and Fátima Lopes Alves
Sustainability 2025, 17(10), 4743; https://doi.org/10.3390/su17104743 - 21 May 2025
Cited by 1 | Viewed by 564
Abstract
As global sustainability goals gain momentum, seaports are playing a pivotal role in driving environmentally and socially responsible practices. In light of the International Maritime Organization’s emission reduction targets, transparent and effective Environmental and Social (E&S) reporting has become increasingly vital. This study [...] Read more.
As global sustainability goals gain momentum, seaports are playing a pivotal role in driving environmentally and socially responsible practices. In light of the International Maritime Organization’s emission reduction targets, transparent and effective Environmental and Social (E&S) reporting has become increasingly vital. This study critically examines current E&S reporting practices in the port industry through an analysis of recent disclosures from major European and global ports, supported by a review of academic and industry literature. The research explores how sustainability reports address key themes such as CO2 emissions, energy efficiency, health and safety, operational performance, and biodiversity. While the presence of numerous indicators reflects a commitment to comprehensive sustainability, the proliferation of metrics poses challenges for clarity, comparability, and stakeholder engagement. The abundance of data risks diluting focus, complicating benchmarking, and may even contribute to greenwashing. Without standardization and strategic alignment, reporting can become counterproductive. This study advocates for a harmonized set of performance indicators that remain flexible enough to reflect port-specific strategies, yet are consistent with global benchmarks. Achieving this balance will require collaboration among researchers, industry leaders, and policymakers to develop transparent, adaptive E&S reporting frameworks that support meaningful progress in ports’ sustainability. Full article
Show Figures

Figure 1

29 pages, 923 KiB  
Article
International Legal Systems in Tackling the Marine Plastic Pollution: A Critical Analysis of UNCLOS and MARPOL
by Yen-Chiang Chang and Muhammad Saqib
Water 2025, 17(10), 1547; https://doi.org/10.3390/w17101547 - 21 May 2025
Viewed by 1479
Abstract
Marine plastic pollution (MPP) has become one of the most pressing environmental challenges, severely affecting marine ecosystems and human health. Even though international agreements such as UNCLOS and the International Convention for the Prevention of Pollution from Ships (MARPOL) of the International Maritime [...] Read more.
Marine plastic pollution (MPP) has become one of the most pressing environmental challenges, severely affecting marine ecosystems and human health. Even though international agreements such as UNCLOS and the International Convention for the Prevention of Pollution from Ships (MARPOL) of the International Maritime Organization (IMO) exist, the existing laws are often being introduced to question the inability of the present laws to do something about the escalating issue of plastic pollution. This study uses a doctrinal legal approach to examine how UNCLOS and MARPOL respond to marine plastic pollution (MPP) with a focus on their ability to handle land-based and ship-based MPP. Gaps in these frameworks are underlined, such as a lack of enforceable requirements under UNCLOS on reducing plastic rubbish from LBS and disparities in implementing MARPOL’s regulations on plastic discharges from ships. This paper also explores activities of organizations such as the United Nations Environment Programme (UNEP), with a focus on the Regional Seas Programme and the Global Programme of Action. Although a lot has been achieved, much remains to be done to resolve the problem of marine plastic pollution. This paper concludes with a series of practical proposals aimed at refining international laws, strengthening enforcement, and encouraging collective action at the international level. The proposed measures are aimed at advancing a circular economy model, strengthening legal infrastructure, and fostering a single global response against marine plastic pollution. Full article
(This article belongs to the Special Issue Coastal and Marine Governance and Protection)
Show Figures

Figure 1

30 pages, 5318 KiB  
Review
Progress of Ship Exhaust Emissions in China’s Lijiang River: Current Status and Aftertreatment Technologies
by Pengyu Liu, Bensen Xian, Mei Wang, Yong Xiao, Xiaobin Zhou, Dandan Xu, Yanan Zhang, Huili Liu and Shaoyuan Bai
Toxics 2025, 13(5), 396; https://doi.org/10.3390/toxics13050396 - 15 May 2025
Viewed by 1012
Abstract
Exhaust emissions from ships are significant threats to the environment and human health, necessitating effective control measures and treatment technologies. In response to the increasing stringency of emission regulations set by the International Maritime Organization (IMO) and national governments, the shipping industry must [...] Read more.
Exhaust emissions from ships are significant threats to the environment and human health, necessitating effective control measures and treatment technologies. In response to the increasing stringency of emission regulations set by the International Maritime Organization (IMO) and national governments, the shipping industry must adopt advanced techniques to mitigate these emissions. The study focuses on the current status of exhaust pollution prevention and control on the Lijiang River and describes the latest progress in ship emission management. It summarizes the sources and hazards of nitrogen oxides (NOX), sulfur oxides (SOX), and particulate matter (PM) emitted from ships. The study introduces and compares several exhaust treatment key technologies for desulfurization, denitrification, and integrated desulfurization and denitrification to emphasize their principles, processes, and characteristics. It also demonstrates the future prospects for controlling exhaust gas pollution on inland ships and advocates for the development of integrated technologies that are efficient, space-saving, and cost-effective. The research aims to provide a valuable reference for inland ship exhaust pollution prevention and control. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

20 pages, 702 KiB  
Article
Shore Leave Policy—Paving the Path to a Sustainable Career Environment for Seafarers
by Feng-Chu Yang, Rong-Her Chiu and Yen-Hsu Lin
Sustainability 2025, 17(10), 4300; https://doi.org/10.3390/su17104300 - 9 May 2025
Viewed by 642
Abstract
In addressing the increasing challenges associated with automation, alternative fuels, and regulatory compliance within the maritime industry, the well-being of seafarers has become a critical determinant of workforce stability and career sustainability. This study investigates the impact of shore leave policies on seafarers’ [...] Read more.
In addressing the increasing challenges associated with automation, alternative fuels, and regulatory compliance within the maritime industry, the well-being of seafarers has become a critical determinant of workforce stability and career sustainability. This study investigates the impact of shore leave policies on seafarers’ well-being and turnover intention by applying the Analytical Hierarchy Process (AHP). The study delineates four principal criteria—mental well-being, physical health, work–life balance, and organizational support—and evaluates their sub-criteria via expert assessments from two distinct cohorts, each comprising 30 participants: maritime human resource professionals and seafarers working alongside related stakeholders. The outcome designates organizational support as the most influential criterion, with shore leave flexibility and financial incentives identified as the top-ranked sub-criteria. In contrast, mental well-being has the lowest overall weight, indicating that while its significance is acknowledged, it is frequently overshadowed by structural and financial factors. The findings underscore the need for shipping companies and policymakers to formulate flexible and financially supported shore leave policies to bolster seafarer retention and overall job satisfaction. This study enhances literature concerning sustainable seafaring careers and provides strategic recommendations for optimizing the management of shore leave policies within the maritime industry. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

46 pages, 15851 KiB  
Article
Emerging Human Fascioliasis in India: Review of Case Reports, Climate Change Impact, and Geo-Historical Correlation Defining Areas and Seasons of High Infection Risk
by Santiago Mas-Coma, Pablo F. Cuervo, Purna Bahadur Chetri, Timir Tripathi, Albis Francesco Gabrielli and M. Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(5), 123; https://doi.org/10.3390/tropicalmed10050123 - 2 May 2025
Cited by 1 | Viewed by 2088
Abstract
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes [...] Read more.
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes the epidemiological scenario of human infection. The study reviews the total of 55 fascioliasis patients, their characteristics, and geographical distribution. Causes underlying this emergence are assessed by analyzing (i) the climate change suffered by India based on 40-year-data from meteorological stations, and (ii) the geographical fascioliasis hotspots according to archeological–historical records about thousands of years of pack animal movements. The review suggests frequent misdiagnosis of the wide lowland-distributed F. gigantica with F. hepatica and emphasizes the need to obtain anamnesic information about the locality of residence and the infection source. Prevalence appears to be higher in females and in the 30–40-year age group. The time elapsed between symptom onset and diagnosis varied from 10 days to 5 years (mean 9.2 months). Infection was diagnosed by egg finding (in 12 cases), adult finding (28), serology (3), and clinics and image techniques (12). Climate diagrams and the Wb-bs forecast index show higher temperatures favoring the warm condition-preferring main snail vector Radix luteola and a precipitation increase due to fewer rainy days but more days of extreme rainfall, leading to increasing surface water availability and favoring fascioliasis transmission. Climate trends indicate a risk of future increasing fascioliasis emergence, including a seasonal infection risk from June–July to October–November. Geographical zones of high human infection risk defined by archeological–historical analyses concern: (i) the Indo-Gangetic Plains and corridors used by the old Grand Trunk Road and Daksinapatha Road, (ii) northern mountainous areas by connections with the Silk Road and Tea-Horse Road, and (iii) the hinterlands of western and eastern seaport cities involved in the past Maritime Silk Road. Routes and nodes are illustrated, all transhumant–nomadic–pastoralist groups are detailed, and livestock prevalences per state are given. A baseline defining areas and seasons of high infection risk is established for the first time in India. This is henceforth expected to be helpful for physicians, prevention measures, control initiatives, and recommendations for health administration officers. Full article
Show Figures

Figure 1

20 pages, 8834 KiB  
Review
Human Digital Healthcare Engineering for Enhancing the Health and Well-Being of Seafarers and Offshore Workers: A Comprehensive Review
by Meng-Xuan Cui, Kun-Hou He, Fang Wang and Jeom-Kee Paik
Systems 2025, 13(5), 335; https://doi.org/10.3390/systems13050335 - 1 May 2025
Cited by 1 | Viewed by 1485
Abstract
With over 50,000 merchant vessels and nearly two million seafarers operating globally, more than 12,000 maritime incidents in the past decade underscore the urgent need for proactive safety measures to ensure the structural integrity of aging ships and safeguard the well-being of seafarers, [...] Read more.
With over 50,000 merchant vessels and nearly two million seafarers operating globally, more than 12,000 maritime incidents in the past decade underscore the urgent need for proactive safety measures to ensure the structural integrity of aging ships and safeguard the well-being of seafarers, who face harsh ocean environments in remote locations. The Digital Healthcare Engineering (DHE) framework offers a proactive solution to these challenges, comprising five interconnected modules: (1) real-time monitoring and measurement of health parameters, (2) transmission of collected data to land-based analytics centers, (3) data analytics and simulations leveraging digital twins, (4) AI-driven diagnostics and recommendations for remedial actions, and (5) predictive health analysis for optimal maintenance planning. This paper reviews the core technologies required to implement the DHE framework in real-world settings, with a specific focus on the well-being of seafarers and offshore workers, referred to as Human DHE (HDHE). Key technical challenges are identified, and practical solutions to address these challenges are proposed for each individual module. This paper also outlines future research directions to advance the development of an HDHE system, aiming to enhance the safety, health, and overall well-being of seafarers operating in demanding maritime environments. Full article
Show Figures

Figure 1

17 pages, 9344 KiB  
Article
Stress Evaluation of a Maritime A-Frame Using Limited Strain Measurements from a Real Deep-Sea Mining Campaign
by Jiahui Ji, Chunke Ma, Ying Li, Mingqiang Xu, Wei Liu, Hong Zhen, Jiancheng Liu, Shuqing Wang, Lei Li and Lianjin Jiang
J. Mar. Sci. Eng. 2025, 13(5), 897; https://doi.org/10.3390/jmse13050897 - 30 Apr 2025
Viewed by 320
Abstract
As terrestrial resources become increasingly scarce, the exploration and utilization of marine resources have become crucial for ensuring a stable resource supply. A maritime A-Frame is a specialized lifting mechanism mounted on the stern of a vessel, designed for deploying and retrieving heavy [...] Read more.
As terrestrial resources become increasingly scarce, the exploration and utilization of marine resources have become crucial for ensuring a stable resource supply. A maritime A-Frame is a specialized lifting mechanism mounted on the stern of a vessel, designed for deploying and retrieving heavy loads during subsea exploration. Real-time monitoring of the stress of A-Frames is essential for identifying potential failures and preventing accidents. This paper presents a stress-monitoring campaign conducted on a maritime A-Frame during a deep-sea mining project in the South China Sea. Fiber Bragg Grating (FBG) strain sensors were installed on the A-Frame to measure its stress responses throughout the deep-sea mining operation. The stress variations observed during the deployment and retrieval of a deep-sea mining vehicle were analyzed. The results indicate that the stress caused by the swinging motion of the A-Frame was significantly higher than that generated by the lifting and deployment of the mining equipment. Additionally, a finite element model (FEM) of the A-Frame was developed to estimate the stress of the hot spots by integrating the measured strain data. The analysis confirmed that the maximum stress experienced by the A-Frame was well below the allowable threshold, indicating that the structure had sufficient strength to withstand operational loads. In addition, the swing angle of the A-Frame significantly affects the stress value of the A-Frame, while lifting the mining vehicle has a very slight effect. Thus, it is advisable to accelerate the deployment and retrieval speeds of the mining vehicle and minimize the outward swing angle of the A-Frame. These findings provide valuable insights for optimizing the design and ensuring the safe operation of maritime A-Frames in deep-sea mining exploration. Full article
(This article belongs to the Special Issue Deep-Sea Mineral Resource Development Technology and Equipment)
Show Figures

Figure 1

14 pages, 1610 KiB  
Article
Impact of a Dietary Supplementation with French Maritime Pine Bark Extract Pycnogenol® on Salivary and Serum Inflammatory Biomarkers During Non-Surgical Periodontal Therapy—A Randomized Placebo-Controlled Double-Blind Trial
by Jasmin Bayer, Nicole Karoline Petersen, Jeanine Veruschka Hess, Yvonne Jockel-Schneider and Petra Högger
Nutrients 2025, 17(9), 1546; https://doi.org/10.3390/nu17091546 - 30 Apr 2025
Cited by 1 | Viewed by 1148
Abstract
Background: Gingival inflammation is highly prevalent and may impact systemic health. While professional mechanical plaque removal (PMPR) is the standard treatment, dietary interventions may provide additional benefits. The French maritime pine bark extract Pycnogenol® has anti-inflammatory and antioxidant properties, but its [...] Read more.
Background: Gingival inflammation is highly prevalent and may impact systemic health. While professional mechanical plaque removal (PMPR) is the standard treatment, dietary interventions may provide additional benefits. The French maritime pine bark extract Pycnogenol® has anti-inflammatory and antioxidant properties, but its impact on inflammatory biomarkers in saliva and serum has not been studied in a controlled clinical trial. Methods: In this randomized, double-blind, placebo-controlled clinical trial, 91 participants received Pycnogenol® (100 mg twice daily; n = 46) or a placebo (n = 45) following PMPR. Saliva and serum samples were collected at baseline, and after two and three months. Inflammatory biomarkers (IL-1β, IL-6, MMP-8, and MMP-9) and polyphenol concentrations were analyzed using ELISA and LC-MS/MS. Results: Pycnogenol® supplementation significantly reduced salivary MMP-8 levels (p = 0.0261), and serum IL-6 levels compared to placebo (p = 0.0409). Additionally, ferulic acid, caffeic acid, and the gut microbial metabolite 5-(3,4-dihydroxyphenyl)-γ-valerolactone (M1) significantly increased in saliva following Pycnogenol® intake. A correlation analysis revealed a significant inverse association between bleeding on probing and M1 concentration in saliva (r = −0.3476, p = 0.0167). Conclusions: Dietary supplementation with Pycnogenol® significantly reduced key inflammatory biomarkers and increased polyphenol concentrations in saliva, suggesting a potential anti-inflammatory effect of Pycnogenol® on gingival inflammation. Trial registration: ClinicalTrials.gov (NCT05786820). Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

30 pages, 3827 KiB  
Article
Digital Approaches for Mitigating Occupational Vibration Exposure in the Context of Industry 4.0
by Doru Costin Darabont, Lucian-Ionel Cioca and Daniel Onut Badea
Safety 2025, 11(2), 31; https://doi.org/10.3390/safety11020031 - 1 Apr 2025
Cited by 1 | Viewed by 1030
Abstract
Whole-body vibration (WBV) exposure presents occupational health risks across multiple industries, particularly in tasks involving heavy machinery and prolonged seating. This study examines WBV risk factors, intervention strategies, and the potential for digital monitoring solutions to strengthen workplace safety. A sector-wide analysis assessed [...] Read more.
Whole-body vibration (WBV) exposure presents occupational health risks across multiple industries, particularly in tasks involving heavy machinery and prolonged seating. This study examines WBV risk factors, intervention strategies, and the potential for digital monitoring solutions to strengthen workplace safety. A sector-wide analysis assessed vibration exposure levels, worker-reported discomfort, and the effectiveness of the existing control measures. The study introduces a conceptual framework for a mobile application designed to integrate real-time exposure tracking, structured worker feedback, and predictive risk assessment. The findings confirm that WBV exposure varies across industries, with the energy and maritime logistics sectors showing the highest levels of noncompliance. A tiered intervention strategy, classified by impact and effort, provides a structured method for prioritizing risk reduction measures. Immediate actions, such as real-time monitoring and preventive maintenance, require minimal effort but provide high-impact benefits, while long-term strategies, including ergonomic workstation redesign, demand greater investment but contribute to sustained exposure reduction. The proposed framework offers a scalable, data-driven approach to WBV risk management, transitioning workplace safety from compliance-based monitoring to proactive prevention. Future research should explore implementation feasibility, worker adoption, and the integration of AI-driven safety recommendations to support continuous improvements in workplace safety strategies. Full article
(This article belongs to the Special Issue Occupational Safety Challenges in the Context of Industry 4.0)
Show Figures

Figure 1

Back to TopTop